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The mechanism of the cross-sectional evolution during the selective growth of GaAs 
quantum wires (QWRs) on (111)B-patterned substrates was studied in detail both 
experimentally and theoretically. For this purpose, growth experiments were carried out on 
<-1-12>-oriented wires by systematically changing growth conditions and pattern sizes. A 
detailed investigation on cross sections of wires has shown that the lateral wire width is 
determined by facet boundaries (FBs) within AlGaAs layers separating growth regions on top 
facets from those on side facets of mesa structures. FBs were found to be planar or curved, 
depending on initial pattern sizes and growth conditions. Computer simulation based on a 
phenomenological growth model was attempted, taking account of the facet-angle-dependent 
lifetime of adatoms. The simulation well reproduced the experimentally observed growth 
features including the evolution of FBs, indicating that the cross sections of wires grown on 
(111)B-patterned substrates are kinetically controlled by the pattern sizes and growth 
conditions. 
 
KEYWORDS: selective growth, molecular beam epitaxy (MBE), (111)B-patterned substrates, 
growth mechanism, GaAs, AlGaAs 
 
1. Introduction 

 

For the realization of next-generation large-scale integrated circuits (LSIs) based on 

quantum nanodevices, high-density arrays and networks of quantum dots (QDs) and quantum 

wires (QWRs) are strongly demanded. Among various nanostructure formation techniques, 

selective growth by molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy 

(MOVPE) using prepatterned or masked substrates [1-5] is one of the most promising 

techniques for the fabrication of quantum nanostructures with high controllabilities of 

position and size below those achievable by standard lithography techniques. 

As a new and realistic approach for the large-scale integration of quantum devices on 

nanostructure networks, our group has recently proposed a hexagonal binary decision diagram 

(BDD) quantum circuit approach [6,7] Here, path-switching BDD node devices having three 

branches are formed on hexagonal QWR networks to achieve a maximum packing density. 

We have also demonstrated the feasibility of growing hexagonal AlGaAs/GaAs QWR 

networks on (001) [8, 9] and (111)B GaAs [10] substrates by selective MBE. In particular, the 

three-fold symmetry of the latter (111)B substrate is inherently favorable for the formation of 

hexagonal QWR networks with node devices having three branches. This is because the wire 

cross sections meeting at the hexagon node point can be made the same so that the electrical 

connection of wires at the node point will become much easier than in the case of growth on 

(001) substrates where wire cross sections are very different, depending on the wire direction. 

However, selective growth on nonplanar (111)B substrates is complex due to growth kinetics 

involving various high-index facets. Thus, proper understanding of the growth mode and 



 2

mechanism is indispensable for the precise control of the size and position of selectively 

grown QWRs. 

 The purpose of this study is to investigate, both experimentally and theoretically, the 

evolution of wire cross sections and its mechanism during the selective growth of 

<-1-12>-oriented QWRs on (111)B-patterned substrates. For this purpose, growth 

experiments were carried out by systematically changing growth conditions and pattern sizes. 

A detailed investigation on cross sections of wires has revealed that the lateral wire width is 

determined by facet boundaries (FBs) within AlGaAs layers separating growth regions 

between the neighboring facets of mesa structures. Computer simulation based on a 

phenomenological growth model has well reproduced the experimentally observed growth 

features including the evolution of FBs, indicating that the wire cross sections are kinetically 

controlled by growth conditions and initial mesa shapes. 

 

2. Experiments of Selective Growth on (111)B Substrates 

2.1 Method of growth 

The sequence for selective MBE growth used in this study is schematically shown in 

Fig. 1. As a template for selective MBE growth, arrays of <-1-12>-oriented mesa stripes 

shown in Fig. 1(a) are formed on semi-insulating (111)B GaAs substrates. Patterns are 

prepared by standard electron beam (EB) lithography and HBr-based etching using H2O: HBr: 

saturated brome water (SBW) = 100: 20: 8. 

Before loading substrates into an MBE chamber, a surface treatment is applied using an 

organic solution and light chemical etching in the atmosphere. Then, thermal cleaning at a 

substrate temperature of 640˚C under an arsenic pressure is applied in the MBE chamber prior 

to growth. A typical material supply sequence is shown in Fig. 1(b). First, a GaAs buffer 

layer is grown on a patterned substrate as shown in Fig. 1(c) in order to prepare a growth 

template for subsequent selective growth. In our previous study [10], buffer growth led to a 

GaAs mesa structure defined by top (111)B and side (5-12) facets. Then, an 

Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As sandwich layer is grown on the buffer template, and this leads 

to the formation of embedded GaAs QWRs on the top (111)B facets of the AlGaAs mesa 

structure with a reduced lateral wire width as shown in Fig. 1(d). 

In this study, systematical growth experiments were performed on the above-mentioned 

GaAs buffer mesa in order to clarify the basic growth behavior on (111)B-patterned substrates. 

For this, buffer mesa patterns with various values of height, h0, and width, W0, as defined in 

Fig. 1(c), were prepared. Various growth data related to cross-sectional structures were 

collected in order to use them later in the theoretical calculation based on a phenomenological 

model. 

As basic growth conditions, the V/III ratio and the growth temperature, Tsub, were set to 

be 10 and 700˚C, respectively, for all experiments. The growth rate of AlGaAs was set to be 

1000 nm/h for planar growth. 

 

2.2 Wire cross section and facet boundary 

The growth experiments confirmed the selective growth of quantum wire arrays, whose 

wire cross section is shown in Fig. 1(d). To clarify how the wire width and position are 

determined in the case of <-1-12>-oriented QWRs, wire growth was repeated on the same 

GaAs buffer mesa structures having various values of initial width, W0, and height, h0, as 

defined in Fig. 1(c). 

Figure 2(a) shows the cross-sectional SEM image of a sample obtained after repeated 

growth on a large buffer mesa structure with W0 = 2600 nm and h0 = 750nm. In such a case of 
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growth on the large mesa template, it is clearly seen that the boundaries separating the growth 

regions between the top and side facets form a plane within the AlGaAs layer, which we call a 

facet boundary plane (FBP). This maintains the facet boundary angle, b, defined as the angle 

of a facet boundary with respect to the base (111)B plane with a constant value of 69˚ 

throughout the growth. The lateral wire width of the QWR, W, is then determined by the top 

mesa width marked out by a set of two FBPs. 

However, it was found that the situation becomes more complex when the height of the 

buffer mesa decreases. Examples are shown in Figs. 2(b) and 2(c) for cases of h0 = 250 nm 

and W0 = 1220 nm, and h0 = 250 nm and W0 = 620 nm, respectively. Surprisingly, it was 

found in the case shown in Fig. 2(b) that the facet boundary (FB) was no longer a plane, but 

was curved. Namely, the facet boundary angles changed with growth time. Moreover, the 

facet boundary angle remained at 69˚ for the growth of the first four or five layers, and then it 

increased to more than 90˚. In this case, the wire width initially decreased with time, and then 

started to increase after reaching a minimum value. On the other hand, when the initial width 

was smaller as in the case shown in Fig. 2(c) for the same value of h0 = 250 nm, the boundary 

angle also remained constant within the growth time considered, but it decreased to 65˚, 

resulting in a marked decrease in wire width with growth time. 

 

2.3 Variation in wire width with growth time 

The observed change in wire width, W, with growth time is plotted in Fig. 3. All data of 

wire width, W, were normalized by W0. The solid lines show the results of computer 

simulation which will be explained later. 

The wire width of the sample grown on a larger mesa having larger W0 and larger h0, 

linearly decreased with growth time due to the constant angle of b throughout the entire 

growth. On the other hand, as for the sample grown on a shallow mesa, wire width decreased 

for the first 30 or 40 min of growth, but later, gradually increased with growth time. This 

behavior is a consequence of the change in facet boundary angle with growth time, as seen in 

Fig. 2(b). 

 To further acquire quantitative data for the evolution of wire cross sections, vertical 

growth rates on different facets were measured by changing the growth temperature. In this 

experiment, a large mesa pattern having W0 = 2600 nm and h0 = 750 nm was used in order to 

avoid complex effects seen in the growth on the shallow mesa substrate. The measured 

growth rate on the top facet, ttop, and that on the side facet, tside, are plotted in Fig. 4 as 

functions of growth temperature, Tsub. Here, the ttop and tside values are normalized by the 

growth rate on the planar (111)B substrate, tplanar. As the temperature increased, the growth 

thickness on the top facet increased, whereas that on the side facet decreased. This strongly 

suggests that there exist large differences in migration and atom incorporation rates between 

the top and side facets. 

 

2.4 Growth experiment on one-sided mesa 

To understand the complex behavior of wire growth as presented in the previous 

section, growth experiments on a more basic structure of a one-sided mesa step were carried 

out. Figure 5 shows the cross-sectional SEM image of a sample obtained after the repeated 

growth of AlGaAs (100 nm)/GaAs (10 nm), where GaAs was used as a marker. The initial 

GaAs buffer mesa had a side (5-12) facet with a height of h0 = 250 nm whose value is the 

same as that used for wire growth experiments shown in Figs. 2(b) and 2(c). 

The lines corresponding to GaAs markers in Fig. 5 show complex spatial patterns 

similar to those seen in Figs. 2(b) and 2(c). By closely observing Fig. 5, it was found that the 
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angle of the side facet of the mesa, , decreased with growth time, as shown in Fig. 5. This 

indicates that the accumulation of a material due to diffusion and incorporation at the bottom 

next to the initial buffer mesa causes a continuous change in side facet angle. 

 

3. Computer Simulation of Selective Growth 

 

3.1 Basic equations 

 

The complex behavior of the evolution of cross-sectional structures observed in the 

experiment is difficult to describe using a simple analytical relation, as we previously 

observed for growth on a (001) substrate [11]. As a means of quantitative theoretical 

description of the complex behavior of the selective MBE growth, an attempt was made here 

to reproduce the growth profile of the <-1-12>-oriented mesa structure on the (111)B 

substrate by computer simulation using a phenomenological growth model, in which the 

growth process is described by macroscopic parameters such as diffusion constant and 

lifetime. Such a calculation has been previously carried out for the <-1-10>-oriented QWR on 

the (001) substrate [12]. In this modeling, the surface density of group III adatoms, n(x, tg), at 

the lateral position, x, and the growth time, tg, is assumed to satisfy the following 

phenomenological equation: 

 

 
d n(x,tg)

d tg
= G cos

n(x, tg )

( )

d J (x, tg )

d x
,   (1) 

J(x, tg ) = D
n(x, tg )

kBT
grad(U) ,    (2) 

 

where n is the adatom density, G is the incoming molecular beam flux, J is the surface 

diffusion flux of adatoms, and , D and U are the lifetime until incorporation, surface 

diffusion coefficient and chemical potential of adatoms on a facet, respectively. It is obvious 

that the surface lifetime, , and the diffusion coefficient, D, of group III adatoms are the most 

important parameters that determine the growth features. 

 After the calculation of the adatom density, n(x, tg) as a function of growth time, tg, 

the cross-sectional growth profile is obtained by plotting the vertical growth thickness, T(x, tg), 

which is represented by the following equation, as a function of lateral position, x, and growth 

time, tg. 

 

dt
txn

txT
gt

g =
0 cos

),(
),(     (3) 

  

In our recent study [12], the experimentally observed growth profiles of <-1-10>-oriented 

QWRs on GaAs (001) substrates were well reproduced by computer simulation. 

 

3.2 Facet angle dependences of lifetime and diffusion constant 

The lifetime of group III adatoms is expected to be more strongly dependent on the 

step density of the growing surface than on the difference in adatom species. Thus, it is 

assumed here that the surface lifetimes of Ga adatoms and Al adatoms are the same, but they 

depend strongly on the surface slope, , indicated as ( ). In fact, the  dependence of ( ) 

gives the growth selectivity between the neighboring facets. 
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In this study, the ( ) values normalized by the lifetime on the (111)B plane, 111B, 

were determined from the experimentally observed growth profile on the basic one-sided 

mesa step given in Fig. 5, in which the side facet angle continuously changed with growth 

time. The growth rate ratio, ttop/tside, measured from the cross-sectional image shown in Fig. 5 

is plotted in Fig. 6 as a function of facet angle . We assume that the lifetime is inversely 

proportional to the growth rate, and the curve indicated by the solid line in Fig. 6 gives larger 

( )/ 111B. As seen in Fig. 6, a large lifetime or a high growth selectivity is obtained at an 

angle of 51˚, which corresponds to the angle of the (5-12) facet with respect to the (111)B 

plane. This relation gives important information on the kinetic growth process on the facets 

having various facet angles. 

As for the diffusion constant, it was assumed that D is strongly dependent on the 

temperature, Tsub, as in the following equation [13, 14]. 

 

D = D0 exp (-Ed/kTsub)   (4) 

 

Here, Ed is the activation energy of surface adatoms diffusion. 

To obtain suitable D, Ed and 111B values for the present growth experiments, efforts 

were made to reproduce the experimentally obtained vertical growth rates shown in Fig. 4 

quantitatively. From the repeated calculation for the theoretical fitting to the experimental 

data in Fig. 4, the optimum values were found to be D0 = 1.6x10
-6

 m
2
/s, Ed = 1.2 eV and 111B 

= 1.5 s. The results of fitting by simulation are also shown by solid lines in Fig. 4. The 

activation energy obtained here is much smaller than the value of 4.3 eV for the (001) plane 

[12]. This indicates that the surface diffusion of adatoms on the (111)B plane is much 

enhanced, as compared with the case of growth on the (001) plane. 

 

3.3 Wire growth simulation and comparison with experiments 

Using the above fitting parameters, ( ) and D, the growth profiles of AlGaAs layers 

on GaAs mesa structures were calculated for the actual growth of QWR structures. Figures 

7(a) and 7(b) show the theoretical growth profiles calculated for the growth on the 

<-1-12>-oriented mesas having different widths of W0 = 1220 nm and W0 = 620 nm, 

respectively. Growth profiles very similar to experimental ones were obtained. The facet 

boundaries are clearly reproduced by the simulation, and they determine the lateral width, W, 

of QWRs. The theoretically obtained W values are shown by solid lines in Fig. 3. These 

values are in very good agreement with those experimentally obtained. From these results, it 

was found that the use of an initial mesa template having narrow W0 and high h0 is important 

to precisely control the lateral wire width. 

Figure 8 shows the experimental and theoretical values of the facet boundary angle, 

b, of the sample grown on a mesa with h0 = 250 nm as a function of initial mesa width, W0. 

The solid curve is the theoretical curve obtained by the present simulation. Excellent 

agreements between experimental and theoretical values are seen in Fig. 8. These results 

indicate that the evolution of the facet boundary plane is the result of the difference in the 

atom incorporation rate between the top and side facets. 

The good agreement obtained here strongly indicates that the observed complex 

behavior is a consequence of reaction and diffusion kinetics taking place on various facets, 

and that it can still be described by a phenomenological model. The computer program 

developed here seems to be very powerful in designing the selective growth process of 

QWRs. 
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4. Conclusion 

In this study, the mechanism of the cross-sectional evolution during the selective 

growth of <-1-12>-oriented GaAs quantum wires (QWRs) on (111)B-patterned substrates was 

studied both experimentally and theoretically. From the detailed investigation on cross 

sections of wires, it was found that the lateral wire width is determined by facet boundaries 

(FBs) within AlGaAs layers separating the growth regions between the top and side facets of 

mesa structures. These FBs can be planar or curved depending on the initial pattern and 

growth conditions. Detailed features of cross-sectional structures including the evolution of 

FBs could be well reproduced by computer simulation based on a phenomenological growth 

model considering the facet-angle-dependent lifetime of adatoms. Therefore, it is concluded 

that the cross sections of wires grown on (111)B-patterned substrates are kinetically 

controlled by the initial pattern and growth conditions, and can be well described by a 

computer model for advanced designs. 
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Figures 

 

 
Fig. 1 Selective growth sequence used in this study. 

(a) Preparation of patterned substrates, (b) material 

supply, (c) buffer growth and (d) QWR growth. 

 
Fig. 2 Cross-sectional SEM images of samples 

observed after repeated wire growth on GaAs buffer 

mesa structures with different sizes: (a) W0 = 2600 

nm, h0 = 750 nm, (b) W0 = 1220 nm, h0 = 250 nm and 

(c) W0 = 620 nm, h0 = 250 nm. The dashed lines 

indicate the facet boundaries (FBs). 
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Fig. 3 Normalized wire width, W/W0, vs growth time. 

Solid curves are results of computer simulation. 

 

 
Fig. 4 Plots of normalized vertical growth rates vs 

Tsub. Solid curves are results of fitting to determine 

fitting parameter values. 

 

 
Fig. 5 Cross-sectional SEM image of sample after 

repeated growth of AlGaAs (100 nm)/GaAs (10 nm) 

on basic one-sided mesa with h0 = 250 nm. 

 

 
Fig. 6 Growth rate ratio, ttop/tside, vs  determined 

from Fig. 5. The solid curve indicates the 

 dependence of ( ) normalized by the value on the 

(111)B plane used in the present growth simulation. 

 

 
Fig. 7 Calculated growth profiles of AlGaAs layers 

on GaAs mesa structures: (a) W0 = 1220 nm and (b) 

W0 = 620 nm. 
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Fig. 8 Experimental and simulated values of angle of 

facet boundaries (FBs) plotted as functions of the 

initial width of the GaAs buffer mesa, W0. 

 


