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THE NINE MORSE GENERIC TETRAHEDRA∗

D. SIERSMA† AND M. VAN MANEN‡

Abstract. There are two types of shapes for a generic triangle—acute and obtuse. These shapes
are also distinguished by the (topological) Morse theory of the minimal distance function to the
vertices. We can use the same method for a tetrahedron, and we show in this paper that there
exist nine generic shapes. These can be described by a Morse poset or by a Gabriel graph. We also
report on some computer experiments and compare our classification to another criterion used in
computational geometry.
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1. Introduction. Take N points P1, . . . , PN in R
n and consider the function

d : R
n → R defined by

d(X) = min
j=1,...,N

d(X,Pj).

We study the evolution of the sets dε = {X | d(X) ≤ ε} as ε increases. In particular,
we are interested in the Euler characteristic χ of dε. In case ε is very small, dε consists
of N small solid spheres. Thus χ = N . If ε is very big, then dε is contractible, and
hence χ = 1.

For a generic set of points, d is a topological Morse function. In that case, as ε
grows, d passes through a number of nondegenerate critical values. When d passes a
critical value of index i, an i-cell gets attached.

The number of critical points of index i is si. From Morse theory we know that
∑

(−1)isi = 1.

As an example, take a triangle with an obtuse angle in the plane. This is a special
case of the above problem with n = 2 and N = 3. Assume further that the two legs
that encompass the obtuse angle have different lengths. In that case, s0 = 3, s1 = 2,
and s2 = 0. For an acute triangle where the edges have different lengths, we obtain
s0 = 3, s1 = 3, and s2 = 1. In this sense, there are two different generic triangles.

Returning to the n-dimensional case, each critical point of index i corresponds to
a subset of size i+1 of {P1, . . . , PN}, but not every subset of size i+1 corresponds to
a critical point of index i. (With the obtuse triangle, the 2-face of the triangle, that is,
the triangle itself, does not correspond to a local maximum of the function d.) Thus
to the N -point set P1, . . . , PN we can associate a set of subsets that correspond to
critical points of d. By extension we will call these subsets and the geometric simplices
that they span critical as well. This set of subsets is partially ordered by inclusion,
and thus it is a poset. We will call it the Morse poset.
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738 D. SIERSMA AND M. VAN MANEN

Question. In R
n, for generic sets of N points, how many different Morse posets

are there, up to combinatorial equivalence?
When N = n + 1 we thus ask how many “different” generic simplices there are.

This is a natural first problem to consider.
In the plane the answer is two; see [Sie99, section 2]. For obtuse triangles, the

Morse poset is

{{P1}, {P2}, {P3}, {P1, P3}, {P2, P3}},

and for acute triangles, we get the Morse poset

{{P1}, {P2}, {P3}, {P1, P2}, {P1, P3}, {P2, P3}, {P1, P2, P3}}.

The main theorem of this article says that in R
3, there are nine different generic

tetrahedra (3-simplices).
In the first section, we recall the relevant Morse theory. Then we establish some

notation and state what Voronoi diagrams and Gabriel graphs are. Next, we state and
prove the main theorem. We also report on numerical experiments concerning volume
data of the different compartments of the configuration space where the Morse poset
is of a certain type. Finally, we compare our classification to the classification by shape
types in [Ede01]. The Morse theoretic approach relates to alpha shapes as defined by
Edelsbrunner [EM94].

2. Genericity conditions. We focus here on four points in R
3, but most of the

notation and definitions have straightforward extensions to the (n,N) general case.
We write Pij for the middle of the interval PiPj , Pijk for the center of the cir-

cumscribed circle of the triangle PiPjPk, and P1234 for the center of the circum-
scribed sphere of the tetrahedron. For the tetrahedron itself, that is, the convex hull
of {P1, P2, P3, P4}, we will use the notation T.

We impose the following condition.
Genericity Condition 2.1. We require the set of points P1, P2, P3, P4 to be in

general position, so that the convex hull of P1, P2, P3, P4 is 3-dimensional. Moreover,
the points Pijk do not lie on one of the edges of the triangle PiPjPk, and also P1234

does not lie on one of the planes of the triangles PiPjPk.
Genericity Condition 2.1 means that the function d is not too badly behaved. To

express more carefully what that means we recall the definition of a topological Morse
function; see [Mor59]. Let P ∈ R

n, and let f be a continuous real-valued function
on R

n.
Definition 2.2. The function f is topologically regular at P ∈ R

n if there is
some neighborhood U of P and a homeomorphism φ:U → U such that the composition
f ◦ φ is a nonconstant affine function on U . The function f has a critical point at
P ∈ R

n if f is not topologically regular at P . In that case, P is called a nondegenerate
critical point of index i if there is a neighborhood U of P and a homeomorphism
φ:U → U such that

f ◦ φ = f(P ) −
i∑

j=1

x2
j +

n∑
j=i+1

x2
j .

A topological Morse function is a continuous function that has only regular and
nondegenerate critical points.

For topological Morse functions the two crucial statements that hold in the differ-
entiable case—the regular interval theorem and the attachment of cells (see Chapter 5
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THE NINE MORSE GENERIC TETRAHEDRA 739

in [Mil63])—are true as well, as Morse proves in [Mor73]. So, if we show that d is topo-
logically regular, we can apply those theorems, just as was done in [Sie99].

We will need the following notation.
Let

Terr(Pi) = {X ∈ R
3|d(X,Pi) ≤ d(X,Pk) for all k}

and Vi = Terr(Pi), Vij = Vi∩Vj (i different from j), Vijk = Vi∩Vj∩Vk (i, j, k different
from one another), and V1234 = V1 ∩ V2 ∩ V3 ∩ V4.

Proposition 2.3. The function d is a topological Morse function if Genericity
Condition 2.1 is fulfilled. In that case, d is topologically regular in all points of R

3,
except in P1, P2, P3, P4, where d has a minimum, and (perhaps) in the points Pij,
Pijk, and P1234. Moreover, d has

• a minimum exactly in the points P1, P2, P3, P4,
• a 1-saddle (saddle point of index 1) in Pij iff Pij = Vij ∩ PiPj,
• a 2-saddle (saddle point of index 2) in Pijk iff Pijk = Vijk ∩ PiPjPk, and
• a maximum in P1234 iff P1234 = V1234 ∩ T (equivalently, P1234 ∈ T).

Proof. If x = Pi, then because the points lie in general position all Pj with i �= j
lie at some positive distance from x, so d has a minimum there. If x ∈ Terr(Pi) but
x �= Pi, then x is obviously topologically regular.

The function d restricted to the interior Vij has a minimum if Pij lies in that
interior. This can happen only when Pij �= Pijk, which is ensured by Genericity
Condition 2.1.

In the directions, orthogonal to Vij , d decreases, so we see that d has a critical
point of index 1 at Pij .

The function d restricted to the interior of Vijk has a minimum at Pijk if Pijk

lies in that interior. This can be the case only when Pijk �= P1234. In the directions
orthogonal to Vijk, d decreases, so d has a critical point of index 2 at Pijk.

Finally, if P1234 ∈ T, d obviously has a local maximum there.
Remark 2.4. This statement is well known. One can find it in several places; see,

for instance, [Ede04].
Remark 2.5. In the 2-dimensional case the distance function d is always a topo-

logical Morse function, whether the points are in general position or not. For a proof,
see [Sie99]. It would be interesting to know whether the distance function would
always be a topological Morse function in higher dimensions also, irrespective of gen-
eral position considerations.

The conditions of Proposition 2.3 tell us exactly the positions of the critical points.
As explained in the introduction, a critical point determines a subset of the points
P1, P2, P3, P4, which we call critical subset. The Morse poset is the set of critical sub-
sets, partially ordered by inclusion. Two sets of points in R

3 are called combinatorially
equivalent if there exists a bijection between points that sends the critical subsets onto
each other. We want to give a classification with respect to this equivalence relation.

Throughout this paper we deal with four points, generic in the sense of Genericity
Condition 2.1 and contained in R

3. However, it seems relevant to point out that our
problem can be formulated in a more general setting. In the next few definitions we will
deal with a point set {P1, . . . , PN} in R

n without making any genericity assumptions.
Definitions 2.6. A subset {Pi}i∈I belongs to the Delaunay triangulation if there

are points X ∈ R
n with d(X,Pi) = d(X,Pj) for all pairs {i, j} ⊂ I and d(X,Pi) <

d(X,Pj) for all pairs {i, j} with i ∈ I and j �∈ I. The Voronoi cell of such a subset
{Pi}i∈I consists of the points X ∈ R

n that make the subset part of the Delaunay
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740 D. SIERSMA AND M. VAN MANEN

triangulation. The Delaunay cell of such a subset {Pi}i∈I is simply the convex hull of
{Pi}i∈I .

In particular, all subsets of cardinality 1 are part of the Delaunay triangulation.
For each 1 ≤ i ≤ N we denote the closure of the Voronoi cell of Pi by Terr(Pi),
because such a Voronoi cell is best thought of as a territory with capital Pi.

The union of all < n dimensional Voronoi cells is usually called the Voronoi
diagram. In fact, the closure of any (n − 1)-dimensional Voronoi cell is always the
intersection of exactly two sets Terr(Pi) and Terr(Pj). Thus, dual to the Voronoi
diagram we have the 1-skeleton

{PiPj | dim(Terr(Pi) ∩ Terr(Pj)) = n − 1}.

The Gabriel graph (see [BKOS97], where it is defined in R
2) is a subset of this skele-

ton: it consists of those edges PiPj such that the circumball with poles Pi and Pj

does not contain any of the other points in the point set {P1, . . . , PN}. The Gabriel
complex (see [AGJ00]) is the subcomplex of the Delaunay triangulation, generated by
those (n− 1)-dimensional Delaunay cells whose smallest circumball does not contain
any of the other points.

Remark 2.7. General position is defined in this more general case as follows. We
require that for each subset {Pi}i∈I in the Delaunay triangulation the possibly empty
intersection of the Delaunay cell and the Voronoi cell is contained in both the relative
interior of the Delaunay and the relative interior of the Voronoi cell. For more details,
see [Ede01] and [EM94].

Question 2.8. What is the relation between the Morse poset and the Gabriel
graph and complex? The edge between Pi and Pj is part of the Gabriel graph iff the
point Pij is a saddle point (index 1) of d. These are exactly the critical subsets of size
2 of the Morse poset. In the 3-dimensional case a face between Pi, Pj, and Pk is part
of the Gabriel complex iff the point Pijk is a saddle point (index 2) of d. These are
precisely the critical subsets of size 3 of the Morse poset. But the Gabriel complex also
contains by definition the boundaries of those 2-simplices, while for the Morse poset
this is not automatically the case. So the Morse poset is not a simplicial complex and
can differ from the Gabriel complex. See examples of tetrahedrons of type (4, 5, 3, 1)
in the next section.

The Morse poset contains the information from both the Gabriel graph and the
Gabriel complex. Two Morse posets can be combinatorially equivalent only if the
underlying Gabriel graph and Gabriel complex are the same.

3. The main classification. From Proposition 2.3 we know the maximal num-
ber of critical points of each type. Moreover, the Euler characteristic is +1: s0 − s1 +
s2 − s3 = 1. This gives a priori the following 9 possibilities:

s0 s1 s2 s3

4 6 4 1
4 5 3 1
4 4 2 1
4 3 1 1
4 2 0 1
4 6 3 0
4 5 2 0
4 4 1 0
4 3 0 0
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But not all possibilities will occur. Since we start with four vertices and the result
should be a connected space, we need at least three saddle points of index 1. This
rules out the possibility (4, 2, 0, 1).

Fig. 1. List of possible Gabriel graphs. The vertices are the minima of the distance function.
Each vertex of the tetrahedron T is a minimum of d. There are no other minima. The edges of the
graph are the index 1 critical points of the distance function. Not each midpoint of an edge of T is
an index 1 critical point of the distance function d. The graph (4410)O can be laid out so as to form
the letter “O.” The names of the other graphs are chosen similarly.

We list in Figure 1 the (a priori) possible Gabriel graphs for the above cases; they
are the connected graphs with four vertices. Just as the cases (4, 2, 0, 1) cannot occur,
we will prove in this section by deriving a contradiction that the cases (4, 4, 2, 1)P ,
(4, 3, 1, 1)T , and (4, 3, 1, 1)L do not occur. We will prove our main theorem.

Theorem 3.1. Up to combinatorial equivalence of their Morse posets there are
nine generic tetrahedra. They are uniquely described by the nine Gabriel graphs
(4, 6, 4, 1), (4, 6, 3, 0), (4, 5, 3, 1), (4, 5, 2, 0), (4, 4, 2, 1)O, (4, 4, 1, 0)O, (4, 4, 1, 0)P ,
(4, 3, 0, 0)L, and (4, 3, 0, 0)T , drawn in Figure 1.

Proof. We have to exclude (4, 3, 1, 1)T , (4, 3, 1, 1)L, and (4, 4, 2, 1)P from the list.
In these cases M is critical. We first pay attention to the following.

3.1. Saddle points of index 1. We consider the plane E through P1P2P3 (and
set it as the “ground plane” in the picture). The half space containing P4 is called
“above,” and the other is called “below.”

We are going to consider the condition that the point Y = Pi4 is critical. We
first make no assumptions about the triangle P1P2P3 except that it does not have a
right angle. We consider the point X = P4 as a variable and denote its projection
on the E-plane by X ′. Let Y = P14 and its projection be Y ′. From the condition
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742 D. SIERSMA AND M. VAN MANEN

that Y = P14 is critical we get

d(P1, Y ) = d(P4, Y ) < min {d(P2, Y ), d(P3, Y )}.

The inequality is strict because of Genericity Condition 2.1.
For the projection, this means that in terms of Voronoi diagrams in E,

Y ′ ∈ Interior(Terr(P1)).

In terms of the projection X ′, this means

X ′ ∈ Interior(2Terr(P1)),

where by 2Terr(P1) we mean scalar multiplication of Terr(P1) by a factor 2 from the
point P1.

We can do the same for P24 and P34. We get three subsets 2Terr(P1), 2Terr(P2),
and 2Terr(P3), which cover the plane E. They divide the plane into regions, where
one, two, or three of the points P14, P24, or P34 are critical.

Inside the plane E, the border of Terr(Pi) consists of two half lines that meet in
P123. The scalar multiplication by 2 maps P123 to P ∗

i , the antipodal point of Pi on
the circle through P1, P2, and P3.

Next, look at the case of an acute triangle drawn in Figure 2.

Fig. 2. The plane E when the triangle is acute.

The regions where only one Pi4 is critical are all outside the disc D, which is
bounded by the circumscribed circle of triangle P1P2P3.

The picture for the obtuse case is in Figure 3.
Let P2 be the vertex with the obtuse angle. We see that the region where only

P24 is critical is outside D but that the regions where P14 or P34 is the only critical
point can have some intersections with D.

3.2. The center M of the circumscribed sphere. We assume again that
P1P2P3 lies in the plane E. We know that M = P1234 belongs to the axis of the
triangle P1P2P3, so its projection is M ′ = P123. Fix M for the moment, and consider
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Fig. 3. The plane E when the triangle is obtuse. Indicated are the territories 2Terr(Pi), i =
1, . . . , 3, and their intersections.

X = P4 as a variable. Possible positions of X = P4 are on the sphere with center
M and radius r = d(P1,M) = d(P2,M) = d(P3,M). Denote by P ∗

1 P
∗
2 P

∗
3 the mirror

image of P1P2P3 after central reflection through P123.
In the cases we wish to exclude, M is critical. In other words, the distance function

has a local maximum in M , and M lies inside the tetrahedron. The point X must
lie in the double cone with apex M and base the triangle P1P2P3, but also on the
sphere (M, r). Consider the plane E′′, which is the image of E by central reflection
through M . E′′ is parallel to E. The cone intersects the plane in a triangle, whose
orthogonal projection onto the plane E is the triangle P ∗

1 P
∗
2 P

∗
3 . X belongs to a part of

the cap of the sphere, which lies “above” E′′ (seen from M). It follows that X projects
to a point X ′ which lies inside the disc D. This is true for any position of M . For the
acute case this is all we need to conclude that it is not possible that M and only one
Pi4 are critical. In the obtuse case we have to use additional arguments to get to this
same conclusion. Let P2 be the obtuse angle. Recall that M is critical iff it belongs
to the interior of the tetrahedron P1P2P3X. Equivalently, X ′ lies in the interior of
the reflected triangle, that is, in P ∗

1 P
∗
2 P

∗
3 . This triangle is contained in the sector

P ∗
1 M

′P ∗
3 , which implies that M is critical only if X ′ lies in the interior of this sector

(the one which does not contain P2). We combine the conditions for M to be critical
and one single Pi4 is critical. From the geometric observations above it follows that the
combination of M being critical and a single Pi4 being critical cannot occur together.

Next choose the appropriate labels for the vertices of the tetrahedron: In cases
(4, 3, 1, 1)T and (4, 3, 1, 1)L the ground plane should contain two adjacent critical
edges, and in case (4, 4, 2, 1)P it should contain the triangle with the three critical
edges. This observation rules out the graphs (4, 3, 1, 1)T , (4, 3, 1, 1)L, and (4, 4, 2, 1)P .

3.3. Positions of index 2 saddles. We are left with nine possibilities of Gabriel
graphs. The Gabriel graphs do not give a complete picture of the combinatorics of
the Morse points. The Gabriel graph, together with the information on whether M
is a critical point or not, tells us only the number of saddles of index 2, but not the
position.
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Lemma 3.2. Generic tetrahedra with isomorphic Gabriel graphs have combinato-
rially equivalent Morse posets.

Proof. We need to prove that in all cases there are unique positions for the
2-saddles.

(4, 6, 4, 1): Unique positions (no choices).

(4, 5, 3, 1): There are two triangles, where all three midpoints are critical. Both
triangles must be acute. Take one of them in the “ground plane” and assume it to be
P1P2P3. Since P1234 is critical, P1234 lies on the same side as P4. It follows that V123

must intersect the ground plane in the point P123, so that point is critical. The same
reasoning applies to the second triangle; this fixes the position of two 2-saddles. The
two positions left for the third saddle are combinatorially equivalent.

(4, 4, 1, 0)O: All positions equivalent.

(4, 4, 2, 1): Suppose P12 is not critical. Now P3 or P4 must be contained in the ball
B = B(P12, r12), where r12 = d(P1, P12). If P123 is critical, then triangle P1P2P3 must
be acute; this means that P3 is outside the ball B. If P124 is critical, then triangle
P1P2P4 must be acute; this means that P4 is outside the ball B. It follows that the
situation where two 2-saddles are separated by a noncritical edge cannot occur. This
fixes the places of the 2-saddles up to permutation.

(4, 6, 3, 0): All positions equivalent.

(4, 5, 2, 0): Choose a triangle, say, P1P2P3, where all three edges are critical. If
P123 is not critical, then it follows that P1234 lies below the ground plane E. We look
again at the projection P ′

4. First P ′
4 must lie inside D. But since two of the Pi4 (say,

P14 and P24) must be critical, we know that P ′
4 also must lie in the region described

in section 3.1. The intersection is a subset of D, which is contained in the region D∗

bounded by the arc P1P
∗
3 P2 and by the edges P2P

∗
3 and P ∗

3 P1. There are still other
conditions to meet:

• P4 must lie outside the ball B(P12, r12), since P12 is critical.
• P4 must lie inside the ball B(P123, r123), where r123 = d(P1, P123).

This is not simultaneously possible if P ′
4 lies in D∗. It follows that there is only one

possibility: the 2-saddles are the centers of two triangles with all edges critical.

(4, 4, 1, 0)P : Let P1P2P3 be the triangle with all three midpoints of the edges
critical. This triangle is acute; take its plane as ground plane. If P1234 is above the
ground plane, then P123 is critical. Assume now that P1234 is below the ground plane.
It follows that P ′

4 lies inside the disc D. But the fact that only P14 is critical means
that P ′

4 is outside. This is a contradiction, so only P123 can be critical.

(4, 3, 0, 0)T : All places equivalent.

(4, 3, 0, 0)L: All places equivalent.

3.4. Existence and statistics. We carried out some statistical experiments to
see how the different types of tetrahedra are distributed among different 4-tuples of
points. That all the cases do occur follows from the computer experiments described
below. As a consequence all nine generic tetrahedrons are realized and the proof of
Theorem 3.1 is complete.

Four points in R
3 do not form a bounded space, and thus there lives no uniform

probability distribution on it. As the Morse poset is invariant under translations,
scaling, and rotations, without loss of generality we can assume that all four points lie
on S2. By translation and scaling, this can always be achieved. We consider the config-
uration space of different points in S2. The nongeneric tetrahedra form a hypersurface
(of measure zero) in this space—the discriminant hypersurface.
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The uniform distribution on [0, 1]2 leads (as Archimedes already used) to a uni-
form distribution on the 2-sphere by the map γ : [0, 1]2 → S2 ⊂ R

3 given by

γ(a1, a2) = (sin(arccos(2a1 − 1)) sin(2πa2), sin(arccos(2a1 − 1)) cos(2πa2), 2a1 − 1).

We take two random numbers in [0, 1] and map them to S2 using γ.
For our experiment we used the Gnu Scientific Library; see [Gal06]. This library

has an implementation of the apparently very reliable MT19937 random number gen-
erator. Two random numbers in [0, 1] were mapped to S2 using γ. We took samples
of 108 tetrahedra. Here is one:

1 (4, 3, 0, 0)L 17,807,919
2 (4, 3, 0, 0)T 898,689
3 (4, 4, 1, 0)O 26,224,574
4 (4, 4, 1, 0)P 16,421,773
5 (4, 5, 2, 0) 24,350,101
6 (4, 6, 3, 0) 1,797,721
7 (4, 4, 2, 1) 3,266,345
8 (4, 5, 3, 1) 2,697,783
9 (4, 6, 4, 1) 6,535,095

Other samples gave approximately the same numbers, with a maximum difference of
3000.

For three random points on the circle, it is a simple exercise to see that chances
are 3 out of 4 that one gets an obtuse triangle. These results indicate that for four
random points on the unit sphere the chances are 7 out of 8 that the center of the unit
sphere is a local maximum for the distance function. Indeed, the last three entries of
the above table add up to 12, 499, 223. Doubtlessly, a more general statement can be
proven here.

4. Notes and remarks.

4.1. Discrete Morse functions. A natural question is the existence of a dis-
crete Morse function (in the sense of Forman) [For02] on the tetrahedron, which
realizes the same effect as the minimal distance function. The question is discussed
extensively in [vMS05]. It turns out that the corresponding discrete function contains
more information than the Morse poset. It also includes, e.g., information about the
critical values. Taking into account the critical values, one can make a much finer
classification, which distinguishes, e.g., in the (4, 6, 4, 1) case, between an almost reg-
ular tetrahedron and one with a small acute base triangle and a top vertex far away.
Another related concept is the alpha shape as discussed in, e.g., [EM94], which has
applications in molecular shape analysis.

4.2. Higher dimensional results. We have not been able to prove a classifi-
cation theorem in R

n. However, upon request the authors will send interested readers
a computer program that calculates the list in higher dimensions by just trying a lot
of random point sets.

Except for the results in [Sie99] on four points in the plane we have no results on
the number of Morse posets for N points when N > n + 1.

4.3. Edelsbrunner ratio.
Definition 4.1. The Edelsbrunner ratio ρ is the radius R of the circumsphere of

T divided by the minimal edge length mini �=j d(Pi, Pj).
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The ratio is used by Edelsbrunner (see [Ede01, section 6.2]) to classify tetrahedra
into “shape types.” This article has the same objective, so it is worthwhile to compare
his criterion to ours.

For each of the nine generic types of tetrahedra the ratio ρ is bounded from below
by the values in the table below. The infimum corresponds to the quadruple of points
in the third column. These quadruples are not generic tetrahedra, except for the case
(4, 6, 4, 1), which corresponds to the global minimum of ρ.

Type Ratio ρ Infimum

(4, 3, 0, 0)L 1
2

√
3 (0,0,0),(1,0,0),(1,1,0),(1,1,1)

(4, 3, 0, 0)T 1
2

√
3 (1,0,0), (0,1,0), (0,0,1), (0,0,0)

(4, 4, 1, 0)P
√

7
12 ( 1

2

√
3,− 1

2 , 0),(− 1
2

√
3,− 1

2 ), (0,1,0),(0,1,
√

3)

(4, 4, 1, 0)O 1
2

√
2 (0,0,0),(1,0,0),(1,1,0),(0,1,0)

(4, 5, 2, 0) 1
2

√
2 (0,0,0),(1,0,0),(1,1,0),(0,1,0)

(4, 6, 3, 0) 1
2

√
2 ( cosαj ,sinαj ,0) j = 1, · · · , 3, (0,0,1)

(4, 4, 2, 1) 1
2

√
2 (1,0,0), (0,1,0), (0,-1,0), (cosα,0,sinα)

(4, 5, 3, 1) 1
2

√
2 (1,0,0), (0,1,0), (0,-1,0), (0,0,1)

(4, 6, 4, 1) 1
4

√
6 (0,1,0),(1

2

√
3,− 1

2 ,0),(− 1
2

√
3,− 1

2 ,0),(0,0,
√

2)

For the case (4, 6, 3, 0) the triangle P1P2P3 is acute. For the case (4, 4, 2, 1) the angle
α should satisfy −π

2 ≤ α ≤ 0.
Hence, small values of ρ can be attained by all the types listed in Theorem 3.1.

One can see from this that the two classifications are incomparable and conclude that
they define different features.
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