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The feasibility of the selective molecular beam epitaxy (MBE) growth of AlGaN/GaN 
quantum wire (QWR) structures on prepatterned substrates is investigated. The detailed 
studies on growth features have revealed that size-reducing selective growth is possible on 
mesa patterns having the <11-20>-orientation, but not on those having the 
<1-100>-orientations. The behavior reflects complex growth kinetics on high-index 
crystalline facets. The lateral wire width of QWR structures formed selectively on a top mesa 
can be controlled by adjusting the growth thickness and the initial size of mesa patterns. From 
cathodoluminescence (CL) measurements, emission from the embedded AlGaN/GaN QWR 
structure has been clearly identified. 
 
KEYWORDS: selective growth, molecular beam epitaxy (MBE), patterned substrates, GaN, 
AlGaN 
 
1. Introduction 

Recently, the AlGaN/GaN system has been opened up and has led to the establishment 
of blue/UV photonic and high-power electronic device application areas. This material system, 
however, is potentially suitable for not only these areas but also for 
high-operating-temperature quantum devices such as quantum-wire transistors (QWR-Trs) 
and single-electron transistors (SETs). This is due to wide energy gaps with a large Ec and to 
the availability of high-density two dimensional electron gases (2DEGs) even under 
non-doped conditions which avoids the doping fluctuation problem commonly observed in 
nanometer-scale devices. Here, a key question is how to form the AlGaN/GaN-based 
nanostructures in a size- and position-controlled manner. Recent studies on the fabrication of 
GaN-based quantum structures have been mostly focused on the self-assembled formation of 
quantum dots (QDs) using the Stranski-Krastanov mode [1,2] or anti-surfactant methods [3,4]. 
In these methods, control of size and position seems to be very difficult. On the other hand, 
we have shown that selective molecular beam epitaxy (MBE) growth on a prepatterned 
substrate is a very powerful approach for the formation of high-density quantum 
nanostructures for GaAs- and InP-based materials [5-7] with tight control of both position and 
size.  

The purpose of this study is to investigate the basic behavior and feasibility of the 
selective MBE growth of AlGaN/GaN quantum wire (QWR) structures on prepatterned 
substrates for the first time. For this purpose, GaN and AlGaN layers were grown by 
rf-radical-assisted MBE growth. Through growth on planar GaN (0001) substrates, the basic 

growth conditions were optimized using in situ reflection high-energy electron diffraction 

(RHEED) and X-ray diffraction (XRD) analyses. Then, selective growth experiments were 
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carried out on patterned substrates. The structural and optical properties of the selectively 

grown GaN wires were characterized by scanning electron microscopy (SEM) and 

cathodoluminescence (CL) techniques. CL measurements were performed at 7 K using a 

cryostat. 
A detailed study on the cross-sectional features of the grown structure has indicated that 

size-reducing selective growth is possible on mesa patterns having the <11-20>-orientation. 
The lateral wire width of QWR structures can be controlled by adjusting the growth thickness 
of the AlGaN and the initial size of mesa patterns. From cathodoluminescence (CL) 
measurements, the emission from the embedded AlGaN/GaN QWR structures has been 
clearly identified. 
 
2. MBE Growth of GaN and AlGaN on Planar Substrates 
2.1 Growth procedure 

In order to optimize the conditions for rf-radical-assisted MBE growth of GaN and 
AlGaN, uniform growth experiments were repeated on planar (0001) GaN substrates. 
Nitrogen was supplied using an rf radical source exited with a microwave power of 350 W. In 
all experiments, the N2 flow rate and growth temperature, Tsub, were set to be 0.5 sccm and 
800˚C, respectively.  

Prior to MBE growth, organic cleaning and HF treatment were applied in the atmosphere. 
Just before the MBE growth, thermal cleaning under N2 radical pressure was carried out in the 
MBE chamber for 5 min. From detailed observations of RHEED patterns, cleaning at a 

substrate temperature, Tsub, around 800˚C was found to be most effective in removing the 
native oxide or other contaminations from the surface. 
2.2 Results of uniform growth  

The measured growth rates of GaN and AlN layers are plotted in Fig. 1(a) as functions of 
the K-cell temperatures of the Ga source, TGa, and Al source, TAl. The substrate temperature 
during growth was Tsub = 800˚C. The dashed lines in Fig. 1(a) show the expected group III 
limited rates of growth from the Arrhenius relationships for Ga and Al beam supplies from 
K-cells.  

As for the growth of the GaN layer, the growth rate increased with TGa and showed 
saturation at around TGa = 900˚C with a rate of 100~150 nm/h, as seen in Fig. 1(a). This 
indicates that the growth became rate-limited by the V-group supply where the supply rate of 
Ga molecules became larger than that of nitrogen. In situ RHEED observation showed that 
well-defined bright streak (2x2) patterns, such as those shown in Fig. 1(b), were observed and 
maintained within the range of TGa = 900 ~ 1000˚C. This result suggests that excess Ga 
adatoms on the growth surface easily desorb into vacuum, leading to the formation of a 
smooth surface even under the Ga-rich condition. On the other hand, the growth rate of the 
AlN layer did not show saturation over a wide range of TAl= 950˚C~ 1100˚C. However, at a 
high cell temperature TAl of 1100˚C, the (2x2) RHEED pattern obtained at lower cell 
temperatures became dark and spotty, indicating the growth of an Al-rich poor-quality layer. 
From in situ RHEED observations, it was found that a growth rate within 100 ~ 150 nm/h was 
suitable for the growth of both GaN and AlN layers. 

The growth behavior of AlGaN layers is summarized in Fig. 2 where the incorporation 
rates of group III atoms into the planar (0001) epitaxial layer are plotted as functions of the Al 
atom supply rate. Tsub was set to be 800˚C. The Ga supply rate was maintained at a constant 
value at TGa = 940˚C. Here, the incorporation rates of group III atoms were determined by 
thickness measurements by cross-sectional SEM observation and Al composition 
measurements by XRD analyses. As seen in Fig. 2, the total amounts of Al and Ga adatoms 
incorporated into the surface remained constant in spite of the increase in Al supply rate, 
resulting in a corresponding decrease in the incorporation rate of Ga adatoms. This surprising 
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result can be explained in terms of the group V supply limited growth in combination with the 
fact that the incorporation rate of Al adatoms is larger than that of Ga adatoms. 

From the XRD analyses, it was found that the Al composition of AlxGa1-xN layers could 
be changed from x = 0.24 to 0.43 by changing the Al source temperature, TAl. A minimum 
FWHM value of the XRD peak of 300 s was obtained for both GaN and Al0.24Ga0.76N layers 
grown at TGa=940oC and TAl=980oC, respectively. This value was equal to or even smaller 
than that of the MOVPE GaN template used in this study. 
 
3. Selective Growth of AlGaN/GaN Wire Structures 
3.1 Growth method 

The sequence of selective growth is schematically shown in Fig. 3. As the template for 
selective growth, straight mesa stripes, as shown in Fig. 3(a) were formed by electron-beam 
(EB) lithography and etching on MOVPE (0001) GaN/ sapphire substrates. Since wet 
chemical etching is difficult for III-nitride materials, etching was carried out by an electron 
cyclotron resonance reactive ion beam etching (ECR-RIBE) process developed for nitrides by 
our group [8]. It uses a methane-based gas mixture of CH4/H2/Ar/N2 = 5/15/3/3 sccm where 
the addition of N2 is extremely important. ECR plasma was exited at a microwave frequency 
of 2.45 GHz with a power of 250 W. In order to determine the suitable mesa orientations for 
the formation of quantum nanostructures, <1-100> and <11-20> directions were investigated 
in this study, and the properties of selective growth for these mesa orientations were 
compared. 

Then, selective growth of GaN-based QWR structures was attempted by depositing the 
materials shown in Fig. 3(b) onto the mesa-patterned substrate. First, a GaN buffer layer was 

grown on the patterned substrates. Then, an Al0.24Ga0.76N/GaN/Al0.24Ga0.76N sandwiched layer 
layers was deposited on the GaN buffer mesa, leading to the formation of embedded GaN 

wires, as schematically shown in Fig. 3(c). 
 
3.2 Growth selectivity on patterned substrates 

Cross-sectional SEM images of the <1-100>- and <11-20>-oriented mesa patterns 
fabricated by the ECR-RIBE etching process are shown in Figs. 4(a), 4(b) and 4(c). In this 
study, the etching depth of 450 nm was used for both orientations by controlling the etching 
time. After etching, well-defined crystalline facets appeared as sidewalls of the mesa stripe. 
As shown in Fig. 4(b), the mesa structures defined by two (11-22) side facets were obtained 
for the stripe in the <1-100> direction. On the other hand, the mesa structures defined by two 
(1-101) facets were obtained in the <11-20> direction, as shown in Fig. 4(c). 

In order to investigate the feasibility of the selective growth of QWRs, Al0.24Ga0.76N /GaN 
layers were grown on the mesa structures using the optimum growth conditions obtained 
using planar substrates. Figures 5(a) and 5(b) show the cross-sectional SEM images of the 
samples after the growth of AlGaN layer on <1-100>-oriented mesa structures with initial 
pattern sizes, W0, of 750 nm and 200 nm, respectively. The grown thickness was 300 nm in 
terms of growth on a planar (0001) GaN substrate. After the growth, mesa structures having a 
top width, W, of 760 nm and 200 nm were obtained, whose values were equal to or larger than 
the initial pattern width, W0. Furthermore, the angle of side facets measured with respect to a 
(0001) plane slightly decreased after growth, as shown in Figs. 5(a) and 5(b). 

On the other hand, it was clearly seen that the top width decreased after growth in the 
case of growth on the <11-20>-oriented mesa. Figures 6(a), 6(b) and 6(c) show the 
cross-sectional SEM images of the samples after the growth of AlGaN layers on the 
<11-20>-oriented mesa structures with initial pattern sizes, W0, of 900 nm, 350 nm and 50 nm, 
respectively. The mesa top widths, W, of 820 nm and 240 nm were obtained, respectively, for 
the samples with W0 of 900 nm and 350 nm. As for the sample with W0 of 50 nm, a sharp 
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ridge structure with W below 10 nm was obtained after the growth. Furthermore, it was found 
that the angle of side facets remained constant at 62˚, corresponding to the angle of (1-101) 
facets, during the growth for all samples, as seen in Figs. 6(a), 6(b) and 6(c). 

The difference between the initial top width of mesa, W0, and the top width of mesa after 
the growth, W, is plotted in Fig. 7 as a function of the grown thickness for two cases of 
growth on <1-100>- and <11-20>-oriented mesa stripes. In the case of the growth of the GaN 
layer, W decreased with growth thickness for both mesa orientations. The latter case indicates 
that the growth rate of GaN on the top facet is much larger than that on the side facet. This is 
very similar to the case of growth on GaAs (001) and (111)B patterned substrates [6]. 

Similarly, for growth of AlGaN on <11-20>-oriented mesas, the top width decreased as a 
function of growth thickness. On the other hand, in the case of the growth of AlGaN on 
<1-100>-oriented mesas, W increased with growth thickness. This is probably because the 
growth rate on the side facets of the <1-100>-oriented mesa became larger than that on the 
top (0001). Such behavior could not be observed in the growth of GaN on the 
<1-100>-oriented mesas The present results indicate that, reflecting complex growth kinetics 
involving reaction and diffusion, incorporation rates of group-III adatoms are different 
depending on the adatom species, crystalline facets and growth conditions. 

In order to further investigate how the wire width can be controlled, repeated wire growth 
experiments were carried out. Figure 8 shows the cross-sectional SEM image of AlGaN/GaN 
multilayers grown on the <11-20>-oriented mesa. The lateral width of GaN wires formed on 
the top facets was limited by two facet boundary planes (FBPs) which separate the growth 
region between the neighboring facets. The angle of FBPs,  , defined with respect to the 
(0001) plane is found to be  = 82˚ according to Fig. 8. According to our previous paper [6], 

 should satisfy 
 

tan =
tan side tan top

1
,    (1) 

 
where top and side are the angle of the top facet and that of the side facet with respect to the 
top facet of the mesa pattern, respectively, and  is the ratio of the vertical growth rate on a 
top facet to that on a side facet. In the present case of the growth on <11-20>-oriented mesas, 
the values of top = 0˚ and side = 62˚ should be used as the angles of top (0001) facet and side 
(1-101) facets, respectively. 

By using eq. (1) and the measured value of  = 82˚, the growth selectivity, , is 
estimated to be 1.35. According to our model for the evolution of facet boundary planes, 

W-W0 should be given by the following equation using the growth thickness on the top facet, t, 

and the boundary angle, . 

W W0 =
2t

tan
  (2) 

 The lateral wire width geometrically estimated by this simple relation is also plotted 
in Fig. 7 for the growth of AlGaN on <11-20>-oriented mesas. It shows good agreements 
with the experimental data. Thus, the lateral wire width of a QWR structure formed 
selectively on the top of an AlGaN mesa can be controlled by adjusting the growth thickness 
and the initial size of mesa patterns. 

 
3.3 Selective growth of QWR structures 

On the basis of the above growth selectivity measurements, the selective growth of 
AlGaN/GaN QWR arrays was attempted on the <11-20>-oriented mesa substrates, using the 
material supply shown in Fig. 3(b). Figure 9 shows the CL spectra obtained from the wire 
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region of the arrays of QWR structures. After the growth of the AlGaN/GaN/AlGaN 
sandwiched layer, the top width of the mesa was reduced, as expected, maintaining a smooth 
surface morphology, as seen in the inset of Fig. 9. As shown in Fig. 9, two sharp emissions 
were observed at 3.49 eV and 3.69 eV, in addition to a broad yellow luminescence peak from 
GaN in the lower energy region. 

The peak observed at 3.49 eV comes from the band emission of GaN. Another peak 
observed at a higher energy of 3.69 eV proves the successful formation of embedded 
AlGaN/GaN QWR structures. However, evidence of lateral quantum confinements was not 
observed for the present sample. This is because the lateral wire width of the present wire 
structure, grown as a first attempt, is estimated from SEM observation to be 800 nm, which is 
too large to expect a lateral confinement. The value of 3.69 eV is consistent with the vertical 
confinement energy of 3.64 eV that is estimated from the supply thickness of the GaN QWR 
layer. By further reduction of the initial mesa width, W0, and by further optimization of 
growth conditions, it seems that narrower QWRs with strong lateral confinements can be 
realized. 
 
4. Conclusions 

In this study, the feasibility of the selective MBE growth of AlGaN/GaN QWR structures 
on prepatterned substrates was investigated. The main conclusions are listed below. 

(1) In situ RHEED, XRD and SEM studies have revealed that the growth of GaN and 
AlGaN in the present study takes place in the group-V limited mode, while 
maintaining crystal quality similar to that of the MOVPE GaN template. 

(2) The selective growth of AlGaN/GaN QWR structures is possible on mesa patterns 
fabricated in a <11-20> orientation where the lateral wire width formed selectively 
on the top facet of the mesa can be controlled by adjusting the growth thickness and 
the initial size of mesa patterns. 

(3) From CL measurements, the emission from the embedded AlGaN/GaN QWR 
structure has been clearly identified. Further optimization of growth conditions 
should lead to the realization of QWRs with strong lateral confinements that are 
useful for electronic and photonic device applications.  

 
Acknowledgements 
 

The work reported here is supported in part by the 21st Century COE Project at Hokkaido 
University on "Meme-Media Technology Approach to the R&D of Next-Generation 
Information Technologies" and by a Grant-in-Aid for Young Scientists (B)-16760239, both 
from the Ministry of Education, Culture, Sports, Science and Technology. 
 
References 
[1] M. Miyamura, K. Tachibana, T. Someya and Y. Arakawa: J. Cryst. Growth 237-239 
(2002) 1316. 
[2] J. Brown, F. Wu, P. M. Petroff and J. S. Speck: Appl. Phys. Lett. 84 (2004) 690. 
[3] H. Hirayama, S. Tanaka, P. Ramvall and Y. Aoyagi: Appl. Phys. Lett. 72 (1998) 1736. 
[4] S. Tanaka, M. Takeuchi and Y. Aoyagi: Jpn. J. Appl. Phys. 39 (2000) L831. 
[5] H. Hasegawa, H. Fujikura and H. Okada: MRS Bulletin 24 (1999) 25. 
[6] T. Sato, I. Tamai, S. Yoshida and H. Hasegwa: Appl. Surf. Sci. 234 (2004) 11. 
[7] T. Sato, I. Tamai and H. Hasegawa: J. Vac. Sci. & Technol. B 22 (2004) 2266. 
[8] H. Hasegawa, T. Muranaka, S. Kasai and T. Hashizume: Jpn. J. Appl. Phys. 42 (2003) 
2375. 
 



 6

 

 
Fig. 1: (a) Growth rates of GaN and AlN and (b) 
(2x2) RHEED pattern obtained during GaN growth at 
TGa = 940˚C. 
 

 
Fig.2: Incorporation rates of group-III atoms on 
planar substrates. The dashed lines indicate the 
growth rates expected from Arrhenius relationships 
of Ga and Al supplies from K-cells. 
 

 
Fig. 3: (a) Patterned substrate, (b) material supply 
and (c) schematic illustration of embedded QWR. 

 
Fig. 4: Cross-sectional SEM images of patterned 
substrates fabricated by ECR-RIBE etching process. 
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Fig. 5: Cross-sectional SEM images of samples after 
growth on <1-100>-oriented mesas having different 
pattern sizes of (a) W0=750 nm and (b) W0=200 nm. 
 

 
Fig. 6: Cross-sectional SEM images of samples after 
growth on <11-20>-oriented mesas having different 
pattern sizes of (a) W0 = 900 nm, (b) W0 = 350 nm 
and (b) W0 = 50 nm. 
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Fig. 7: Plot of top width of mesa vs. growth 
thickness. 
 

 
Fig. 8: Cross-sectional SEM images of GaN/AlGaN 
multilayer grown on <11-20>-oriented mesa. 
 

 
Fig. 9: CL spectra obtained from <11-20>-oriented 
QWR structure. 

 


