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CONVERGENCE OF PHASE–FIELD APPROXIMATIONS TO
THE GIBBS–THOMSON LAW

MATTHIAS RÖGER AND YOSHIHIRO TONEGAWA

Abstract. We prove the convergence of phase-field approximations of the

Gibbs–Thomson law. This establishes a relation between the first variation
of the Van-der-Waals–Cahn–Hilliard energy and the first variation of the area

functional. We allow for folding of diffuse interfaces in the limit and the

occurrence of higher-multiplicities of the limit energy measures. We show that
the multiplicity does not affect the Gibbs–Thomson law and that the mean

curvature vanishes where diffuse interfaces have collided.

We apply our results to prove the convergence of stationary points of the
Cahn–Hilliard equation to constant mean curvature surfaces and the conver-

gence of stationary points of an energy functional that was proposed by Ohta–
Kawasaki as a model for micro-phase separation in block-copolymers.

1. Introduction

Phase separation is a common phenomenon in many areas of the sciences. Al-
loys studied in material sciences, melting and solidification processes, or block-
copolymers investigated in physical chemistry, they all show the coexistence of two
or more phases, separated by thin transition layers. The main approaches to de-
scribe phase transitions are on the one hand sharp interface models and on the
other hand diffuse interface models, also referred to as ‘phase field’ or ‘Ginzburg-
Landau’ models. The relation between both kinds of models remains an outstanding
question. Rigorous passages to the sharp interface limit are often difficult and gen-
eralized formulations for the limit problems are necessary to obtain the convergence
of diffuse approximations. However, care has to be taken that solutions satisfy the
equations in a reasonably strong sense.

The goal of the present paper is to prove the convergence of diffuse approxima-
tions of the so-called Gibbs–Thomson law, which states that the mean curvature of
the phase boundary is given as the trace of a function in the bulk. Our result relates
the first variation of the Van-der-Waal-Cahn–Hilliard energy, which is the common
root of most phase field models, to the first variation of the area functional. To the
best of our knowledge, we give the first satisfactory solution in the case that diffuse
interfaces collapse or cancel each other in the limit.

Before stating the main result we describe the setting and background of the
problem.

Date: March 22, 2007.

2000 Mathematics Subject Classification. Primary 49Q20; Secondary 35B25, 35R35,80A22 .
Key words and phrases. Phase Transitions, Geometric Measure Theory, Singular Perturba-

tions, Cahn–Hilliard Energy, Gibbs–Thomson Law, Block-copolymers.

1



2 MATTHIAS RÖGER AND YOSHIHIRO TONEGAWA

1.1. Phase fields, sharp interfaces, and the Gibbs–Thomson law. The dif-
fuse interface approach is based on a free energy that acts on smooth phase fields
and that was proposed by Van-der-Waals [33] and later Cahn–Hilliard [7]. In a
normalized form this energy is given by

Eε(u) :=
∫

Ω

(ε
2
|∇u|2 +

1
ε
W (u)

)
dx, (1.1)

where ε > 0 is a small parameter and W is a nonnegative ‘double-well potential’
with value zero if and only if u = ±1. Domains where u ≈ 1 or u ≈ −1 represent
two coexisting phases, separated by diffuse interfaces. Formal arguments show that
Eε favors transition layers with a thickness of order ε. Hence, as ε tends to zero
the diffuse interfaces become sharp.

One naturally associated quantity to the Cahn–Hilliard energy is its L2-
functional derivative, which often corresponds to the chemical potential,

fε = −ε∆u+
1
ε
W ′(u). (1.2)

In many applications fε is given by means of other quantities and a certain con-
trol on fε is available. The corresponding functional derivative of the surface area
functional, evaluated at a smooth compact hypersurface Σ, is given by the mean
curvature of Σ and (1.2) formally corresponds to the following equation, in so-
lidification processes known as Gibbs–Thomson law (and we will adopt this term
throughout the paper),

H = σf, (1.3)

with a surface tension coefficient σ > 0. The Gibbs–Thomson law relates the local
geometry of the phase boundary to a function f : Ω → R in the bulk, for example
the temperature or the chemical potential.

1.2. Main results. Let us first state our main result in a concise form (we will
prove a slightly stronger statement, given in Theorem 3.2).

Theorem 1.1. Suppose p > n and let sequences of functions {uε}ε>0 ⊂ W 3,p(Ω)
and functions {fε}ε>0 ⊂W 1,p(Ω) be given such that (1.2) holds and such that

Eε(uε) ≤ Λ, (1.4)

uε → u in L1(Ω), (1.5)

fε → f weakly in W 1,p(Ω) (1.6)

as ε→ 0. Then u is of bounded variations and takes only values in {−1, 1}. More-
over there exists a unique generalized mean curvature H of the ‘phase boundary’
Σ := Ω ∩ ∂∗{u = 1} and

σH = f holds Hn−1 − almost everywhere on Σ. (1.7)

Here σ =
∫ 1

−1

√
W (s)/2 ds is the surface tension coefficient and the sign of H is

chosen positive for spherical {u = 1}.

This Theorem uses generalized formulations for the phase boundary and the
mean curvature. The notion of mean curvature is based on a measure-theoretic
approach and was introduced by the first author in [31]. We refer to the appendix
A for the exact definition.
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Remark 1.2. For a sequence (uε)ε>0 that satisfies the uniform energy bound
(1.4) and a sequence (fε)ε>0 that is uniformly bounded in W 1,p(Ω) there exists
a subsequence ε → 0 such that (1.5), (1.6) hold. Besides these uniform bounds
no other conditions, such as energy minimality, are required to apply Theorem
1.1. For this reason the result is relevant to a large class of stationary and time-
dependent problems. In section 7 we use our results to characterize the limit of
stationary points of the Cahn-Hilliard functional (1.1) and to prove the convergence
of stationary points in a model for block-copolymers.

The assumption (1.6) on the chemical potentials fε is still restrictive. We con-
jecture that the (weak) convergence of fε in W 1,p(Ω) with p > n/2 would suffice
to conclude (1.7). However, our techniques yet require the continuity of f , which
is ensured only if p > n. For the Cahn–Hilliard equation for example the natural
regularity of the chemical potential is W 1,2(Ω) in space. Hence, our result does not
apply in this case.

1.3. Related results and main techniques. Since the fundamental work of
Modica and Mortola [22, 21] on the convergence of Eε to the area functional the
relation between their first variations has drawn attention. Modica [21] and Stern-
berg [40] proved that minimizers of Eε under a volume constraint converge to
area-minimizing hypersurfaces with an integral constraint. Luckhaus–Modica [19]
then showed that the Lagrange-multipliers associated with the volume constraint
converge to the constant mean curvature of the limiting hypersurface. Ilmanen
[17] considered the corresponding L2-gradient flows and proved the convergence of
the Allen–Cahn equation to the mean-curvature flow, in the varifold formulation
of Brakke [5]. Convergence of various other phase field problems to the corre-
sponding sharp interface models have been shown either formally or rigorously
[8, 1, 27, 6, 18, 9, 38], sometimes in quite involved weak formulations.

The second author considered, partly in joint-work with Hutchinson, the con-
vergence of diffuse interface approximations of the Gibbs–Thomson law, under dif-
ferent assumptions on the chemical potential [16, 41, 42]. However, the Gibbs–
Thomson relation is only verified in an (in some respect unsatisfactory) multiplicity-
dependent formulation, see (1.9) and the discussion below.

Schätzle [35] considered a sequence of hypersurfaces with mean curvature given
by a Sobolev function in the ambient space and obtained that the Gibbs–Thomson
law holds in the limit in a rather clean varifold formulation. In [35] the chemical
potentials fε in (1.6) need only to converge in a Sobolev space f ∈ W 1,p(Ω) with
p > n/2, c.f. Remark 1.2.

Geometric Measure Theory provides suitable generalized formulations in spaces
that allow for the compactness of approximations. Luckhaus–Modica [19] and
Luckhaus–Sturzenhecker [20] introduced a weak formulation of the Gibbs–Thomson
law (1.3) for characteristic functions of bounded variation. This formulation is
rather natural and has the advantage of being based directly on the phase function.
However, justifying the Gibbs–Thomson law in the limit of approximations requires
the additional assumption that no cancellation of (diffuse) interfaces occurs. Un-
fortunately, this property does in general not hold [34].

To master such cancellations Ilmanen [17] used a varifold-approach. He consid-
ered the limit of the diffuse surface-area measures (energy measures)

µε :=
(ε

2
|∇uε|2 +

1
ε
W (uε)

)
Ln. (1.8)
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The idea behind is that this limit makes information visible that is lost in the
limit of the phase fields: Where cancellation of the approximate phase boundaries
occurs the limit µ of the measures µε carries a higher multiplicity. The support of
µ eventually extends the limit phase boundary by hidden boundaries. Showing that
the limit measure is in fact given as a integer-rectifiable varifold with a weak mean
curvature vector, the Gibbs–Thomson law can be verified in a varifold formulation.

This strategy was used for various problems by Chen [9], Soner [39], Hutchinson–
Tonegawa [16], Tonegawa [41, 42], and others. However, in none of these papers the
problem of higher multiplicity was completely solved. Typically the convergence of
the diffuse phase fields and the diffuse surface-area measures µε is shown and the
rectifiability of the limit µ as well as the existence of a weak mean curvature Hµ

is obtained. Still, the Gibbs–Thomson law holds only in a multiplicity-dependent
formulation

Hµ = (Nσ)−1f Hn−1-almost everywhere on ∂∗{u = 1}, (1.9)

where N is the density function of the measure µ. This formulation is for two
reason unsatisfactory: First the Gibbs–Thomson law should be satisfied by the
phase boundary rather than by the (in view of the applications) ‘obscure’ measure
µ. Secondly, the density function N should not affect the Gibbs–Thomson law. To
prove the full results (1.9) has to be complemented by

f = Hµ = 0 Hn−1-almost everywhere on ∂∗{u = 1} ∩ {N > 1}. (1.10)

In recent years progress has been made on this issue. Schätzle [35] proves the Gibbs–
Thomson law in the limit of an approximation by hypersurfaces: There the weak
mean curvature Hµ of the limit measure µ satisfies (1.3) and (1.10). It was then
shown by the first author [31] that Hµ is in fact a property of the phase boundary
∂∗{u = 1}, see Appendix A. This is crucial in order to apply the (stationary)
convergence result [35] to evolution problems [31, 32].

The higher-multiplicity problem is even more challenging in the context of the
sharp interface limit of diffuse approximations, due to the singular nature of this
limit process. The three main ingredients of our proof are first an earlier result
of the second author [42] on the convergence of certain phase field equations with
chemical potential. This ensures rectifiability, existence of a weak mean curva-
ture with appropriate regularity and the multiplicity-dependent Gibbs–Thomson
relation (1.9). The second ingredient is the fine local analysis of Schätzle [36]
on rectifiable measures with sufficiently regular weak mean curvature. The third
important argument is a comparison principle for the phase fields uε and diffuse
approximations of suitably constructed comparison graphs.

1.4. Organization of the paper. In the next section we will precisely formulate
our assumptions and introduce some notations. Section 3 states our main result. A
localization step in Section 4 prepares a contradiction argument that we will use in
Section 5 to prove our main Theorem 3.2. We first assume that a certain comparison
principle, which is given in Proposition 6.11, holds. Section 6 is then devoted to the
proof of this Proposition. Finally we give in Section 7 two applications of Theorem
1.1 and we recall in the appendix the definition of a generalized mean curvature for
phase boundaries that we will use.
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2. Notations and assumptions

We state first all assumptions and definitions, including those already appeared
in the introduction.

Assumption 2.1. Consider a bounded domain Ω ⊂ Rn with Lipschitz-boundary
and the standard double-well potential W given by

W (r) :=
1
4
(
1− r2)2.

We define an energy functional Eε on W 1,2(Ω),

Eε(u) :=
∫

Ω

(ε
2
|∇u|2 +

1
ε
W (u)

)
dx. (2.1)

Suppose p > n and let sequences (uε)ε>0 ⊂ W 3,p(Ω) and (fε)ε>0 ⊂ W 1,p(Ω) be
given such that

Eε(uε) ≤ Λ for all ε > 0, (2.2)

−ε∆uε +
1
ε
W ′(uε) = fε in Ω. (2.3)

Assume further that

uε → u in L1(Ω), u ∈ BV (Ω, {−1, 1}), (2.4)

fε → f weakly in W 1,p(Ω). (2.5)

We may generalize W to be any C3-function with two non-degenerate minima
and one local maximum, so that the results in [42] apply.

We next associate diffuse surface-area measures and appropriate varifolds to the
functions uε.

Definition 2.2. For uε we define Radon-measures µε on Ω,

µε :=
(ε

2
|∇uε|2 +

1
ε
W (uε)

)
Ln, (2.6)

and (n− 1)-varifolds Vε on Gn−1(Ω),

Vε(ζ) =
∫
Gn−1(Ω)

ζ(x, S) dVε(x, S) :=
∫

Ω

ζ(x, ν⊥ε (x)) dµε(x) (2.7)

for all ζ ∈ C0
c (G

n−1(Ω)), where

νε :=
∇uε
|∇uε|

if ∇uε 6= 0, νε = (1, 0, . . . , 0)T otherwise.

Remark 2.3. By the Sobolev embedding Theorem, (2.5), and p > n it follows that

fε, f ∈ C0,α(Ω), (2.8)

fε → f in C0,β(Ω) (2.9)
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for α := 1− n/p, all 0 ≤ β < α, and a subsequence ε→ 0.
Moreover, by (2.2) there exists a subsequences ε → 0 and a Radon-measure µ

on Ω such that

µε → µ as Radon-measures on Ω. (2.10)

Here and in the following we often do not relabel subsequences. In particular we
assume from now on that (2.9), (2.10) hold for the whole sequence ε→ 0.

Finally we define the mean-curvature operator H for graphs: for p ∈ Rn−1,
X ∈ S(n− 1) set

H(p,X) := (1 + |p|2)− 3
2

(
trX + |p|2

(
Id− p

|p|
⊗ p

|p|
)

: X
)
.

3. Statement of results

The first conclusion we draw is a direct consequence of previous results of the
second author.

Theorem 3.1 ([42]). Let Assumption 2.1 hold, let µ satisfy (2.10), and set

σ :=
∫ 1

−1

√
1
2
W (s) ds. (3.1)

Then (2σ)−1µ is (n− 1)-integer-rectifiable,

θ(n−1)(µ, ·) = N(·)2σ, N integer-valued.

Moreover µ has weak mean curvature Hµ ∈ L∞(µ), and

Hµ =
f

N(·)σ
ν (3.2)

holds µ-almost everywhere, where ν = ∇u
|∇u| on ∂∗{u = 1} and ν = 0 elsewhere.

Proof. See [42]. �

Our main results are summarized in the following theorem.

Theorem 3.2. Let Assumption 2.1 hold, let µ satisfy (2.10), and let N denote the
multiplicity function of µ as in Theorem 3.1. Then
(1) µ-almost everywhere in {N(·) ≥ 3 odd}

Hµ = 0, f = 0. (3.3)

(2) µ-almost everywhere in {N(·) ≥ 2 even}
Hµ = 0, f ≤ 0 in {u = 1} ∩ supp(µ), f ≥ 0 in {u = −1} ∩ supp(µ).

(3.4)

(3) the function H : ∂∗{u = 1} → R defined as

H := Hµ ·
∇u
|∇u|

(3.5)

is the generalized mean curvature of ∂∗{u = 1} in the sense of Definition A.2.
(4) Finally

σH = f (3.6)

holds Hn−1-almost everywhere on ∂∗{u = 1} ∩ Ω.



CONVERGENCE TO THE GIBBS–THOMSON LAW 7

4. Localization

In this section we show that we can restrict ourselves to a ‘generic’ local situation,
where the support of µ is well described in terms of graphs. We then apply a result
of Schätzle [36] that gives a fine description of the varifold µ.

Lemma 4.1. It is sufficient to prove (3.3), (3.4) for µ-almost all generic points,
that are those points x0 ∈ Ω satisfying

Tx0µ exists, (4.1)

N0 := N(x0) ∈ N , (4.2)

θ
(
µ, {N(·) = N0}, x0

)
= 1. (4.3)

In addition we may assume without loss of generality that

x0 ∈ supp(µ) ∩ ∂∗{u = 1} if N(x0) is odd, (4.4)

lim
%→0

(
sup

{
%−1 dist(x, Tx0µ) : x ∈ supp(µ) ∩Bn% (x0)

})
= 0. (4.5)

Proof. We show that (4.1)-(4.5) hold µ-almost everywhere in {N(·) ≥ 2}.
Since µ is integer-rectifiable (4.1), (4.2) are satisfied µ-almost everywhere. Since

the set {θn−1(µ, ·) = N0} is µ-measurable (4.3) holds for µ-almost all points. By
[42, Theorem 1] Hn−1-almost all x ∈ supp(µ) with odd density N(x) belong to
∂∗{u = 1}. Finally (4.5) follows from [37, Lemma 17.11]. �

We fix x0 such that (4.1)-(4.5) hold. After applying a suitable translation and
rotation we may assume that x0 = 0 and

T0µ = Rn−1 × {0}. (4.6)

To apply a contradiction argument we assume (3.3), (3.4) to be false.

Assumption 4.2. Suppose that

N0 ≥ 2 and f(0) 6= 0. (4.7)

By (2.8), (4.5) there exists %0 > 0 such that

|f − f(0)| ≤ 1
27
|f(0)| on B%0(0)× [−5%0, 5%0], (4.8)

supp(µ) ∩
(
B%0(0)× (−5%0, 5%0)

)
⊂ B%0(0)× (−%0, %0). (4.9)

We distinguish four cases depending on whether f(0) < 0 or f(0) > 0 and whether
u = 1 or u = −1 in the region ‘above’ supp(µ). In the following we consider the
case that

f(0) > 0, (4.10)

u(y, t) = 1 for y ∈ B%0(0), t > %0. (4.11)

That implies that

u(y, t) =

{
−1 if N0 is odd,
1 if N0 is even

for all y ∈ B%0(0), t < −%0. (4.12)

The other cases can be treated analogously or follow from a symmetry argument.
By (2.9) we obtain that

|fε − f | ≤ 1
27
f(0) on B%0(0)× [−5%0, 5%0] (4.13)
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for all ε > 0 sufficiently small.
In the next step we apply a result of Schätzle [36] on the local structure of the

measure µ. First we need some definitions.

Definition 4.3. We define the upper and lower height-functions ϕ+, ϕ− :
Bn−1
%0 (0) → [−∞,∞],

ϕ+(y) := sup
{
t ∈ (−5%0, 5%0) : (y, t) ∈ supp(µ) ∩

(
Bn−1
%0 (0)× R

)}
, (4.14)

ϕ−(y) := inf
{
t ∈ (−5%0, 5%0) : (y, t) ∈ supp(µ) ∩

(
Bn−1
%0 (0)× R

)}
, (4.15)

with the convention that the supremum over an empty set is −∞ and the infimum
over an empty set is +∞.

Moreover we set

F+(y) :=

{
f(y,ϕ+(y))
N(y,ϕ+(y))σ if N(y, ϕ+(y)) is odd,

0 if N(y, ϕ+(y)) is even,
(4.16)

and

F−(y) :=

{
f(y,ϕ−(y))
N(y,ϕ−(y))σ if N(y, ϕ−(y)) is odd,

0 if N(y, ϕ−(y)) is even.
(4.17)

Proposition 4.4. The upper height-functions ϕ± are twice approximately differ-
entiable Ln−1-almost everywhere in {ϕ± ∈ R} with

−H(∇ϕ+, D
2ϕ+) = −F+, (4.18)

−H(∇ϕ−, D2ϕ−) = −(−1)1+N0F−, (4.19)

Moreover, for all n−1
2 < s < ∞ the upper height-function ϕ+ is an W 2,s-viscosity

subsolution of

−H(∇ϕ+, D
2ϕ+) ≤ −F+ (4.20)

and the lower height-function ϕ− is a W 2,s-viscosity supersolution of

−H(∇ϕ−, D2ϕ−) ≥ −(−1)1+N0F− (4.21)

Proof. Since Hµ ∈ L∞(µ) we obtain from [36, Theorem 6.1] that

Hµ(·, ϕ+(·)) = ∇ ·
( ∇ϕ+√

1 + |∇ϕ+|2
) 1√

1 + |∇ϕ+|2

(
−∇ϕ+

1

)
(4.22)

Ln−1-almost everywhere in {ϕ+ ∈ R} and that ϕ+ is for all n−1
2 < s < ∞ a

W 2,s-viscosity subsolution of

−∇ ·
( ∇ϕ+√

1 + |∇ϕ+|2
)
≤ −Hµ(·, ϕ+(·)) 1√

1 + |∇ϕ+|2

(
−∇ϕ+

1

)
. (4.23)

From (3.2), (4.22) we deduce that

f(·, ϕ+(·))
N(·, ϕ+(·))σ

ν(·, ϕ+(·)) = H(∇ϕ+, D
2ϕ+)

1√
1 + |∇ϕ+|2

(
−∇ϕ+

1

)
. (4.24)

Next we observe that (4.11) implies

ν(y, ϕ+(y)) =
∇u
|∇u|

(y, ϕ+(y)) =
(
1 + |∇ϕ+|2

)− 1
2 (−∇ϕ+(y), 1)T (4.25)
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for Ln−1 almost all y ∈ {ϕ+ ∈ R} such that (y, ϕ+(y)) ∈ ∂∗{u = 1}, and ν = 0
otherwise. Since up to a µ-nullset ∂∗{u = 1} = {N ≥ 1 odd} we obtain from (4.16)
and (4.24), (4.25) that (4.18) holds. (4.20) follows by the same arguments. To
obtain (4.19), (4.21) we observe that

ν(y, ϕ−(y)) =
∇u
|∇u|

(y, ϕ−(y)) = (−1)1+N0
(
1 + |∇ϕ−|2

)− 1
2 (−∇ϕ−(y), 1)T

(4.26)

and we proceed as above. �

We choose below a ‘good point’ for which we derive a contradiction to Assump-
tion 4.2. Before, we need another definition.

Definition 4.5. We say that a function ψ has a second-order Taylor expansion at
a point y1 ∈ Rn−1 if there exist p ∈ Rn−1, X ∈ S(n− 1) such that

ψ(y)− ψ(y1)− p · (y − y1)−
1
2
(y − y1) ·X(y − y1) = o(|y − y1|2). (4.27)

We then set ∇ψ(y1) := p, D2ψ(y1) := X.

Lemma 4.6. There exists a point y1 ∈ B%0(0) such that

ϕ+(y1) = ϕ−(y1), (4.28)

x1 := (y1, ϕ±(y1)) is a generic point, (4.29)

θn−1(µ, x1) = N0, (4.30)

ϕ± have a second-order Taylor expansion at y1, (4.31)

− H(∇ϕ±(y1), D2ϕ±(y1)) = −F±(y1). (4.32)

Proof. Since the weak mean curvature Hµ belongs to L∞(µ) by (3.2) and since
0 ∈ Rn is a generic point we can apply [35, Lemma 3.4] (see also Step 3 in the proof
of [32, Lemma 3.2]) and obtain that the set

Σ0 :=
{
x = (y, ϕ±(y)) : y ∈ Bn−1

%0 (0) ∩ {ϕ+ = ϕ−},

x ∈ supp(µ) is generic, N(x) = N0

}
has full density with respect to µ in 0 ∈ Rn. This property was essentially deduced
from a tilted version of Brakke’s Lipschitz Approximation Theorem. The curvature
bound ensures a strong control on the approximations, see [35, 31] for the details.
From the Coarea Formula we then deduce that (4.28)-(4.30) holds in a set with
full Ln−1-density in 0 ∈ Rn−1. Finally, (4.31), (4.32) are satisfied Ln−1 almost
everywhere in {ϕ+ = ϕ−} by [36, Proposition 4.1] and (4.18), (4.19). �

5. Proof of Theorem 3.2

We fix y1 ∈ B%0(0) such that (4.28)-(4.32) hold and consider the second order
Taylor approximation of ϕ± at y1,

P1(y) := ϕ±(y1) +∇ϕ±(y1) · (y − y1) +
1
2
(y − y1) ·D2ϕ±(y1)(y − y1). (5.1)

From (4.31) we then deduce that

|P1(y)− ϕ±(y)| = o(|y − y1|2). (5.2)
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Lemma 5.1. For all ω > 0 there is %1 > 0 such that

B%1(y1) ⊂ B%0(0), (5.3)∣∣P1(y)− ϕ+(y)
∣∣ < ω|y − y1|2 on B%1(y1) (5.4)

and such that for any 0 < % < %1 there exists a unique solution ψ ∈ C∞(B%(y1)) of

−H(∇ψ,D2ψ) = −2f(y1)
3σ

in B%(y1), (5.5)

ψ(y) = P1(y) + ω%2 on ∂B%(y1). (5.6)

Proof. Since y1 ∈ B%0(0) and by (5.2) for any %1 > 0 sufficiently small the properties
(5.3), (5.4) hold. Since P1 is smooth and since the right-hand side of equation (5.5)
is constant we deduce from [13, Theorem 16.9] that for all

% ≤ %1, %1 = %1(n, σ, f(y1))

a unique solution ψ ∈ C2,γ(B%(y1)), 0 < γ < 1, of (5.5), (5.6) exists. The higher
regularity of ψ follows from standard elliptic theory and the smoothness of the data
in (5.5), (5.6). �

The next Proposition is the heart of the contradiction argument. It relies on the
fact that the approximations uε behave as if the curvature of the limit interface is
given by f/σ rather than by f/(Nσ).

Proposition 5.2. Let ψ be as in Lemma 5.1. Then

ψ ≥ ϕ+ in B%(y1). (5.7)

The proof of this Proposition uses a comparison between uε and approximations
vε of 2XE − 1, where E is the region above the graph of ψ. We postpone this proof
to section 6 and continue the proof of Theorem 3.2.

Lemma 5.3. For all 0 < ω < 1 there exists %̃1 > 0 such that for all 0 < % < %̃1 the
function

η(y) := P1(y)− 2ω(%2 − |y − y1|2) (5.8)

satisfies for all y ∈ B%(y1)

−H(∇η,D2η) ≥ −F±(y1)− 5(n− 1)ω. (5.9)

Proof. We compute that for y ∈ B%(y1)

|∇η(y)−∇ϕ±(y1)| = |D2ϕ±(y1)(y − y1) + 4ω(y − y1)|
≤

(
|D2ϕ±(y1)|+ 4

)
%,

|D2η(y)| ≤ |D2ϕ±(y1)|+ 4.

Hence, we can choose %̃1 = %̃1(∇ϕ±(y1), D2ϕ±(y1), ω) such that

|H(∇η,D2η)− H(ϕ±(y1), D2η)| ≤ (n− 1)ω in B%(y1)

for all 0 < % < %̃1. This implies that

−H(∇η,D2η) ≥ −H(∇ϕ±(y1), D2ϕ±(y1))− 4ωH(∇ϕ±(y1), Id)− (n− 1)ω

≥ −H(∇ϕ±(y1), D2ϕ±(y1))− 5(n− 1)ω,

where we have used that H(p, Id) ≤ n− 1 for all p ∈ Rn−1. �
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Proof of Theorem 3.2. Choose 0 < ω < f(y1)
30(n−1)σ and 0 < % < min(%1, %̃1). Let

ψ, η be the functions constructed in Lemma 5.1 and Lemma 5.3. We then obtain
from (5.5), (5.9), the definition of F±, (4.7), and f(y1) > 0 that

−H(∇ψ,D2ψ) + H(∇η,D2η) ≤ −2f(y1)
3σ

+
f(y1)

N(y1, ϕ±(y1))σ
+ 5(n− 1)ω

≤ −2f(y1)
3σ

+
f(y1)
2σ

+ 5(n− 1)ω

< 0. (5.10)

Since |∇ψ|, |∇η| are uniformly bounded the maximum principle [13, Theorem 10.1]
implies that ψ − η has no interior maximum. In particular,

ψ(y1)− ϕ±(y1) + 2ω%2 = ψ(y1)− η(y1)

≤ sup
∂B%(y1)

(ψ − η) = ω%2

and we deduce that

ψ(y1)− ϕ±(y1) < 0,

which is a contradiction to (5.7).
This shows by Assumption 4.2 and (4.10), (4.11) that

f ≤ 0 if N0 ≥ 2 and u = 1 in {t > ϕ+(y)}. (5.11)

By a symmetry argument u 7→ −u it follows that

f ≥ 0 if N0 ≥ 2 and u = −1 in {t > ϕ+(y)}. (5.12)

As we explain in Remark 5.4 below we obtain also

f ≥ 0 if N0 ≥ 3 is odd and u = 1 in {t > ϕ+(y)} (5.13)

and, again by symmetry, that

f ≤ 0 if N0 ≥ 3 is odd and u = −1 in {t > ϕ+(y)}. (5.14)

Putting together (5.11)-(5.14) and using (3.2) we deduce the conclusion (1), (2) of
Theorem 3.2. The conclusion (3) follows from Proposition A.1, and the statement
(4) is deduced from (1), (3) and (3.2). �

Remark 5.4. In the case that f(0) < 0 and u = 1 ‘above’ ϕ+ one considers for
suitably small % > 0 the solution ψ̃ of

−H(∇ψ̃,D2ψ̃) = −2f(y1)
3σ

in B%(y1),

ψ̃(y) = P1(y)− ω%2 on ∂B%(y1)

and the function η̃,

η̃(y) := P1(y) + 2ω(%2 − |y − y1|2)
To derive a contradiction the corresponding statement to Proposition 5.2 is needed,
that is

ψ̃ ≤ ϕ− in B%(y1).

In the case that N0 ≥ 1 this property can be proved in the same way as we will
prove Proposition 5.2: One constructs smooth approximations vε of the function
2X{t>ψ̃(y)} − 1 and uses a comparison principle to obtain uε ≤ vε. However, these
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arguments do not apply if N0 ≥ 2 is even, since in that case uε ≈ 1 is larger than
2X{t>ψ̃(y)} − 1 in the region ‘below’ ψ̃.

6. Proof of Proposition 5.2

Assume that (5.7) does not hold, that is

sup
B%(y1)

(ϕ+ − ψ) > 0. (6.1)

By (5.4) and (5.6)

ϕ+ < ψ on ∂B%(y1). (6.2)

Since ψ is continuous and ϕ+ is upper-semicontinuous there exist 0 < %3 < %2 < %
such that

sup
B%3 (y1)

(ϕ+ − ψ) > 0, (6.3)

ϕ+ < ψ on B%(y1) \B%3(y1). (6.4)

As explained before we will use that uε behaves as if the curvature of the sharp
interface limit is given by f/σ, instead of f/(Nσ). In a first step we construct
functions vε such that

−ε∆vε +
1
ε
W ′(vε) ≤

7
9
f(y1), (6.5)

vε → 2X{(y,t):t>ψ(y)} − 1. (6.6)

In the second step we will apply a comparison principle to uε, vε to obtain a con-
tradiction in the limit ε→ 0.

6.1. Construction of vε. The two ingredients to construct vε are a modified dis-
tance function from graph(ψ) and the optimal profile and first order-correction of
the one-dimensional minimisation problem associated to the Cahn–Hilliard func-
tional.

Definition 6.1. We define

M := graph
(
ψbB%(y1)

)
and denote by d := dist(M, ·) the signed distance function from M , taken positive in
the region ‘above’ M . Moreover we let ΠM : Rn →M be the orthogonal projection
onto M and (κi)i=1,...,n−1 the principal curvatures of M . Finally we define for
x ∈ Rn, (y, t) = ΠM (x)

κ̃i(x) := κi(y, t),

which is well-defined in a neighborhood of M .

Remark 6.2. Since ψ is smooth we deduce that M is a smooth hypersurface and
that there exists δ > 0, δ = δ(‖ψ‖C2(B%(y1)), %2) such that the distance function d
is unique and smooth in a neighborhood

G =
{
x ∈ B%2(y1)× (−5%0, 5%0) : |d(x)| < δ

}
. (6.7)

Moreover

∆d =
n−1∑
i=1

κ̃i +O(d) =
2f(y1)

3σ
+O(d). (6.8)
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holds in G [13, Lemma 14.17].

We turn to the optimal profile for the one-dimensional minimisation in the Cahn–
Hilliard energy.

Remark 6.3. Let φ0 : R → [−1, 1] be the optimal profile, that is the solution of

−φ′′0 +W ′(φ0) = 0, (6.9)

φ0(−∞) = −1, φ0(+∞) = 1, (6.10)

and let φ1 : R → R be the first order correction (see [26]),

−φ′′1 +W ′′(φ0)φ1 = φ′0 + σ, (6.11)

φ1(±∞) =
σ

W ′′(±1)
. (6.12)

Since the distance function d is smooth only in a neighborhood of graph(ψ) we
have to modify the distance function.

Definition 6.4. For ε > 0 we choose δ(ε) > 0 such that

δ(ε) → 0,
δ(ε)
ε

→ ∞ as ε→ 0 (6.13)

and such that the conditions
1
δ(ε)

φ′0
(
ε−1δ(ε)

)
,

1
ε
φ′′0

(
ε−1δ(ε)

)
→ 0 as ε→ 0 (6.14)

are satisfied. Moreover we choose smooth functions βε : R → R, ε > 0, with

βε(r) =


r for |r| ≤ δ(ε)

3

−δ(ε) for r ≤ −2δ(ε)
δ(ε) for r ≥ 2δ(ε)

(6.15)

such that

0 ≤ β′ε ≤ 1, (6.16)

0 ≥ β′′ε ≥ − 3
δ(ε)

. (6.17)

We then define the modified distance functions dε,

dε(x) := βε(d(x)). (6.18)

Remark 6.5. We observe that by (6.13)

{|d| ≤ 2δ(ε)} ⊂ G (6.19)

for all ε ≤ ε0(‖ψ‖C2(B%(y1))) and deduce that dε is smooth for sufficiently small
ε > 0. We compute that

∇dε =β′ε(d)∇d, (6.20)

∆dε =β′′ε (d) + β′ε(d)∆d

=β′′ε (d) + β′ε(d)
(2f(y1)

3σ
+O(d)

)
, (6.21)

where we have used (6.8). For ε < ε0(ψ) we obtain that

β′ε ◦ d = 0 in the set
{
|d| > 2δ(ε)}

}
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and we deduce from (4.8), (6.16), (6.17) that

|∆dε| ≤ C
(
1 +

1
δ(ε)

)
. (6.22)

We are now ready to define vε.

Definition 6.6. Let ε0 = ε0(‖ψ‖C2(B%(y1))) be chosen such that (6.19) holds. We
then define vε : B%2(y1)× R → R,

vε(x) := φ0(ε−1dε(x)) + εφ1(ε−1dε(x))
2
3σ
f(y1). (6.23)

6.2. Comparison of uε, vε.

6.2.1. Subsolution property. We are going to show that vε is a suitable subsolution
of a (diffuse) constant curvature equation.

We first compute that, using (6.11),

−ε∆vε = − 1
ε
φ′′0(ε−1dε)|∇dε|2 − φ′0(ε

−1dε)∆dε

+
2f(y1)

3σ

(
−W ′′(φ0(ε−1dε))φ1(ε−1dε) + φ′0(ε

−1dε) + σ
)
|∇dε|2

− εφ′1(ε
−1dε)

2f(y1)
3σ

∆dε (6.24)

and

1
ε
W ′(vε) =

1
ε
W ′(φ0(ε−1dε)) +W ′′(φ0(ε−1dε))

2f(y1)
3σ

φ1(ε−1dε) +O(ε). (6.25)

Using (6.22) we deduce from (6.24), (6.25) that

−ε∆vε +
1
ε
W ′(vε) = − 1

ε
φ′′0

(
|∇dε|2 − 1

)
− φ′0

(
∆dε −

2f(y1)
3σ

|∇dε|2
)

− 2f(y1)
3σ

φ1W
′′(φ0)(|∇dε|2 − 1)

+
2
3
f(y1)|∇dε|2 + o(εδ(ε)−1). (6.26)

Proposition 6.7. For all 0 < ε < ε0, ε0 = ε0(ψ,W ),

−ε∆vε +
1
ε
W ′(vε) ≤

7
9
f(y1). (6.27)

Proof. We check (6.27) in the different regions.
Step1. In the region {|d| ≤ 1

3δ(ε)} holds |∇dε| = 1 and we obtain from (6.21),
(6.26) that

−ε∆vε +
1
ε
W ′(vε) =

2
3
f(y1) +O(d) + o(εδ(ε)−1)

≤ 2
3
f(y1) +O(δ(ε)) + o(εδ(ε)−1).

Therefore (6.27) holds for ε > 0 sufficiently small.
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Step2. In {d ≥ 2δ(ε)} we obtain

− ε∆vε +
1
ε
W ′(vε)

=
1
ε
W ′

(
φ0(ε−1δ(ε)) + εφ1(ε−1δ(ε))

2
3σ
f(y1)

)
=

1
ε
W ′(φ0(ε−1δ)

)
+W ′′(φ0(ε−1δ)

)
φ1(ε−1δ)

2
3σ
f(y1) +O(ε)φ1(ε−1δ). (6.28)

From (6.9), (6.14) and (6.12), (6.13) we deduce that (6.27) holds in {d ≥ 2δ(ε)} for
sufficiently small ε > 0. By similar calculations we obtain (6.27) also in the region
{d ≤ −2δ(ε)}.
Step3. Let us now consider the set { 1

3δ(ε) ≤ d ≤ 2δ(ε)} and estimate the different
terms in (6.26). We first obtain from (6.14) that in this region

−1
ε
φ′′0(ε−1dε)

(
|∇dε|2 − 1

)
→ 0 as ε→ 0. (6.29)

Next we compute that, using (6.20), (6.21) and (6.17),∣∣∣− φ′0(ε
−1dε)

(
∆dε −

2f(y1)
3σ

|∇dε|2
)∣∣∣

=φ′0(ε
−1dε)

∣∣∣β′′ε (d) + β′ε(d)
(2f(y1)

3σ
+O(d)

)
− 2f(y1)

3σ
β′ε(d)2

∣∣∣
≤φ′0((3ε)−1δ(ε))

( 3
δ(ε)

+
4f(y1)

3σ
+O(δ(ε))

)
.

Hence, by (6.14)

−φ′0(ε−1dε)
(
∆dε −

2f(y1)
3σ

|∇dε|2
)
→ 0 as ε→ 0. (6.30)

Finally we observe that in { 1
3δ(ε) ≤ d ≤ 2δ(ε)}

aε :=
φ1(ε−1dε)W ′′(φ0(ε−1dε))

σ
= 1 + o(1) (6.31)

by (6.12), (6.13) and we deduce for the last line in (6.26) that

2
3
f(y1)

(
(−aε + 1)|∇dε|2 + aε

)
=

2
3
f(y1) + o(1). (6.32)

We obtain from (6.26) and (6.29), (6.30), (6.32) that (6.27) holds in { 1
3δ(ε) ≤ d ≤

2δ(ε)} for all ε > 0 sufficiently small. By similar considerations we prove (6.27)
also in {−δ(ε) ≤ d ≤ − 1

3δ(ε)}. �

6.2.2. Comparison in the bulk regions.

Lemma 6.8. As ε→ 0

uε → 1 uniformly on each compact subset of {t > ϕ+(y)}, (6.33)

uε → (−1)N0 uniformly on each compact subset of {t < ϕ−(y)}. (6.34)

and

vε → 1 uniformly on each compact subset of {t > ψ(y)}, (6.35)

vε → −1 uniformly on each compact subset of {t < ψ(y)}. (6.36)
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Proof. By [42, Proposition 4.2] either uε → 1 or uε → −1 uniformly on each
compact subset of Ω \ suppµ. By (4.11), (4.12) we conclude (6.33), (6.34). The
construction of vε yields (6.35), (6.36). �

For ε > 0 such that (4.8), (4.13) holds we deduce that

fε >
8
9
f(y1) in B%0(0)× (−5%0, 5%0). (6.37)

In fact, in this region we compute that

f(y1)
fε

≤ |f(y1)− f(0)|+ f(0)
f(0)− |f − f(0)| − |fε − f |

≤ 28
25

<
9
8
.

Lemma 6.9. Choose c0 > 0 such that

W ′′(r) ≥ W ′′(1)
2

> 0 for all |r| ≥ 1− c0 (6.38)

and set Ω′ := B%0(0)× (−5%0, 5%0).
Let λε,+, λε,− be the positive and negative solution, respectively, of

1
ε
W ′(λε,±) =

8
9
f(y1). (6.39)

Then there exists for any bounded domain U ⊂⊂ Ω′ and any k ∈ N a constant
Ck = Ck(n,U,Ω′) such that for all ε < ε0(k, c0)

uε ≥ λε,− − Ckε
k in U. (6.40)

Assume (6.38), (6.39) and in addition that there exists Ω′′ ⊂ Ω′ such that

uε ≥ 1− c0 in Ω′′. (6.41)

Then there exists for any bounded domain U ⊂⊂ Ω′′ and any k ∈ N a constant
Ck = Ck(n,U,Ω′′) such that

uε ≥ λε,+ − Ckε
k in U. (6.42)

Proof. We first show the second conclusion. We deduce from (6.37), (6.39) that

−ε∆(uε − λε,+) +
1
ε

(
W ′(uε)−W ′(λε,+)

)
≥ 0. (6.43)

Consider first bounded domains Ω1,Ω2 such that

U ⊂ Ω1 ⊂⊂ Ω2 ⊂ Ω′′.

Chose a cut-off function φ ∈ C∞c (Ω′′) such that 0 ≤ φ ≤ 1 and

φ = 1 in Ω1, φ = 0 in Ω′′ \ Ω2.

Next we define

(uε − λε,+)− := min(0, uε − λε,+) ≤ 0,
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we multiply (6.43) by (uε− λε,+)−φ2, and integrate over Ω2. We then deduce that∫
Ω2

ε|∇(uε − λε,+)−|2φ2 ≤ −
∫

Ω2

ε(uε − λε,+)−∇uε · 2φ∇φ

−
∫

Ω2

1
ε

(
W ′(uε)−W ′(λε,+)

)
(uε − λε,+)−φ2

≤
∫

Ω2

ε|∇(uε − λε,+)−|2φ2 +
∫

Ω2

ε|∇φ|2(uε − λε,+)2−

− 1
2ε
W ′′(1)

∫
Ω2

(uε − λε,+)2−φ
2, (6.44)

where in the last line we have used (6.38), (6.41). We therefore obtain that
1
2
W ′′(1)

∫
Ω1

(uε − λε,+)2− ≤ ε2‖∇φ‖2L∞(Ω2)

∫
Ω2

(uε − λε,+)2−. (6.45)

Choosing now bounded domains Ωj , j = 1, ..., k + 1, such that

U = Ω1 ⊂⊂ Ω2 ⊂⊂ ... ⊂⊂ Ωk+1 = Ω′′

and iterating the procedure above we deduce that∫
U

(uε − λε,+)2− ≤ C(k, U,Ω′′)ε2k
∫

Ω′′
(uε − λε,+)2− ≤ C(k, U,Ω′′)ε2k. (6.46)

Assume now that for a x1 ∈ U
uε(x1) < λε,+ − c1ε

k, (6.47)

choose r = r(U,Ω′′) such that Brε(x1) ⊂ Ω′′, and consider the scaled functions
ũ, f̃ : Bnr (0) → R,

ũ(x) := uε(x1 + εx), f̃(x) := fε(x1 + εx).

Then ũ, f̃ satisfy the equation

−∆ũ = −W ′(ũ) + εf̃ .

Since the right-hand side is uniformly bounded we deduce that ũ ∈ W 2,q(Br(0))
for all 1 ≤ q <∞ and by the Sobolev inequality that

|∇ũ| ≤ c2(n, r) on Br(0),

|∇uε| ≤
c2(n, r)

ε
on Bεr(x1).

Thus (6.47) gives us for all x ∈ Brεk+1(x1)

uε(x) = uε(x1) + uε(x)− uε(x1) < λε,+ − (c1 − c2(n, r))εk

and we compute that for c1 > c2(n, r)∫
U

(uε − λε,+)2− ≥
∫
B

rεk+1 (x1)

(c1 − c2(n, r))2εk ≥ (c1 − c2(n, r))2ωnεk+n(k+1)rn.

On the other hand, by (6.46) with 2k replaced by k + n(k + 1) we obtain that∫
U

(uε − λε,+)2− ≤ C̃(k, U,Ω′′)εk+n(k+1),

which gives a contradiction for all c1 = c1(n, k, U,Ω′′) sufficiently large.
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To prove (6.40) we first observe that

−ε∆(−1 + c0) +
1
ε
W ′(−1 + c0) ≥

8
9
f(y1)

for all ε > 0 sufficiently small. Since the minimum of two supersolutions is a
supersolution we deduce that

ũε := min(uε,−1 + c0)

satisfies ũε ∈W 1,2(Ω′) and

−ε∆ũε +
1
ε
W ′(ũε) ≥

8
9
f(y1),

ũε ≤ −1 + c0

Then we can prove by the same arguments as for (1) that

ũε ≥ λε,− − Ckε
k in U.

Since λε,− − Ckε
k < −1 + c0 for ε < ε0(k) this proves (6.40). �

We will employ a comparison principle on the cylinder B%2(y1) × (−4%0, 4%0).
We first control the difference uε− vε on the top and the bottom, starting with the
following lemma.

Lemma 6.10. Let λε,+, λε,− be the positive and negative solution of (6.39) and let
βε,± denote the values of vε ‘away’ from M ,

βε,+ := φ0(ε−1δ(ε)) + εφ1(ε−1δ(ε))
2
3σ
f(y1), (6.48)

βε,− := φ0(−ε−1δ(ε)) + εφ1(−ε−1δ(ε))
2
3σ
f(y1). (6.49)

Then there exists γ > 0, ε0 > 0 such that for all 0 < ε < ε0

λε,+ − βε,+ ≥ γε, (6.50)

λε,− − βε,− ≥ γε. (6.51)

Proof. By a Taylor approximation

W ′(βε,±) = W ′(φ0(−ε−1δ(ε))
)

+W ′′(φ0(−ε−1δ(ε))
)
· εφ1(−ε−1δ(ε))

2
3σ
f(y1)

+O(ε2)

=
2
3
f(y1)ε+ o(ε),

where we have used that

W ′(φ0(−ε−1δ(ε))
)

= o(ε)

by (6.9), (6.14) and that

W ′′(φ0(−ε−1δ(ε))
)
φ1(−ε−1δ(ε))

1
σ
→ 0 as ε→ 0

by (6.12), (6.13).
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We therefore deduce that

(λε,± − βε,±)
∫ 1

0

W ′′(sλε,± + (1− s)βε,±
)
ds = W ′(λε,±)−W ′(βε,±)

=
1
6
f(y1)ε+ o(ε). (6.52)

Since λε,−, βε,− converge to −1 as ε → 0 and since W ′′(−1) > 0 we deduce from
(6.52) that (6.51) holds for γ > 0 and ε > 0 sufficiently small. Analogously we
obtain (6.50). �

Proposition 6.11. For all ε > 0 sufficiently small we obtain that

uε ≥ vε in B%2(y1)× [−4%0, 4%0]. (6.53)

Proof. Let us define the sets

U := B%2(y1)× (−4%0, 4%0), Ω′ := B%(y1)× (−5%0, 5%0).

Consider for s > 0 the shifted functions v(s)
ε ,

v(s)
ε (y, t) := vε(y, t− s) for (y, t) ∈ Ω′,

and the function

Φ(s) := min
U

(uε − v(s)
ε ).

Assume now ε < ε1, where we choose ε1 > 0 below, and that (6.53) is not satisfied,
hence

Φ(0) < 0. (6.54)

The definition of vε in (6.15), (6.23) implies that we can choose s0 > 0, s0 = s0(%0)
such that for all ε > 0 sufficiently small

v(s0)
ε = βε,− in Ω′. (6.55)

Applying then Lemma 6.9 with U,Ω′ as above and k = 2 we deduce that

uε ≥ λε,− −O(ε2) in U. (6.56)

Therefore (6.51) and (6.55), (6.56) imply that

uε − v(s0)
ε ≥ λε,− −O(ε2)− βε,− ≥ γε−O(ε2)

and we deduce that

Φ(s0) >
γ

2
ε (6.57)

for all ε < ε1 and ε1 > 0 chosen suitably small.
Since Φ is continuous (6.54), (6.57) imply the existence of s∗ > 0 and x∗ ∈ U

such that

0 = (uε − v(s∗)
ε )(x∗) = min

U
(uε − v(s∗)

ε ). (6.58)

We first prove that x∗ ∈ U . With this aim we consider the different parts of ∂U .
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(1) For ε1 > 0 chosen suitably small we have

v(s∗)
ε = βε,− in B%2(y1)× (−5%0,−4%0)

and therefore, by Lemma 6.9 and Lemma 6.10,

uε ≥ v(s∗)
ε +

γ

2
ε in B%2(y1)× (−5%0,−4%0)

for ε < ε1 and ε1 > 0 suitably small, see the argument above. This shows that

x∗ 6∈ B%2(y1)× {−4%0}. (6.59)

(2) For ε1 > 0 sufficiently small we obtain from Lemma 6.8 and Lemma 6.9, applied
to

U+ = B%2(y1)× (2%0, 4%0), Ω′′+ = B%(y1)× (%0, 5%0), k = 2

that

uε ≥ λε,+ −O(ε2) in U+.

By (6.50) this implies that

uε ≥ βε,+ + γε −O(ε2) ≥ βε,+ +
γ

2
ε ≥ vε +

γ

2

holds in U+, hence

x∗ 6∈ B%2(y1)× {4%0}. (6.60)

(3) By (6.4) there exists bounded domains U1,Ω1, U2 such that

U1 ⊂⊂ Ω1 ⊂⊂ B%(y1) \B%3(y1)× (−5%0, 5%0) (6.61)

Ω1 ⊂⊂ {t > ϕ+(y)}, (6.62)

U2 ⊂⊂ {t < ψ(y)}, (6.63)

∂B%2(y1)× [−4%0, 4%0] ⊂ U1 ∪ U2. (6.64)

By similar arguments as above we first prove that uε > v
(s∗)
ε in U1. First we

obtain from Lemma 6.8 that

uε ≥ 1− c0 in Ω1

and applying Lemma 6.9 and Lemma 6.10 with k = 2 we deduce that in U1

uε ≥ λε,+ −O(ε2) > v(s∗)
ε . (6.65)

Since s∗ > 0 we obtain that for ε < ε1, where ε1 = ε1(U2, %2) is chosen
sufficiently small,

v(s∗)
ε ≤ βε,− + o(ε) ≤ λε,− − γε+ o(ε) < uε (6.66)

in U2. By (6.64), (6.65), (6.66) we deduce that

uε > v(s∗)
ε on ∂B%2(y1)× (−4%0, 4%0). (6.67)
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By (6.58)-(6.60), (6.67) we get that uε − v
(s∗)
ε has an interior minimum with value

zero at x∗. Using (2.3), (6.37), and (6.27) we therefore deduce that

0 ≥ −ε∆(uε − v(s∗)
ε )(x∗)

≥ fε(x∗)−
7
9
f(y1)−

1
ε
W ′(uε(x∗)) +

1
ε
W ′(v(s∗)

ε (x∗))

≥ 1
9
f(y1).

This finally gives a contradiction and proves Proposition 5.2. �

7. Applications

7.1. Stationary solutions for the Cahn-Hilliard equation. Consider the
Cahn-Hilliard equation [7]

∂uε
∂t

= ∆fε, fε = −ε∆uε +
1
ε
W ′(uε) (7.1)

with Neumann boundary conditions for uε and fε.
The stationary solutions of (7.1) are those with constant fε,

−ε∆uε +
1
ε
W ′(uε) = λε, λε ∈ R. (7.2)

This is also the Euler–Lagrange equation of the volume constrained minimization
problem for the Cahn–Hilliard energy (2.1),

inf
{
Eε(u) : u ∈ H1,2(Ω),

∫
Ω

u = m}. (7.3)

To better understand stationary solutions of the Cahn–Hilliard equation the as-
ymptotic of (7.2) is analyzed in a couple of papers. The behavior of (locally)
energy minimizing solutions of (7.2) is well understood [21, 40, 19, 16]. In this
case sequence (uε)ε>0 with uniformly bounded energy converge to a constant-mean
curvature hypersurface with single-multiplicity. This hypersurface is smooth except
for a closed set of dimension at most n− 8.

Solutions of the Cahn–Hilliard equation are observed to undergo pattern similar
to unstable equilibria [14] and the behavior of general stationary points is another
question of interest. However, this situation is more difficult due to the possibil-
ity of higher-multiplicity surfaces in the limit. Hutchinson–Tonegawa [16] showed
that the limit is given by an integer-rectifiable varifold and that the weak mean
curvature exists. However this mean curvature is only locally constant, the con-
stant depending on the multiplicity. A higher multiplicity is also an obstacle to use
Allard’s regularity theory [3] and to obtain the smoothness of the limit.

As a corollary of Theorem 3.2 we can improve the previous results.

Theorem 7.1. Consider a sequence (uε)ε>0 ⊂ H1,2(Ω) with a fixed volume con-
straint

∫
Ω
uε = m, and a sequence (λε)ε>0 ⊂ R such that (7.2) is satisfied. Suppose

further that

Eε(uε) ≤ Λ for all ε > 0. (7.4)

Then there exists a subsequence ε → 0, a function u ∈ BV (Ω, {−1, 1}), and
λ := limε→0 λε, such that uε → u in L1(Ω). The phase boundary ∂∗{u = 1} ∩ Ω
has constant mean curvature σH = λ.
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In the case that λ 6= 0 the phase boundary is up to a Hn−1-nullset a smooth
hypersurface. The energy measures µε as defined in (2.6) converge to a measure µ
that is up to the factor 2σ integer-rectifiable, has constant mean curvature σH = λ
and multiplicity one Hn−1-almost everywhere on ∂∗{u = 1}. Moreover ‘hidden
boundaries’ can only occur in one phase and have zero mean curvature:

µ(K) = 0

{
for all compact sets K ⊂ {u = 1}o if λ > 0,
for all compact sets K ⊂ {u = −1}o if λ < 0,

(7.5)

H = 0 Hn−1-almost everywhere on supp(µ) \ ∂∗{u = 1}. (7.6)

Proof. It follows from [9, Lemma 3.4] that |λε| ≤ c(m,Λ) and we may choose a
subsequence such that λ = limε→0 λε exists.

We therefore can apply Theorem 3.2 and obtain that there exists a subsequence
ε → 0 and limits u, µ of uε, µε. Moreover, u ∈ BV (Ω, {−1, 1}) and (2σ)−1µ is an
integer-rectifiable varifold with weak mean curvature

σH = λ Hn−1 − almost everywhere on ∂∗{u = 1}.
Next it follows from Theorem 3.2 that λ = 0 on the parts of ∂∗{u = 1}∩Ω with odd
multiplicity larger than 1, which shows that in the case λ 6= 0 the phase boundary is
given as a constant curvature varifold with unit multiplicity. By Allard’s regularity
theory [3] we conclude the smoothness of the phase boundary. Finally (7.5), (7.6)
follow from (3.4). �

In general dimension we can not insure good regularity of the hidden boundaries,
due to the lack of regularity theory for general stationary integral varifold. Only
for n = 2 we can conclude that sptµ ∩K is given by straight line segments with
possible junction points for all compact sets K ⊂ Ω \ ∂∗{u = 1} [2].

7.2. Critical points of the Ohta-Kawasaki functional. The micro-phase sep-
aration of block copolymers exhibits the formation of complex patterns. Ohta–
Kawasaki [25] and later Bahiana–Oono [4] used a phase-field like approach and
proposed a free energy that is after a suitable rescaling given by

Fε(u) =
∫

Ω

(ε
2
|∇u|2 +

1
ε
W (u) +

1
2
|∇v|2

)
dx, (7.7)

where v(·) = v[u](·) is the solution of

−∆v = u− 1
|Ω|

∫
Ω

u in Ω, ∇v · νΩ = 0 on ∂Ω. (7.8)

The functional Fε extends the Cahn–Hilliard energy by a non-local term that de-
scribes long-range interactions between chains of macromolecules. For a derivation
of this model by a density-functional approach see [11]. The set of (local) minimiz-
ers of Fε is extremely rich and (7.7) has drawn quite some attention [10, 24, 29, 30].
The Gamma-limit of Fε as ε → 0 and the convergence of the corresponding H−1

gradient-flow that was proposed by Nishiura and Ohnishi [23] are also well-studied
[28, 12, 15].

Critical points of Fε under a volume-constraint satisfy the Euler–Lagrange equa-
tion

−ε∆u+
1
ε
W ′(u) + v[u] = λ, (7.9)

where λ ∈ R is a Lagrange-multiplier.
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As a corollary of our results we obtain the convergence of stationary points of
Fε.

Theorem 7.2. Assume that we have a sequence (uε)ε>0 such that

Fε(uε) + ‖uε‖L∞(Ω) ≤ Λ for all ε > 0 (7.10)

and such that (7.9) holds for Lagrange multipliers λε ∈ R and the solutions vε of

−∆vε = uε −
1
|Ω|

∫
Ω

uε in Ω, ∇vε · νΩ = 0 on ∂Ω. (7.11)

Then there exists a subsequence ε → 0, a number λ ∈ R, and a function u ∈
BV (Ω, {−1, 1}) such that λ = limε→0 λε and uε → u in L1(Ω). Moreover vε → v
in C1,α(Ω̄) for all 0 < α < 1 and v solves (7.8).

The energy measures µε as defined in (2.6) converge to a measure µ that is up
to the factor 2σ integer-rectifiable and has a weak mean curvature that satisfies

σH =

{
−v + λ Hn−1 − almost everywhere on ∂∗{u = 1},
0 Hn−1 − almost everywhere on supp(µ) \ ∂∗{u = 1}.

(7.12)

Finally ∂∗{u = 1} has multiplicity one Hn−1-almost everywhere in the set {v 6= λ}
and this part of the phase boundary is a C3,α-surface for all α < 1, except for a set
of Hn−1-measure zero.

Proof. By standard elliptic theory we obtain from (7.10), (7.11) that vε is uniformly
bounded in W 2,p(Ω) for all 1 ≤ p <∞. Therefore Theorem 3.2 applies and we can
repeat the arguments of the proof of Theorem 7.1. We omit the details here. �

If uε has in addition a local energy minimizing property for Fε we can draw
stronger conclusions: Then µ has multiplicity one µ-almost everywhere and is C3,α-
smooth, see the arguments in [16].

Appendix A. A generalization of mean curvature to general phase
boundaries

Proposition A.1 (see [31, Proposition 3.1]). Let Ω ⊂ Rn be open, E ⊂ Ω, and
XE ∈ BV(Ω). Assume that there are two integral (n−1)-varifolds µ1, µ2 on Ω such
that for i = 1, 2 the following hold:

∂∗E ⊂ supp(µi), (A.1)

µi has locally bounded first variation with mean curvature vector ~Hµi , (A.2)

~Hµi ∈ Lsloc(µi), s > n− 1, s ≥ 2. (A.3)

Then
~Hµ1 |∂∗E = ~Hµ2 |∂∗E

is satisfied Hn−1-almost everywhere on ∂∗E.

This proposition justifies the following definition.

Definition A.2. Let E ⊂ Ω and XE ∈ BV(Ω), and assume that there exists an
integral (n− 1)-varifold µ on Ω satisfying (A.1)–(A.3). Then we call

~H := ~Hµ|∂∗E
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the generalized mean curvature vector of ∂∗E and define a scalar mean curvature
by

H := ~H · ∇X
|∇X |

on ∂∗E.
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