Interaction of the Halobacterial Transducer to a Halorhodopsin Mutant Engineered so as to Bind the Transducer: Cl⁻ Circulation within the Extracellular Channel

Chisa Hasegawa¹, Takashi Kikukawa², Seiji Miyauchi¹, Akiteru Seki¹, Yuki Sudo¹, Megumi Kubo³, Makoto Demura³ and Naoki Kamo*¹

¹Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
²Laboratory of Biomolecular Systems, Creative Research Initiative “Sosei” (CRIS), Hokkaido University, Sapporo, Japan
³Department of Biomolecular Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan

Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12W6, Sapporo 060-0812, Japan

Phone: +81-11-706-3923
Fax: +81-11-706-4984

e-mail: nkamo@pharm.hokudai.ac.jp

Abbreviations: bR, bacteriorhodopsin; cRNA, complementary RNA; CP, cytoplasmic; DDM, n-dodecyl-β-D-maltoside; EC, extracellular; hR, halorhodopsin; HtrI, halobacterial transducer of sR; HtrII, halobacterial transducer of pR; MCP, methyl-accepting chemo-taxis protein; phR, halorhodopsin from *Natronomonas pharaonis*; pHtrII, HtrII from *Natronomonas pharaonis*; pHtrII1-159, N-terminal sequence of 159 amino acid residues of pHtrII; ppR, phoborhodopsin from *Natronomonas pharaonis*; pR, phoborhodopsin; shR, halorhodopsin from *Halobacterium salinarum*; sR, sensory rhodopsin.

*These two authors contributed equally to this work.

To whom correspondence should be addressed.
ABSTRACT

An alkali-halophilic archaeum, *Natronomonas pharaonis*, contains two rhodopsins that are halorhodopsin (phR), a light-driven inward Cl\(^-\) pump and phoborhodopsin (ppR), the receptor of negative phototaxis functioning by forming a signaling complexes with a transducer, pHtrII. Previously, we reported that the phR double mutant, P240T/F250Y\(^{phR}\), can bind with pHtrII [Y. Sudo et al. (2006) J. Mol. Biol. 357, 1274-1282]. This mutant itself can transport Cl\(^-\), while the net transport was stopped upon formation of the complex. The flash photolysis data were analyzed by a scheme in which phR \[\Rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow \text{phR}\]. The \(P_3\) of the wild-type and the double mutant contained two components, X- and O-intermediates. After the complex formation, however, the \(P_3\) of the double mutant lacked the X-intermediate. These observations imply that the X-intermediate (probably the N-intermediate) is the state having Cl\(^-\) in the cytoplasmic binding site and that the complex undergoes an extracellular
Cl⁻ circulation due to the inhibition of formation of the X-intermediate.
INTRODUCTION

Halorhodopsin (hR) is a light-driven inward Cl⁻ pump expressed in the membrane of halobacterium and was originally found in *Halobacterium salinarum*, halophilic archaea (1-3). Halorhodopsin is a colored membrane protein whose absorption maximum is located at 578 nm. This protein has all-trans retinal as a chromophore as is true of other archaeal rhodopsins such as bacteriorhodopsin (bR)(4,5), sensory rhodopsin (sR; also called sensory rhodopsin I, SRI)(6,7) and phororhodopsin (pR; also called sensory rhodopsin II, SRII)(8-11). These archaeal rhodopsins have the same global fold, and the chromophore binds to a conserved lysine residue on the seventh helix (G-helix) via a protonated Schiff base.

Out of four kinds of archaeal rhodopsins, two, bR and hR, function as a light-driven ion pump, while the other two function as a photoreceptor. sR (or SRI) acts as a receptor of the positive and negative photo-taxis (6): the ground state of sR whose absorption maximum is located around 590 nm is
a receptor of the positive photo-taxis, while its long-life photo-intermediate absorbing 373 nm light is a receptor of the negative phototaxis. On the other hand, pR (or SRII) is a receptor of negative photo-taxis, and its absorption maximum is located around 500 nm (8-11). Thus, the archaea are attracted to long-wavelength light ($\lambda > 520$ nm) where they obtain solar energy via bR and hR whose λ_{max}'s are located at 570 – 580 nm. On the other hand, the archaea show avoidance of short-wavelength light ($\lambda < 520$ nm) containing dangerous UV light.

These photoreceptors form 2:2 complexes in the membrane with the respective cognate transducer proteins, HtrI (for sR or SRI) and HtrII (for pR or SRII) (12-14). These complexes transmit the light signal to a cytoplasmic part of the transducer to activate the phosphorylation cascades that modulate the flagella motors (15). The transducer (HtrI or HtrII) is a two-transmembrane helical protein that belongs to a family of methyl-accepting chemo-taxis proteins.
(MCPs)(16,17). MCP exists as a homo-dimer composed of a 50-60 kDa subunit and forms a ternary complex with CheA and CheW.

How do the photoreceptor and the transducer form the signaling complex? The X-ray crystallographic structure of the complex between ppR and pHtrII reveals the formation of three hydrogen bonds whose pairs are Tyr199\textsubscript{ppR}/Asn74\textsubscript{pHtrII} and Thr189\textsubscript{ppR}/Glu43\textsubscript{pHtrII}/Ser62\textsubscript{pHtrII} (18), where ppR and pHtrII are, respectively, pharaonis phoborhodopsin (also called NpSRII) and pharaonis halobacterial transducer II, which are both derived from Natronomonas pharaonis. The importance of these hydrogen bonds to the binding has been proved experimentally (19). Interestingly, bR and hR that originally cannot bind with pHtrII become able to bind when hydrogen bond-forming amino acid residues are introduced at their proper positions.

In this paper, we examined the Cl− transport activity and photocycle of the complex between a truncated pHtrII (pHtrII1-159, an N-terminal sequence of 159 amino acid residues) and a phR (halorhodopsin from N. pharaonis) mutant in which the hydrogen bond-forming amino acid residues are introduced.
We observed that 1) the complex formation blocks the Cl⁻-pumping of phR(P240T/F250Y) and 2) a certain photo-intermediate (called tentatively X) is not observed after the complex formation during the photocycle. We will discuss the possible mechanism of the Cl⁻-transport of hR.

MATERIALS AND METHODS

Protein expression and purification. The constructions of expression plasmids for C-terminal His-tagged wild-type phR and pHtrII¹⁻¹⁵⁹ were reported previously (19-21). The plasmids for the phR mutants were prepared with a Quikchange site-directed mutagenesis kit (Stratagene Cloning Systems, San Diego, CA). The proteins were prepared as described (20,21). Briefly, these proteins were expressed in E. coli BL21(DE3) cells, solubilized with 1.5% n-dodecyl-β-D-maltoside (DDM) and purified by a Ni-NTA agarose column and a subsequent gel filtration column. The samples were then concentrated by ultrafiltration (if necessary) and dialyzed against the appropriate buffer.
solutions.

Denaturation kinetics of phR mutants. The thermal stability of the phR mutants was examined as described previously (22). The residual phR amounts after incubation at high temperatures (60 or 70°C) were estimated from the absorbance at 578 nm using a Model V-560 spectrophotometer (Jasco, Tokyo, Japan).

Protein expressions in Xenopus oocytes. For in vitro synthesis of complementary RNA (cRNA), the genes encoding wild-type phR, the P240T/F250YphR mutant and pHtrII1-159 were cloned into the pGH19 plasmid. The target genes including C-terminal His-tags were amplified by PCR using the plasmid DNAs for their expressions in E. coli cells as templates. The PCR was carried out using two overlapping primers introducing 3'-HindIII restriction sites. The amplified DNA fragments were sub-cloned into pGEM-T vector (Promega), and the DNA sequences were confirmed using a standard procedure (377 DNA
sequencer, Applied Biosystems, Foster City, CA). The obtained plasmids were restricted, and the resultant DNA fragments were ligated to the EcoRI and HindIII sites of the pGH19 plasmid. The resultant product was partially sequenced to confirm the orientation of the insert. Capped cRNAs were synthesized from the obtained pGH19 plasmids using a mMESSAGE mMACHINE kit (Ambion, Inc., Austin, TX).

The isolation of Xenopus oocytes was performed as described previously (23). For the expression of the wild-type pHr and its double mutant P240T/F250Y^{PHR}, 50 ng of the cRNAs were injected. For the co-expressions of P240T/F250Y^{PHR} and pHtrII¹⁻¹⁵⁹, 30 ng of P240T/F250Y^{PHR} and 0-10 ng of pHtrII¹⁻¹⁵⁹ cRNAs were injected. The oocytes were incubated for 3-5 days at 18°C in the presence of 1-3 µM all-trans retinal.

The relative expression amounts of the proteins were evaluated using the antibody against His-tags fused to their C-terminuses. The oocytes expressing the target proteins were homogenized and then centrifuged at 1,000 x g for 10 min.
The membrane fraction was collected from the supernatant after further centrifugation at 10,000 x g for 20 min. The obtained membrane fractions were analyzed by the Western blot according to a standard procedure.

Photo-induced current measurements. The electrophysiological recordings were performed as described previously (23). The potential of the oocyte membrane was clamped at -50 mV using the two-electrode voltage clamp technique. The perfusion buffer was 10 mM Hepes, pH 7.4, including 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂ and 1 mM MgCl₂. The photo-induced current was calculated as the difference in the steady state current before and after irradiation with a green light (530 ± 18 nm).

Flash photolysis spectroscopy. All measurements were performed at 20°C, and the absorbance values of the samples were 0.5-1.0 at 580 nm. The buffer solution used was 10 mM Mops, pH 7.0, including 0.1% DDM and various concentrations
of NaCl. For the photocycle measurements of P240T/F250Y^{PhR} bound with pHtrII¹⁻¹⁵⁹, they were mixed so that at least 90% of P240T/F250Y^{PhR} forms the complex within the sample cell. Here, the amount of pHtrII¹⁻¹⁵⁹ necessary for >90% formation was calculated using the previously reported dissociation constant, 29.1 µM, between P240T/F250Y^{PhR} and pHtrII¹⁻¹⁵⁹ (19).

The details of the flash-photolysis apparatus and the procedure for data analysis were reported previously (21). The transient absorption changes induced by a laser pulse (Nd:YAG, 532 nm, 7 ns, 5 mJ/pulse) were acquired in a computer at every 0.5 µs between −44 and 220 ms. The data before the laser pulse (−44 − 0 ms) were adopted as a baseline for the calculation of the following absorption change. At each selected measuring wavelength (every 10 nm from 410 to 710 nm), 50 − 100 laser pulses were used to improve the S/N ratio. The data points were then selected by choosing a logarithmic time scale to reduce the number of points. The scattered laser pulse caused a strong artifact. At 530 nm, the artifact continued up to 25 µs. For the following fitting analysis,
thus, the data at 30 wavelengths except for 530 nm were adopted. Those data after 10 μs were fitted.

The method of analysis was based on that of Chizhov et al. (24,25). The obtained data were fitted simultaneously with the multi-exponential function using the Origin (OriginLab, Northampton, MA) and Igor Pro (WaveMetrics, Lake Oswego, OR). The data weight was determined independently for each wavelength by estimating the average error from the baseline part (-44 to 0 ms). For each data set, the fittings were performed using 3-5 exponential functions. In all data sets, the reductions in the standard deviation of the weighted residuals were saturated at a 4-exponential function. Thus, the further analysis was performed according to the following sequential model: $P_0 \Rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_0$, where P_0 means the unphotolyzed original state, and P_i (i=1-4) means the photochemically defined state that may contain a few physically defined intermediates in some cases. By using the fitting results at a 4-exponential function, the time constants τ_i and the absorption differences between P_i and P_0
were calculated. Independently, we fitted the measured absorption spectrum of the unphotolyzed state (250-750 nm) with the sum of three skewed Gaussian functions and the terms expressing background scattering ($A + B/\lambda^4$; λ in nm). The skewed Gaussian function is defined by the four parameters: λ_{max} (in nm), A_{max} (amplitude at λ_{max}), ρ (skewness of the absorption band) and $\Delta\nu$ (half-bandwidth in cm$^{-1}$) (24). For the spectrum of the unphotolyzed state, the three skewed Gaussian functions correspond with the main absorption band around 580 nm, the β-band around 400 nm and the band due to aromatic amino acid residues around 280 nm, respectively, and the sum of the first two expresses the retinal spectrum in the P$_0$ state. By adding the retinal spectrum of the P$_0$ state to the absorption differences ($\Delta\varepsilon_i$), we finally obtained the absolute spectra of the P$_i$ states. For further details, see previous reports (21,24,25).
RESULTS

A phR mutant that is able to bind with pHtrII

A previous report has showed that a phR double mutant, P240T/F250Y^{phR} can bind to pHtrII¹⁻¹⁵⁹ with a dissociation constant of 29.1 µM, which was proved by isothermal titration calorimetry (19). Here, we examined the binding using another method; when ppR or its mutants can form a complex with pHtrII¹⁻¹⁵⁹, the thermal stability of the complex increases in comparison with the pigment alone, which is easily observable by measuring the denaturation rate at high temperature (22). Figures 1 A and B show the denaturation rates of the single mutants of P240^{T_{phR}} and F250^{Y_{phR}}, indicating no or weak interactions between these mutants and the pHtrII¹⁻¹⁵⁹. Even at a large molar ratio of pHtrII¹⁻¹⁵⁹, no essential changes in their thermal stabilities were observed. Figure 1 C clearly shows the increase in the thermal stability of the double mutant P240T/F250Y^{phR} in the presence of pHtrII¹⁻¹⁵⁹.
Figure 1 also shows that the simultaneous mutations, P240T/F250Y, make the protein unstable. These residues face the outside of the protein, and so the displacements by the hydrophilic residues may alter the interaction with the solvent and/or the detergent. This instability was measurable only at high temperature (60°C). During the photo-electric current and the flash-photolysis experiments performed below 25°C, the denaturation of the double mutant was negligible.

Photo-electric current through Xenopus oocyte membrane

c**o-expressing the phR mutant and pHtrII\(^{1-159}\)**

Electrophysiological methods using Xenopus oocyte expression system have been proven to be useful for investigation of ion-channels and electrogenic transporters. bR, channelrhodopsin and ppR have been investigated using this method, and the results obtained provided valuable insight (26-29). Figure 2 shows the photo-induced electrical current
through the oocyte membrane expressing phR in the presence or absence of pHtII1-159. Here, we present the currents measured with a perfusion buffer including about 100 mM Cl\(^-\). With the increasing Cl\(^-\) concentration, the current increased and became almost saturated at 100 mM Cl\(^-\) (data not shown).

The left histogram in Fig. 2A represents the amount of current via wild-type phR. Bamberg and coworkers observed the photo-induced current by bR expressing in the oocyte membrane, and the current in this experiment is much larger than that of bR (26).

The right histogram in Fig. 2A represents the electrical current by the double mutant of phR, P240T/F250YphR. The amount of expressed proteins evaluated by the Western blot was about half that of the wild-type (lanes 1 and 2 in Fig. 2C). Thus, the relative pumping activity of the double mutant is estimated to be about a quarter of that of the wild-type. Because these two mutated residues are pointed to the outside of phR, the direct interaction of these residues with the transporting Cl\(^-\) ion might not be probable; thus, we do not
know the reason for the weak pumping activity of the double mutant at present.

Figure 2 B represents the effect of pHtrII on the pHr pumping activity. The injected cRNA of P240T/F250YphR was kept at 30 ng, while that of pHtrII1-159 was varied from 0 to 10 ng. The molar ratios of actually expressed proteins were approximately 1:0, 1:0.4, 1:1.8, 1:3.9 from left to right, which were estimated from the bands of lanes 3-6 in Fig. 2 C. The expressed amounts of P240T/F250YphR were not essentially affected by the co-expression of pHtrII1-159. These results clearly reveal that the pumping activity of the double mutant decreases with an increase in the molar ratio of pHtrII1-159.

Complete blocking of the Cl--pumping activity was not observed, however. On the other hand, the co-expression of ppR (F86DppR; due to a larger photo-current than the wild-type) and pHtrII1-159 in the oocyte blocks nearly completely except for the transient signal observed immediately after the illumination is applied (30). One of possible reasons for the
incomplete blocking is the large dissociation constant, K_D; the K_D for the binding of the wild-type ppR and $pHtrII_{1-159}$ is 0.16 µM in 0.05% DDM, while that of the phR double mutant is 29.1 µM in the same detergent (19), meaning that the binding of the phR mutant with $pHtrII_{1-159}$ is approximately 180-fold weaker than that of ppR. Another point to be considered is the concentrations of these proteins in the oocyte membrane, which may not be estimated, however. Although within the membrane, the binding might become stronger than in the solution with detergent, it is probable that the protein concentrations may be too small for complete binding. Therefore, we conclude that the complex between phR and $pHtrII$ abolishes the pumping activity. The same conclusions have been drawn for sR (SRI) and ppR (NpSRII) (31,32).

Another difference in the photocurrent between ppR and phR is the initial transient signal reported in ppR (NpSRII) mentioned above (30). For the present phR experiments, no such initial transient signals were observed. It is noted that in the present experiments, the recording of signals was
done with a pen-writing recorder that has a slow response, and such transient signals might be ignored. Further studies are necessary and the origin of these transient signals (if they exist) is the next aim of the investigation.

Flash-photolysis studies

Flash-photolysis experiments were performed for the purified wild-type phR, P240T/F250YphR and its complex with pHtrII1-159 in the presence of various concentrations of Cl−. These three proteins were prepared independently from the E. coli membranes. For a sample of the complex, the purified P240T/F250YphR and pHtrII1-159 were mixed so that more than 90% of P240T/F250YphR forms the complex (see MATERIALS AND METHODS). Figure 3 shows the transient absorption changes at three selected wavelengths that are representative of the formation and decay of L (500 nm) and O (650 nm) intermediates and the depletion and recovery of the initial unphotolyzed state (580 nm). All samples showed essentially the same photocycle in
terms of the appearance of the representative intermediates, L and O. However, remarkable differences are seen in the 650 nm decay: a prolonged decay appeared upon complex formation at 0.2 M Cl⁻ (right upper panel). Moreover, the difference in the accumulation of the O-intermediate is also notable. For wild-type pHr, the accumulation of the O-intermediate decreases at a high concentration of 4.0 M Cl⁻ (lower left panel). This decrease is moderate for P240T/F250YPhr (lower middle panel) and the complex (lower right panel).

The transient absorption changes at wavelengths from 410 to 710 nm (every 10-nm interval) were acquired at six (for the wild-type) or five (for the others) Cl⁻ concentrations. These data sets were fitted independently with 4 exponential equations as described in MATERIALS AND METHODS. The results of the fitting analysis are summarized in Fig. 4. The panels in the upper row show the Cl⁻ dependencies of four time constants for the decay of the P₁⁻P₄ states. In all three samples, τ₃ and τ₄ depend on the Cl⁻ concentration. τ₃ is commonly accelerated by the increase in Cl⁻ concentration, but
the changes in τ_4 are different between the wild-type pHr and others. With increasing Cl$^-$ concentration, τ_4 increases slightly for wild-type pHr but decreases for P240T/F250Y$^{\text{phR}}$ and its complex with pHtrII$^{1-159}$.

In the panels from the second to bottom rows, the spectra of P1-P4 are depicted together with the spectrum of the unphotolyzed state (P0). In all three samples, the spectra of P1 and P2 were almost the same and were independent of the Cl$^-$ concentration. Those absorption maximum were about 520 nm, and so these states are assigned to the L$_1$- and L$_2$-intermediates, respectively. A significant difference among the three samples was observed in the P3 state. The P3 spectra of the wild-type have two peaks, implying a contribution from two physically defined intermediates in the equilibrium. This was confirmed by the global fitting of P3 spectra. As shown in Fig. 5 A, the P3 spectra were simulated well employing the sum of the skewed Gaussian functions. One component has an absorption maximum at around 610 nm. Judging from the absorption, this is the O-intermediate. Another
having a λ_{max} of ~ 510 nm is tentatively called the X-intermediate. It is noted that Chizhov and Engelhard also reported the existence of an intermediate having a λ_{max} similar to that of X and named it the N-intermediate (25). The obtained spectra of X- and O-intermediates are plotted in Fig. 5 B. With the increasing Cl$^-$ concentration, a considerable shift in the equilibrium occurs from the O- to the X-intermediate. As shown in Fig. 4, the P_3 of P240T/F250Y$^{\text{phR}}$ also appears to consist of X- and O-intermediates, but the shift in the equilibrium from the O- to X-intermediate occurs moderately. For the P_3 of the P240T/F250Y$^{\text{phR}}$-pHtrII$^{1-159}$ complex, the shift from O- to the X-intermediate was not observed even at 4.0 M Cl$^-$ concentration. This disappearance of the X-intermediate is a notable difference from the Cl$^-$-transporting photocycles of the wild-type and the double mutant. The Cl$^-$-not-transporting photocycle of the complex may lack the X-intermediate itself.

The P_4 spectra of both the wild-type and P240T/F250Y$^{\text{phR}}$ are almost the same as that of their unphotolyzed state (P_0).
Thus, these P₄ states consist mainly of the phR'-intermediate, which might be a precursor of the original unphotolyzed state. On the other hand, the P₄ state of the P240T/F250YₚₘₕR₁₋₁₅₉ complex had spectra slightly different from the P₀ state. This difference becomes evident at low Cl⁻ concentrations and causes the prolonged decay observed at 650 nm as shown in Fig. 3. Figure 6 shows the absorption differences between the P₄ and P₀ states (P₄-P₀). The absorption difference is evident for the complex (panel C). The difference becomes small as the Cl⁻ concentration increases. Moreover, small but similar absorption differences are also seen for the wild-type and the double mutant (panels A and B). These differences may originate in a slight contribution of a red-shifted intermediate other than the phR'-intermediate.

DISCUSSION

The present paper obtained the following results: The first is that the interaction of P240T/F250YₚₘₕR with pHtrII blocked the net Cl⁻ transport. Complete blocking was not obtained,
which may be due to a relatively weak binding between these components. The second is that the X-intermediate constituting P₃ was not seen during the photocycle of the complex between P240T/F250YₚₕR and pHtrII₁₋₁₅₉, and the amount of this intermediate of P240T/F250YₚₕR alone was smaller than that of the wild-type phR (compare P₃ components in Fig. 4). The photocycle rates of the wild-type phR, the double mutant and the complex were not significantly changed (see Fig. 3 and the top panels of Fig. 4). Comparison of the magnitude of the photocurrents (Fig. 2) with the amounts of the X-intermediate constituting P₃ (Fig. 4) suggests that there is a rough correlation between these two factors.

For the complex, there is a direct correlation between the disappearances of Cl⁻-pumping activity and the X-intermediate. These observations imply that the complex undergoes a photocycle lacking the X-intermediate whose formation is important for the Cl⁻ transport. For the double mutant alone, both the pumping activity and the amount of X-intermediate in P₃ were smaller than those of the wild-type.
In the case of the double mutant alone, thus, some extent of the excited molecules may undergo the Cl−-not-transporting photocycle as does the complex. The remaining molecules may undergo the Cl−-transporting photocycle. The co-existence of two photocycles appears consistent with the results for the double mutant alone. At present, however, we cannot explain the mechanism by which the double mutations cause the heterogeneity in the photocycle.

For the wild-type and the double mutant, the equilibrium between X- and O-intermediates in the P\textsubscript{3} states were shifted by the Cl− concentration. The photo-current measurements shown in Fig. 2 were performed at a Cl− concentration of about 100 mM. At such a low Cl− concentration, the spectra of the P\textsubscript{3} states of the wild-type and the double mutant are dominated by the O-intermediate as is the P\textsubscript{3} state of the complex. For the wild-type and the double mutant, however, this does not mean that their Cl−-pumping photocycles also lack the X-intermediate at the low Cl− concentration. At the P\textsubscript{3} state of the Cl−-pumping photocycle, the X- and O-intermediates are
considered to form the equilibrium quickly compared with the transition between the \(P_1 \) states. The shift in the equilibrium toward the \(O \)-intermediate makes the \(X \)-intermediate unremarkable. However, the \(O \)-intermediate should still form the fast equilibrium with the \(X \)-intermediate even at the low \(Cl^- \) concentration.

The shift in the equilibrium in the \(P_3 \) state due to the \(Cl^- \) concentration means that this equilibrium should accompany the release and uptake of \(Cl^- \) between the protein and the external medium. For the wild-type \(phR \), Váró et al. (33) and Chizhov and Engelhard (25) also described a fast equilibrium between the anion-bound (\(X \)-intermediate) and the anion-free (\(O \)-intermediate) state. Due to the increase in the \(Cl^- \) concentration, the equilibrium shifts from the \(O \)- to the \(X \)-intermediate. This suggests that the \(O \)-intermediate is a \(Cl^- \)-free state, which is very credible from its \(\lambda_{\text{max}} \). The formation of this intermediate is thus associated with the \(Cl^- \) release, probably to the cytoplasmic (CP) space. This is
consistent with the conclusion drawn by other previous investigators (34-38).

Therefore, before the O-intermediate, an intermediate having bound Cl- in the CP channel should exist. Previous reports (21,39,40) proposed that the binding site in the CP channel is Thr-203 for shR and Thr-218 for phR. If the Cl- binding site in the CP channel is only this position (39,40), only one intermediate having Cl- in the CP binding site should exist and the candidate may be either X or P\textsubscript{2}(L\textsubscript{2}).

As for the reaction sequence from the P\textsubscript{2} to P\textsubscript{4} states of the wild-type phR, there are 4 possible models as shown in Fig. 7. The absorption differences between the P\textsubscript{4} and P\textsubscript{0} state (shown in Fig. 6) imply that the P\textsubscript{4} state includes not only phR' but also a small contribution from a red-shifted intermediate. Because a component whose \(\lambda_{\text{max}} \) is located at a longer wavelength than that of the original pigment is only the O-intermediate, the red-shifted component of P\textsubscript{4} may be the O-intermediate. It does not seem that the spectrum of P\textsubscript{4} is contributed from a component having a shorter wavelength such
as the X-intermediate. From these observations, we may rule out both models C and D. Thus, the phR'-intermediate may be formed by the decay of the O-intermediate. During the $O \rightarrow \text{phR}'$ transition, Cl$^-$ may enter into the binding site in the extracellular (EC) channel, because phR' has almost the same photochemical properties of unphotolyzed phR having only one Cl$^-$ in the EC channel; the crystal structure of shR (halorhodopsin from *H. salinarum*) shows that the unphotolyzed state has only one Cl$^-$ in the EC channel (39).

According to the model B, the $P_2(L_2)$-intermediate should have Cl$^-$ in the CP binding site, and during the $P_2(L_2) \rightarrow O$ transition, Cl$^-$ should be released. This implies no definite role of the X-intermediate, which is contradictory to the present observation that the intermediate of X is very important for the Cl$^-$ transport. Therefore, model A is considered to be the most probable, and we assume the Cl$^-$ movement to be as shown in Fig. 8.

The dependences of the X and O amounts on Cl$^-$ concentration (shown in Fig. 5 A) are accountable by the above
scheme. When we adopt this scheme, the Cl− entry from EC space may drive the decay of the O-intermediate, which pushes the $X \to O$ transition and results in Cl− release into the CP space. Thus, the high concentration of Cl− in the environment may prompt the Cl− transport. A mechanism for the fast equilibrium between the X-intermediate (Cl−-binding in CP channel) and the O-intermediate (Cl−-free) is awaited in a further important study.

What is the physical identity of the X-intermediate? There are two possibilities: one is that X is distinct from L\textsubscript{2} while the other is that X is L\textsubscript{2}. According to the first possibility, the X-intermediate should have one Cl− in the CP channel, and the L\textsubscript{2} state may have Cl− in the EC channel, probably near the Schiff base and Arg123 (Arg108 of shR) provided that the Cl− binding site in the CP channel is the only one (39, 40). Because the Cl− movement is confined within the molecule, τ_2 does not show the Cl− dependence as was observed. Based on these considerations, X-intermediate is most probably assigned to the N-intermediate proposed previously.
Muneyuki et al. (41) and Ludmann et al. (38) described that the electrogenetic steps were the formation and decay of the N-intermediate, which is consistent with the present scheme.

Next let us consider the second possibility that X is L₂. The maximum wavelength of absorption of the X-intermediate (~510 nm) may be favorable for this. If we adopt this assumption, Cl⁻ might pass through the Schiff base region from the EC to the CP channel during the L₁ to L₂ transition. This may be contradictory to the conclusion drawn by Muneyuki et al. (41) and Ludmann et al. (38) mentioned above. When the possible molecular events are considered as below, this assumption leads to a somewhat more complicated story than the first assumption that X is N. However, this possibility that X is L₂ cannot be completely ruled out at present (42). To solve the question regarding the timing of the Cl⁻ movement from the EC to the CP channel is one of the key points in solving the physical identification of the X-intermediate as well as the Cl⁻ pumping mechanism.
Regardless of the physical identity of X, the experimental evidence obtained is that the transducer binding prevents the formation of X while the O-intermediate is observable. Note that at the X-intermediate, Cl$^-$ is present at the CP binding site while the O-intermediate does not contain Cl$^-$. Because Cl$^-$ resides at the EC binding site in unphotolyzed phR, Cl$^-$ should circulate within the EC channel under the transducer binding condition, resulting in the cessation of electrical current. A cartoon is illustrated in Fig. 9, which shows the possible mechanism of the blocking. The Cl$^-$ binding site in CP is Thr218 of phR (21) that is located at the F-helix. The transducer interacts with phR at the F- and G-helices. This strongly suggests the necessity of the conformational change in the F – G helices at the X-intermediate such as the opening of the F-helix occurs in bR at the late M- and N-intermediate (43-48).

If X is L$_2$, the story may become somewhat complicated: Cl$^-$ passes from EC to the CP channel at the L$_1$ to L$_2$ transition and should return to the EC channel again in the case of complex.
The dead end of the Cl\(^-\) exit at the CP channel due to a so-called cytoplasmic closure by the transducer and the flip of the N-H dipole (13-cis to all-trans retinal) at the L\(_2\) to O transition might possibly exert a driving force for this return of Cl\(^-\), but this does not seem to occur. Hence, the assumption that X is N (not L\(_2\)) may provide a more straightforward explanation.

The transducer binding occurs at the EC half of the archaeal rhodopsins and the mutated 240\(^{th}\) and 250\(^{th}\) positions are located at the F-G loop (positioned at the EC space) and the middle of the G-helix, respectively. The intermediate of \(\text{phR}'\) may be a state where Cl\(^-\) is located at the EC channel different from that of the unphotolyzed \(\text{phR}\). The change in the amino acid residues at the 240\(^{th}\) and 250\(^{th}\) positions may alter the Cl\(^-\)-locating position in \(\text{phR}'\), which may give rise to the change in the equilibrium between \(\text{phR}'^-\) and O-intermediate in the P\(_4\) state and the Cl\(^-\) dependence of \(\tau_4\) from those of the wild-type.
REFERENCES

sites in cytoplasmic and extracellular channels of *Natronomonas pharaonis* halorhodopsin, *Biochemistry* 44, 4775-4784.

haloalkaliphilic *Natronobacterium pharaonis*:

of bacterial rhodopsins with an optical multichannel analyzer.

FIGURE LEGENDS

Figure 1. Denaturation kinetics of the phR mutants. The phR mutants were incubated at high temperatures in the absence or presence of pHtrII1-159, and the residual amounts of the mutants were determined by their absorption at 578 nm. The incubation temperatures were 70°C for P240phR (A), 60°C for F250YphR (B) and P240T/F250YphR (C). The concentrations of these mutants were 10 µM, and the mole ratios of the mutants and pHtrII1-159 are denoted in the figures.

Figure 2. The photo-induced currents via phR and P240T/F250YphR expressed in Xenopus oocytes, and the Western blot analysis for the protein expressions. (A) The photo-induced current via wild-type phR and its P240T/F250YphR mutant. The expression amount of the mutant was about half that of the wild-type (lanes 1 and 2 in panel (C)). (B) The change in the photo-induced current via the P240T/F250YphR mutant with the increase in the expression amount of pHtrII1-159.
In the oocytes used, the expression amounts of P240T/F250YphR were almost the same. Here, the photo-induced current was plotted against the mole ratio of expressed P240T/F250YphR and pHtrII1-159 evaluated by the corresponding Western blots (lanes 3-6 in panel (C)). Through the measurements in panels (A) and (B), the membrane potential was clamped at -50 mV. Each bar represents the mean ± SD for between 9-11 oocytes. (C) The Western blot analysis of the membrane fractions of the oocytes using the anti-His-Tag monoclonal antibody. The upper bands correspond with wild-type \textit{phR} or P240T/F250YphR, and the lower bands correspond with pHtrII1-159. Lanes 1 and 2: the oocytes were injected with 50 ng of cRNAs of wild-type \textit{phR} and P240T/F250YphR, respectively. Lanes 3-6: the cRNA amounts of P240T/F250YphR were kept at 30 ng, while those of pHtrII1-159 were varied as 0, 2.5, 5 and 10 ng, respectively.

Figure 3. Flash-induced transient absorption changes at typical wavelengths. Buffer solutions were 10 mM Mops at pH
7.0 containing 0.1% DDM and 0.2 M (upper row) or 4.0 M (lower row) NaCl. All measurements were performed at 20°C.

Figure 4. Results of the global fitting of the flash-photolysis data. The top row represents the dependence of the time constants of the P$_1$-P$_4$ states on the Cl$^-$ concentration. In the panels from the second to bottom rows, the absolute spectra of photochemically defined states P$_1$-P$_4$ at six Cl$^-$ concentrations between 0.2 and 4.0 M are depicted with the spectrum of the unphotolyzed state P$_0$ (gray solid line). At the P$_3$ and P$_4$ states, notable differences were seen in their absolute spectra, and so the numbers are depicted in the panels to denote the Cl$^-$ concentration as: 1, 0.2 M; 2, 0.4 M; 3, 0.6 M; 4, 1.0 M; 5, 2.0 M; 6, 4.0 M. The spectrum of P$_0$ is expressed by the sum of two skewed Gaussian functions whose parameters were λ_{max}=575.1 nm, A_{max}=1.0, ρ=1.58 and $\Delta\nu$=3254.3 cm$^{-1}$ for the main absorption band and λ_{max}=405.6 nm, A_{max}=0.09, ρ=1.24 and $\Delta\nu$=1693.1 cm$^{-1}$ for the β-band (for details, see MATERIALS AND METHODS). The absorption spectra were identical between wild-type phR and P240T/F250Y$^{\text{phR}}$. These
spectra did not change throughout all the conditions we used.

Figure 5. Multi-Gaussian fit of the P3 state of wild-type *phR.*

(A) The absolute spectra of the P3 state at various Cl− concentrations (○) were fitted simultaneously by the sum of the three skewed Gaussian functions expressing the X- and O-intermediates and their \(\beta \)-bands. Here, we assumed that their \(\beta \)-bands were identical with that of the unphotolyzed state (P0). The fitting results are shown in smooth lines. The numbers depicted in the figure denote the Cl− concentrations as shown in Fig. 4. The inset shows the change in the fractions of X- and O-intermediates under various Cl− concentrations. (B) Spectra of X- and O-intermediates determined. For comparison, the spectra of P0 (gray solid line), and the P2 and P3 states are also plotted. The parameters of the skewed Gaussian functions are \(\lambda_{\text{max}}=507.1 \text{ nm} \), \(A_{\text{max}}=0.56 \), \(\rho =1.64 \) and \(\Delta \nu=2688.1 \text{ cm}^{-1} \) for the main band of the X-intermediate, and \(\lambda_{\text{max}}=604.9 \text{ nm} \), \(A_{\text{max}}=1.05 \), \(\rho =1.47 \) and \(\Delta \nu=3198.5 \text{ cm}^{-1} \) for that of the O-intermediate, respectively.
Figure 6. Absorption differences between the P₄ and P₀ states of (A) wild-type phR, (B) P240T/F250Y phR and (C) its complex with pHtrIr1-159. The differences in the relative absorbances, P₄-P₀, are plotted. The Cl⁻ concentrations are denoted in the figures.

Figure 7. Possible models for the reaction sequence from the P₂ to P₄ states of the wild-type phR.

Figure 8. Plausible reaction sequence from the P₂ to P₄ states of the wild-type phR. At the P₃ state, the X⁻ and O-intermediates are in the equilibrium accompanying the release and uptake of Cl⁻ at the CP side. The reuptake of Cl⁻ at the EC side proceeds during the O→phR' transition. The contribution of the O-intermediate to the P₄ state is very small, and so the P₄ state is represented here by only the phR'-intermediate.
Figure 9. The model of the external Cl$^-$ circulation during the photocycle of the P240T/F250Y$^{\text{phR}}$-pHtrII$^{1-159}$ complex. The upper and lower paths express the photocycles of the wild-type phR and the P240T/F250Y$^{\text{phR}}$-pHtrII$^{1-159}$ complex, respectively. Here, we assume that the formation of the X-intermediate appearing in the normal photocycle accompanies the Cl$^-$ displacement from the Schiff base to its binding site in the CP channel. The binding with pHtrII$^{1-159}$ disturbs the CP opening of P240T/F250Y$^{\text{phR}}$, which results in the blocking of the Cl$^-$ displacement to the CP channel. Consequently, the release and reuptake of Cl$^-$ occur at only the EC side during the formation and decay of the O-intermediate. The phR'-intermediate of the complex may take a slightly different Cl$^-$ configuration from that of the normal photocycle (for details see text).
Fig. 1

A) P240T^{pHR}: pHtrII¹⁻¹⁵⁹

B) F250Y^{pHR}: pHtrII¹⁻¹⁵⁹

C) P240T/F250Y^{pHR}: pHtrII¹⁻¹⁵⁹
Fig. 3

Wild-type pHR

P240T/F250Y_{HR}

P240T/F250Y_{HR} - pHtrII¹⁻¹⁵⁹
Fig. 4

[Diagram showing three panels: Wild-type pHr, P240T/F250Y pHr, and P240T/F250Y pHr - PHtr21-159. Each panel consists of a graph with two axes: Wavelength [nm] on the x-axis and Time constant [msec] on the y-axis. The graphs show data points and lines for different concentrations of Cl\(^{-}\) [M].]

[Below each panel are graphs showing Relative absorbance as a function of Wavelength [nm]. The graphs for each pHr variant show different patterns and intensities, indicating variations in absorbance across different wavelengths and Cl\(^{-}\) concentrations.]
Fig. 5
Fig. 6

A) Wild-type pHtr

B) P240T/F250Y

C) P240T/F250Y pHtr

Wavelength [nm]
Fig. 7
Fig. 9

Diagram showing the process of pumping and not pumping in a biological system, with labels for EC side, CP side, X (N), pHtrI, L2, and phR'.