Subblock Processing in MMSE-FDE
Under Fast Fading Environments

Keiichi Kambara, Hiroshi Nishimoto, Student Member, IEEE, Toshihiko Nishimura, Member, IEEE,
Takeo Ohgane, Member, IEEE, and Yasutaka Ogawa, Senior Member, IEEE

Abstract—Frequency domain equalization (FDE) has been studied for reducing inter-symbol interference (ISI) caused by frequency selective fading in single carrier systems. When a high-mobility terminal exists in the system, the channel state may change within a DFT block. Then, the ISI reduction performance of FDE degrades since cyclicity of the channel matrix is lost. We propose to divide a received data block into multiple subblocks to decrease the channel transition within the DFT block in fast fading environments. Also, to satisfy periodicity of the received signal in each subblock, we introduce a pseudo cyclic prefix technique. The results of numerical analysis show that the proposed method can effectively decrease the error floor in fast fading environments.

Index Terms—Fast fading, single carrier transmission, MMSE-FDE, unique word, subblock processing

I. INTRODUCTION

NOW, high data-rate services over 100 Mbps are discussed in standardization processes for WiFi, WiMAX, and beyond third generation. These broadband systems suffer from frequency selective fading, for which a multi-carrier transmission such as orthogonal frequency division multiplexing (OFDM) is very effective [1]. However, OFDM systems have the problem of a high peak-to-average-power-ratio (PAPR) [2].

Although a single carrier transmission has the advantage of a low PAPR, inter-symbol interference (ISI) caused by frequency selective fading must be reduced. Frequency domain equalization (FDE) is a simple technique to reduce ISI for severe frequency selectivity [3]. FDE is based on the cyclic signal property within the target block. This means that the channel must remain constant in the period. Thus, in fast fading environments, channel transition in an FDE block degrades the equalization performance.

A reasonable solution for the issue is a method controlling transmission block size adaptively. By changing the transmission block size according to the Doppler frequency, the channel transition within the block can be reduced. However, this method requires Doppler frequency information at the transmitter, i.e., closed-loop control. In addition, the shortened transmission block size with a constant cyclic prefix (CP) size leads to lower transmission efficiency.

In this paper, we propose subblock FDE processing at the receiver side without reducing transmission block size. In this method, inter-subblock interference (ISBI) occurs in each subblock. Therefore, we apply a CP reconstruction scheme (hereinafter referred to as “pseudo CP generation”) to satisfy periodicity in a subblock DFT window [4].

The rest of the paper is organized as follows. In Section II, the fundamental formulation of FDE and conventional countermeasures for fast fading environments are reviewed. Then, the proposed method is described in Section III. After numerical analysis in Section IV, Section V concludes the paper.

II. FDE UNDER FAST FADING ENVIRONMENTS

A. FDE and Cyclicity of Channel Matrix

Let us consider a single carrier system with FDE per N-symbol block at the receiver side. To maintain periodicity of the received signal within a DFT window, we add a CP longer than the maximum symbol delay. Here, assuming a multipath channel with L symbol-spaced paths, the CP length N_P is set as N_P ≥ L. When we define an N-dimensional transmit signal vector s = [s_0, ..., s_{N-1}]^T and an N-dimensional noise vector, the N-dimensional received signal vector after CP removal is given by [5]

\[r = Hs + n, \]

where \(H \) is the \(N \times N \) channel matrix expressed by

\[
H = \begin{bmatrix}
 h_{0,0} & 0 & \cdots & 0 & \cdots & h_{2,-2} & h_{1,-1} \\
 h_{1,0} & h_{0,1} & \cdots & 0 & \cdots & h_{3,-2} & h_{2,-1} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 h_{L-1,0} & h_{L-2,1} & \cdots & h_{0,N-L} & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & h_{L-2,N-L} & \cdots & h_{0,N-2} & 0 \\
 0 & 0 & \cdots & h_{L-1,N-L} & \cdots & h_{1,N-2} & h_{0,N-1}
\end{bmatrix}
\]

(2)

The first index \(i \) and the second index \(j \) of \(h_{i,j} \) correspond to multipath number and transmitting time, respectively. Note that the definition of the time index is different from that in [5] where receiving time index is used, since it is useful to explain the equivalent noise power in Appendix A.

Transforming (1) into the frequency domain using the DFT matrix \(F \) yields

\[
Fr = FHs + Fn
\]

(3)

\[
= FHF^HFs + Fn,
\]

(4)
where \(F^H F = I_N \) because \(F \) is a unitary matrix. When the channel is time-invariant within the block, i.e., \(h_{l,0} = \ldots = h_{l,N-1} = h_l \) for \(l = 0, \ldots, L - 1 \), \(H \) becomes a cyclic matrix. Thus, \(H \) can be diagonalized by \(F \) as \(F H F^H = D = \text{diag}(d_0, \ldots, d_{N-1}) \), where we have

\[
\begin{bmatrix}
 d_0 \\
 \vdots \\
 d_{N-1}
\end{bmatrix} = F
\begin{bmatrix}
 h_0 \\
 \vdots \\
 h_{N-1}
\end{bmatrix}. \tag{5}
\]

Then, (4) can be rewritten as

\[
F\tilde{r} = DF s + F\tilde{n}
\]

\[
\tilde{r} = D\tilde{s} + \tilde{n}
\]

\[
\tilde{r}_k = d_k\tilde{s}_k + \tilde{n}_k,
\]

where \(\tilde{r} \), \(\tilde{s} \), and \(\tilde{n} \) are the received signal, the transmitted signal, and the noise vectors represented in the frequency domain, respectively, and \(\tilde{r}_k \), \(\tilde{s}_k \), and \(\tilde{n}_k \) correspond to each component as well. Equation (8) indicates that the signal components in the frequency domain are mutually independent. Thus, minimum mean square error (MMSE) estimation of the transmitted signal can be independently performed at each frequency. The MMSE weight at the \(k \)th frequency point is expressed by \(w_k = d_k^2/(|d_k|^2 + \sigma^2) \), where \(\sigma^2 = E[\tilde{n}_k\tilde{n}_k^*] \) denotes the noise power, and equalization can be easily accomplished by \(\tilde{s}_k = w_k\tilde{r}_k \). Finally, by applying IDFT to the MMSE-FDE output, we can estimate the transmitted data sequence.

\[\text{B. Residual ISI Component Due to Fast Fading} \]

In fast fading environments, cyclicity of the channel matrix \(H \) is no longer valid due to channel transition within the FDE block. Thus, \(F H F^H \) includes non-diagonal components as

\[
F H F^H = D' + E,
\]

where \(D' \) expresses the diagonal component and \(E \) is an \(N \times N \) matrix having off-diagonal elements only. Substituting (9) into (4) yields

\[
\tilde{r} = D'\tilde{s} + \tilde{n} + E\tilde{s}
\]

\[
\tilde{r}_k = d_k'\tilde{s}_k + \tilde{n}_k + \sum_{j=0}^{N-1} e_{(k,j)}\tilde{s}_j,
\]

where \(e_{(k,j)} \) is the \((k,j)\)th element of \(E \). The third terms on the right-hand sides of these equations correspond to inter-frequency interference components, or may be regarded as residual ISI components in the time domain. Thus, the MMSE estimation is only achieved by solving an inverse problem of the \(N \times N \) matrix \((D' + E)\) so that the numerical complexity grows enormously as the block size increases.

However, if the third term in (11) is relatively small compared to the first term, we can still apply the conventional FDE by regarding the third term as additional noise to \(\tilde{n}_k \)

\[
\tilde{r}_k = d_k'\tilde{s}_k + \tilde{n}_k.
\]

In this case, the MMSE weight would be obtained using equivalent noise power

\[
\sigma_{e,k}^2 = \sigma^2 + \sum_{j=0}^{N-1} |e_{(k,j)}\tilde{s}_j|^2.
\]

\[\text{III. CHANNEL ESTIMATION USING KNOWN PILOT SEQUENCE} \]

Since we consider a fast fading environment, channel state information (CSI) in each FFT block must be estimated. The conventional CP (i.e., a copy of the tail in the transmitted block) is basically known before data are detected using the
FDE. Therefore, inserting a unique word (UW) as a known pilot sequence instead of the CP has been proposed [6]-[8]. In this case, the data block size is decreased to \(N - N_P \) for satisfying periodicity within the DFT window as shown in Fig. 1. When \(N_P \geq 2L - 1 \), we have a part of more than \((L - 1)\) symbols, which is interfered from the data block and includes the UW only, in the received signal. Thus, the CSI can be simply estimated exploiting this period.

The MMSE algorithm for channel estimation in the time domain is applied to this \((N_P - L)\)-symbol sequence. Using the \((N_P - L)\)-dimensional received signal vector \(z \), the \(L \)-dimensional channel vector \(h_{uw} \), and the \((N_P - L) \times L\) transmit signal matrix in this interval \(Q \) where the \(i \)-th column vector is an \(i \)-symbol-cyclic-shifted partial UW sequence, the square error function \(J \) is defined as

\[
J = (z - Qh_{uw})^H(z - Qh_{uw}),
\]

where \(h_{uw} \) is assumed as the time-invariant channel response within the target signal sequence. Then, the \(h_{uw} \) can be estimated by minimizing \(J \) [9] as

\[
h_{uw} = (Q^H Q)^{-1} Q^H z.
\]

We need to know the channel response at the central position of the block/subblock for FDE. In addition, the approximation of the equivalent noise power estimation requires the channel responses at the head and tail as in (35) and (42). Moreover, all responses within the pseudo CP part are also needed. Therefore, the channel estimates at several points are necessary in total. Since the UW for channel estimation is only located at pre- and post-data blocks, we obtain channel estimates within the data block by interpolation. In this paper, third order interpolation is used as shown in Fig. 1(b). By using channel estimates at four UWs (two in the past and two in the future of the target data block), the channel within the data block is interpolated with a cubic function. (See subsection 3-1 in [10] for the detail.) Then, the channel responses at the other required points are obtained from the curve. When applying the FDE, we use the central channel response \(h_{cent} = [h_{0,cent}, \ldots, h_{L-1,cent}, 0, \ldots, 0]^T \) in the target block to calculate \(d_0, \ldots, d_{N-1}, \) i.e., \([d_0, \ldots, d_{N-1}]^T \simeq Fh_{cent}.\)

IV. BLOCK DIVISION TECHNIQUE

A. Block Division Transmission

The simplest way to reduce the channel transition observed within the FDE block is to shorten the block size. If the maximum Doppler frequency (or a related value) is known at the transmitter, we can divide the block into \(M \) subblocks in advance as illustrated in Fig. 2 where \(M \) is adaptively determined so as to suppress the equivalent noise power to a required level. A UW insertion to each subblock also improves tracking capability of the channel transition. Thus, the performance degradation due to fast fading can be reasonably suppressed.

In this technique, however, the transmitter must know the fading speed information so that a closed-loop control based on feedback from the receiver is required. In addition, when the maximum Doppler frequency is very high, the number of subblocks becomes very large. More frequent insertion of the UW makes the transmission efficiency lower. Our objective is to avoid these problems. The proposed method is described next.

B. Subblock Processing at Receiver Side

In this paper, we propose subblock processing, which shortens the FDE block size equivalently without changing the transmitted block format. The concept is shown in Fig. 3. The basic idea of the proposed method is to divide the whole received block into \(M \) subblocks at the receiver side. Then, as shown in the middle part of Fig. 3, the top \(L - 1 \) symbols of each subblock contain ISBI components. Therefore, reducing the ISBI is required first. In addition, the received signal in the subblock needs to have periodicity so that the tail of subblock data convoluted with the multipath channel should be added to the top of the subblock. In the paper, the following pseudo CP generation [4] is used for these requirements.

At first, the MMSE-FDE is applied to the whole received block to obtain a tentative decision \(\hat{s} = [\hat{s}_0, \ldots, \hat{s}_{N-1}]^T \). The number of symbols within a subblock is \(N' = N/M \). Then, the received signal at the \(i \)th (0 ≤ \(i \) ≤ \(L - 2 \)) symbol timing of the \(m \)th subblock is written as

\[
r_{m,i} = \sum_{l=0}^{i} h_{l,i+N'm}s_{m,i-l} + \sum_{l=i+1}^{L-1} h_{l,i+N'm}s_{m-1,i+l} + n_{i+N'm},
\]

where \(s_{m,j} \) is the \(j \)th transmitted symbol of the \(m \)th subblock. Note that the second term in (20) corresponds to ISBI components. This part can be cancelled using the tentative decision \(\hat{s} \) and the estimated channel response \(\hat{h}_{l,i} \) as

\[
r'_{m,i} = r_{m,i} - \sum_{l=i+1}^{L-1} \hat{h}_{l,i+N'm}\hat{s}_{m-1,i+l} + n_{i+N'm},
\]

Fig. 2. Block division transmission.

Fig. 3. Concept of subblock processing at receiver side.
TABLE I
SIMULATION PARAMETERS.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>QPSK for data (BPSK for UW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block size N</td>
<td>256, 512, 1024, 2048, 4096, 8192 symbols (including 48-symbol UW)</td>
</tr>
<tr>
<td>Number of paths L</td>
<td>16 (symbol-spaced, equal-level)</td>
</tr>
<tr>
<td>Fading model</td>
<td>Rayleigh (Jakes’ model)</td>
</tr>
<tr>
<td></td>
<td>Uncorrelated between paths</td>
</tr>
<tr>
<td>Number of subblocks M</td>
<td>2, 4, 8</td>
</tr>
<tr>
<td>FEC</td>
<td>Binary CC (4 states, $R_c=1/2$)</td>
</tr>
<tr>
<td>Decoder</td>
<td>Soft Viterbi algorithm</td>
</tr>
<tr>
<td>Number of trial blocks</td>
<td>100 000</td>
</tr>
</tbody>
</table>

where $\hat{s}_{m-1,j}$ denotes the tentative decision of the jth symbol of the $(m-1)$th subblock. Next, adding the tail part of the tentative decision of the mth subblock convoluted with the channel responses to $r'_{m,i}$ yields

$$r''_{m,i} = r'_{m,i} + \sum_{l=i+1}^{L-1} \hat{h}_{l,i+N'm} \hat{s}_{m,i+N'-l}.$$ \hbox{(22)}

Consequently, the pseudo received signal satisfies periodicity within each subblock when the tentative decision and the estimated channel are reasonably correct. After the above pseudo CP procedure, subblock-based FDE is done in each subblock. Then, each output is demultiplexed and passed to a decoder. Although this technique is affected by the accuracy of the pseudo CP (i.e., channel estimates and tentative decisions), similar improvement to block division transmission can be expected.

V. NUMERICAL ANALYSIS

A. Simulation Environment

The performance of the proposed system was numerically evaluated using computer simulations. The simulation parameters are shown in Table I. In the following discussions, we use the normalized Doppler frequency f_D, which is a product of the maximum Doppler frequency f_D and the block length $N T_s$ (T_s: the symbol duration), as a fading speed measure.

The receiver configuration is shown in Fig. 4. In this paper, we consider data transmission based on automatic repeat request (ARQ). Thus, use of a cyclic redundancy check (CRC) code is assumed to enable a block error check for ARQ. First, the whole received block is equalized and decoded. If no errors are found in a cyclic redundancy check, the decoded data are output. Otherwise, the block is divided into subblocks, and then the pseudo CP processing and the subblock FDE are applied. Finally, each output is demultiplexed and decoded.

B. Validity of Approximation on Equivalent Noise Power

First, we evaluate the validity of the approximation when we calculate the equivalent noise power as in (17). Figure 5(a) shows a correlation chart of the equivalent SNR with and without the approximation. It can be seen that the approximation works well in the low SNR region, i.e., high impact region of equivalent noise. Figure 5(b) shows the block error rate (BLER) performance with and without the approximation where we recalculate the equivalent noise power in the subblock FDE. To demonstrate the effectiveness of using the equivalent noise power, the performance with the noise power only (ignoring the third term in (11)) is also shown. If we do not use the equivalent noise power, error floors can be seen, and they become worse in the higher SNR region due to underestimating the noise power. In contrast, the BLER performance improves considerably by incorporating the equivalent noise power. In addition, very little degradation due to the approximation is observed. Therefore, in the following, we apply the approximation instead of the strict calculation for both conventional and subblock FDE.
C. BLER Performance of Proposed Method

The BLER performance is shown in Fig. 6 when the block size is 256 symbols. Figure 6(a) shows the case of perfect pseudo CP when $F_D = 0.3$. From the figure, a monotonic improvement of BLER with decreasing subblock size can be seen. However, the imperfect pseudo CP in a realistic situation degrades the performance, and a trade-off between subblock size and performance is observed. To be specific, the best performance is obtained by two-subblock processing.

Basically, FDE with a smaller subblock size becomes more tolerant to F_D. However, the performance of the proposed method is affected by the accuracy of the pseudo CP, which depends on both the channel estimates and the tentative decisions as mentioned above. Comparing Fig. 6(a) with Fig. 6(b) gives us a conclusion that reconstructed pseudo CP is not so accurate due to errors in channel estimation and tentative decisions. Such an inaccurate pseudo CP adds errors in the received signal and destroys the cyclicity/periodicity of the subblock. Thus, it can be said that the ratio of the pseudo CP to the subblock size highly affects the capability of subblock FDE. In other words, the proposed scheme has the trade-off between the number of subblocks and error propagation due to the inaccuracy of pseudo CP. Consequently, two-subblock processing provides the best performance for $F_D = 0.3$.

Figure 6(c) shows the BLER performance versus F_D when $E_b/N_0 = 30$ dB. When assuming a required BLER of 10^{-2}, two-subblock processing in the estimated CSI case provides...
the best performance for $F_D \geq 0.3$ and is applicable until $F_D = 0.37$, which corresponds to about 1.5 times the speed applicable in the conventional FDE case, i.e., $F_D = 0.25$.

Next, we show the performance of different block size with the same F_D. When F_D is the same in the different block sizes, the channel estimation accuracy is almost the same. So, we can discuss the relationship between the optimum subblock number and pseudo CP ratio. Figure 7 shows the BLER performance when the block size is 1024 symbols. In this case, the best BLER performance is obtained by four-subblock processing. Since each subblock size is larger than that of the previous case, the ratio of the pseudo CP in the subblock becomes smaller, due to the same CP size. Thus, the effect of errors included in the pseudo CP is also lower. Consequently, the number of subblocks giving the best performance is shifted to four with an increased block size.

Finally, the BLER performance versus block size is shown in Fig. 8 when $E_b/N_0 = 12$ dB and $F_D = 0.3$. The performance of the larger block size tends to be better as the number of subblocks increases. This property can be said to support the above discussion on the effect of the pseudo CP accuracy. Although the optimum number of subblocks depends on the block size, four-subblock processing shows robust performance in the given F_D.

VI. CONCLUSION

In this paper, we have proposed subblock processing to reduce the effect of the channel transition within the FDE block. The numerical analysis has shown that the proposed method can effectively decrease the error floor in fast fading environments, and this method provides a 1.5-fold increase in a tolerable Doppler frequency for BLER of 10^{-2} when the transmitted block size is 256 symbols. The optimal number of subblocks has been shown to change in accordance with the block size.

APPENDIX

A. Approximation of equivalent noise power

Let us derive the approximation of the equivalent noise power. As in (2), the channel matrix H is expressed as

$$H = \begin{bmatrix} h_{0,0} & 0 & \cdots & 0 & \cdots & h_{2,-2} & h_{1,-1} \\ h_{1,0} & h_{0,1} & \cdots & 0 & \cdots & h_{3,-2} & h_{2,-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ h_{L-1,0} & h_{L-2,1} & \cdots & h_{0,-L} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & h_{L-2,-L} & \cdots & h_{0,-2} & 0 \\ 0 & 0 & \cdots & h_{L-1,-L} & \cdots & h_{1,-2} & h_{0,-1} \end{bmatrix}. \tag{23}$$

In this matrix, the top-right components are related to the channel response during the CP transmission timing. Thus, when considering column vectors in H, the last $(L-1)$ vectors contains channel responses at different timings. To ease the following discussion, we employ an approximation in the top right part of H as

$$H \approx \begin{bmatrix} h_{0,0} & 0 & \cdots & 0 & \cdots & h_{2,-2} & h_{1,-1} \\ h_{1,0} & h_{0,1} & \cdots & 0 & \cdots & h_{3,-2} & h_{2,-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ h_{L-1,0} & h_{L-2,1} & \cdots & h_{0,-L} & \cdots & 0 & 0 \\ 0 & 0 & \cdots & h_{L-2,-L} & \cdots & h_{0,-2} & 0 \\ 0 & 0 & \cdots & h_{L-1,-L} & \cdots & h_{1,-2} & h_{0,-1} \end{bmatrix}. \tag{24}$$

Although the top-right components are replaced with different values, it is expected that the impact on the equivalent noise power is not severe when L/N is reasonably small. Then, let us extract the cyclic matrix H_c from H. This matrix is given by

$$H_c = \begin{bmatrix} \bar{h}_{0} & 0 & \cdots & 0 & \bar{h}_{2} & \bar{h}_{1} \\ \bar{h}_{1} & \bar{h}_{0} & \cdots & 0 & \bar{h}_{3} & \bar{h}_{2} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \bar{h}_{L-1} & \bar{h}_{L-2} & \cdots & \bar{h}_{0} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \bar{h}_{L-2} & h_{0} & 0 \\ 0 & 0 & \cdots & \bar{h}_{L-1} & h_{1} & h_{0} \end{bmatrix}, \tag{25}$$

where

$$\bar{h}_l = \frac{1}{N} \sum_{i=0}^{N-1} h_{l,i}. \tag{26}$$

With H_c and the residual (non-cyclic) component H_{nc} defined as $H_{nc} = H - H_c$, the diagonal matrix D and the non-diagonal matrix E in (9) are expressed by

$$D = FH_cF^H \tag{27}$$
$$E = FH_{nc}F^H. \tag{28}$$

Using expansion forms: $H_{nc} = [h_{nc,0}, \ldots, h_{nc,-N}]$ and $F = [f_0, \ldots, f_{N-1}]^T$, we can express $e_k^T e_k$ as

$$e_k^T e_k = |f_k^T h_{nc,0}|^2 + |f_k^T h_{nc,1}|^2 + \cdots + |f_k^T h_{nc,-N}|^2. \tag{29}$$

Define the vector time-shifted by j symbols from $h_{nc,j}$ as $h_{nc,j} = [h_{nc,j}, \ldots, h_{nc,L-1,j}, 0, \ldots, 0]^T$. Considering the time shifting property in Fourier transform, we have the following relation

$$|f_k^T h_{nc,j}|^2 = |f_k^T h'_{nc,j}|^2. \tag{30}$$

By defining the channel response vector at the jth symbol timing as $h_j = [h_{0,j}, \ldots, h_{L-1,j}, 0, \ldots, 0]^T$ and the channel response vector composed of the elements in H_c as $h = [h_0, \ldots, h_{L-1,-1}, 0, \ldots, 0]^T$, $h_{nc,j}$ can be written as

$$h_{nc,j}^\prime = h_j - h \quad \text{for} \quad j = 0, \ldots, N-1. \tag{31}$$

If we can assume that a channel state changes linearly, h_k can be expressed by

$$h_k = h_0 + k\Delta, \tag{32}$$
where Δ is a constant vector. Then, \hat{h} can be rewritten as

$$
\hat{h} = \frac{1}{N} \sum_{k=0}^{N-1} h_k = h_0 + \alpha \Delta,
$$

(33)

where $\alpha = \frac{(N-1)}{2}$. Substituting (33) into (29) yields

$$
h'_{nc,j} = \left(j - \alpha \right) \Delta \quad \text{for} \ j = 0, \ldots, N - 1.
$$

(34)

Here, let us define a vector h_Δ expressing a difference between h_0 and h_{N-1} as

$$
h_\Delta = h_{N-1} - h_0
$$

(35)

where

$$
h'_{nc,0} = h'_{nc,N-1} + \Delta.
$$

Then, $h'_{nc,j}$ can be rewritten as

$$
h'_{nc,j} = \frac{j - \alpha}{N - 1} h_\Delta \quad \text{for} \ j = 0, \ldots, N - 1,
$$

(38)

and then substituting (38) into (29) yields

$$
e_{k}^T e_k = \frac{\alpha}{N-1} \left| f_k^T h_\Delta \right|^2 + \left(1 - \frac{\alpha}{N-1} \right) \left| f_k^T h_{\Delta} \right|^2 + \ldots
$$

$$
+ \frac{N-1}{N-1} \sum_{i=1}^{N-1} \frac{(i - \alpha)^2}{i} \left| f_k^T h_\Delta \right|^2
$$

(39)

$$
= \frac{\beta}{2} \sum_{i=1}^{N-1} \left(i - \frac{\alpha}{N-1} \right)^2.
$$

(40)

Consequently, we obtain the equivalent noise power by the following approximation

$$
\sigma_{n,k}^2 = \sigma^2 + P_s |f_k^* h_{\Delta}|^2.
$$

(42)

REFERENCES

