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[Journal of the Faculty of Science, Hokkaido University, Japan, Ser. II, Vol. IV, No.6, 1955] 

On the Cut·Off Methods in Meson Theory·)f 

Tetuo HAMADA 

(Received November 4, 1955) 

In order to see its adequacy as a technique of cut-off in meson theory, !<'EYNMAN'S 

convergent factor is introduced into finite integrals in various ways. Investigated 
are anomalous magnetic moment of a nucleon, decay of a neutral pion into two 
photons, -and radiative corrections to the nucleon propagation function and the vertex 
ope'rator. Results aer compared with GOTO'S and it was found that similar value3 
can be obtained for the magnitic moment and a pion decay if the manners of intro­
duction of the convergent factor are appropriately chosen. The effect of this cut-off 
procedure is quite small for the radiative corrections to the nucleon propagation 
function and the vertex operator. Discussions are given of connections with the mixed 
field theory when they exist. 

§ 1. Introduction 

Since the recent discovery of many unstable heavy particles, 
it has become clearer that the interaction in Which these particles 
take parts are not very weak11, As the result of which it has been 
recognized that, in contrast with quantum electrodynamics, the 
conventional meson theory does not constitute a closed system of 
the theory even in an approximate sense. Under such situation, 
the meaning of cut-off procedure in meson theory was discussed 
by FUKUDA,~\ CIIEW3

), and others. According to them, it is felt 
that the cut-off procedure is not only a convenience to make 
divergent integrals finite, but has much more realistic physical 
meaning. 

* Part of the present work has been published in S01·Yturiron-Kenky,~*1' (Mimeographed 
circular in Japanese) 8 (1955), 258. Dr. S. GOTO'S comments (private communication) 
on the article revived the author's interest which enabled him to complete the 
rest of the work. The author expresses his sicerest thanks for the comment. 

1',t Numerical results on the anomalous magnetic moment of an electron at'e el'rone­
ously reported in this article. They should be corrected as Table II of the pt'esent 
paper. 
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Many results of the application of the cut-off procedure have 
been published on this standpoint. CHEW and his collaborators3

) 

investigated pion-nucleon scattering, anomalous magnetic moment 
of a nucleon (A. M. M.) etc., using gradient coupling pseudoscalar 
meSOn theory with a fixed nucleon to obtain improvemet over cor­
responding straightforward perturbation calculations. However, as 
admitted by ClIEW") himself, S-wave scattering cannot be accounted 
for by his simple model and certain refinement is required on the 
point. Further, with regard to A.M.M., in which we are especially 
interested, some uncertainties about the treatment of renormali­
zation effeect5

) and virtual nucleon current seem to be left un­
settled. A.M.M. essentially depends on the mementum difference 
between initial and final nucleons, so it does not seem appropriate 
to make the nucleon completely fixed and certain refinement would 
also be necessaryG). Finally, the model cannot be applied to pro­
cesses in which nucleon pairs play essential role such as the decay 
of a neutral pion into photons. 

The investigation recently published by GOT01
) have covariant 

starting points and hence have no such defect. It should be noted, 
however, the calculation is much more complicated and any attempt 
to get out of perturbation method would be difficult to be sccessful. 
He first performed integration over the fourth component of the 
virtual four mementum appearing in calculations of various quanti­
ties and clarified correspondence between the covariant calculation 
and the old-fashioned perturbation one. Then he could cut off the 
integrals over the three components of virtual momentum. His 
results on A. M. M. and decay of a neutral pion show considerable 
improvement over the conventional calculations without cut off. 

Although GO'1'O'S cut-off procedure has a definite physical in­
terpretation that the spacial components of a virtual quanta are 
cut off and the comparison with old-fashioned calculation is easily. 
possible, the noncovariant charactor of the cut-off method makes 
the calculation involved (and perhaps some difficulties will be met 
in connection with renormalization technique in the calculation of 
some other quantities than those he has investigated). 

The present paper, thus, intends to simplify the calculations 
using the covariant cut-off method. It is needless to say that the 
cut-off method thus introduced must really correspond to cut-off 
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and must reproduce, e.g., GOTO'S results*. If such a method does 
exist, it is expected that the method may be applicable to many 
other processes and the calculations will be comparatively straight­
forward. 

The most familiar covariant cut-off method will be the one 
introduced by FEYNM"~NS). He introduced the covariant convergent 
factor cW) originally in order to make divergent integrals finite. 
However, if any physical meaning is to be attributed to the cut­
off procedure as mentioned above, it will be of worth to investigate 
its effects when introduced into finite integrals. The effects of 
the introduction of FEYN;.rAN'S convergent factor e (k") into various 
finite integrals from this standpoint will be the object of the 
present investigations. 

The factor c (k2
) can be introduced in various ways. Originally, 

FEYN)fANS
) introduced the factor into propagation function of virtual 

quanta**. As will be mentioned in detail in what follows, this 
modification corresponds to a method of field mixture in which 
the third field with quanta of cut-off mass are coupled in an ap­
propriate manner. The effect of this modification of the pion 
propagation function on A. M. M. problem is discussed in § 2. The 
corresponding modification of the propagation function of a fermion 
has no such a direct field theoretical interpretation and, as noted 
by FEYNjiAN, leads to a certain difficulty related to the gauge 
invariancy of the theory. We, however, do not adhere to this point, 
since we are using the factor as a technique of reproducing the 
results of conventional cut-off procedure. Calculation of A. M. M. 
modified in this way is presented in § 3 and it will be seen that 
this procedure cannot correspond to physical cut-off. The third 

* Of course, there is no reason why we should believe that GOTO'S eut-of!' pmcedure, 
namely no cut-of!' for the fourth component or virtual motnenta and straight cut­
off for the spacial components, corresponds to physical reality. We believe, how­
ever, that any cut-of!' procedure must be such that the result of which shows a 
reasonable dependence on the cut-of!' parameter and improvement over the con­
ventiona1 ones without cut-off, since we have no other means to decide which 
procedure is correct other than to see to what degree it reproduces the experimental 
value at the present state of the meson theory. 

"if Several works on the singularity of propagation functions have been published 
recently. It seems, however, to the author that the conclusion is not decisive yet. 
See reference 9. 
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method of the introduction of c (1c2
) is to introduce it into the final 

integrations over four mOmenta. This might be expected to cor­
respond most faithfully to the physical sense of cut-off. However, 
for A. M. M. at least, it is shown that this is not the case (§ 4). 

Further, decay of a neutral pion (§5), and the radiative-corrected 
nucleon propagation function and the vertex operator (§ 6) are in­
vestigated. Finally, some tentative discussions are given about 
the most suitable method of introduction of the factor c (1c2

) in the 
final section, although the decisive conclusion is difficult to obtain. 

§ 2. A. M. M. with Modified LIE" Functions 

In this section we shall see the effects of the convergent factor 
used to modify the pion propagation function. We first have the 
method of modification 

originally due to FEYN:\IANH
). 

We observe that the contribution of virtual pion current to 
A. M. M. contains two Ali functions, so the modification (2. 1) will be 
more effective to the meson current contribution than to the nucleon 
current one. On the other hand, the second order perturbation 
calculation without cut-off gives too large nucleon current con­
tribution to A. M. M., wich is the main reason why it cannot repro­
duce experimental values. Therefore, the modification (2.1) might 
show no improvement over the conventional results. Thus, we also 
consider the weaker modification'" 

(2.2) 

which affects the meson current contribution only. In the following 
subsections we investigate the nucleon current contribution with 
(2.1) and the meson current one with (2. 1) and (2.2). All numerical 
results in this section are given in Table I and. II. 

( i ) nucleon current contribution 
The effective interaction Hamiltonian between the external 

field and the nucleon current is, to the order, eg2
, 

* Similar modification has been used recently by S. COHEN [Phys. Rev., 98 (1955), 749] 
in the calculation of the life time of a neutral pion including PAULI interaction. 
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(2.3) 

where p and p' are the initial and final nucleon four momenta and 
(irp+m,) tf;(x)=cp(x) (irp'+m) = 0 . 

Modifying (2.3) according to (2.1) we have. after lengthy but 
familiar calculations. (in nuclear magneton). 

arm" -g2/4n:' (3 -1:~)/4n:' L" , (2.4) 

as the nucleon current contribution to A. M. M ... Here 

L" = f(~_J))-l {dX [X2+:(1 ~x)J - [X2+t(~_x)J 
== ;(';:_1)-1 {In (I) l,,(~)}, (2.5) 

with $=(A/m)2 and J)=(p/m)2. It is quite clear that we have the 
familiar expressionlO

) 

(2.4) 

for ~~ co "' 

The result (2.5) shows the close correspondence between the 
present cut-off procedure and the mixed field theory. We not the 
identity 

1 (2.6) 

The fiirst term of the right hand side is, apart from factor $/(~ -'1) 
the propagation function of pions, and the second term is the one 
of another quanta of mass I.. Thus (2.5) says that ()wt" consists of 
two contributions, one from quanta of mass p. and the other of A, 
the relative sign being different. This interpretation can be used 
to simplify the calculations when ilF functions are modified accord­
ing to (2.1) (see, for instance, §6). 

(ii) mesan current contrilYUtian with (2.1) 

The effective interaction Hamiltonian beoweel1 virtual meson 
current and the external field is 
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x __ -,--,,(p~---c-'k)ccp.-,,(p~-----,k )C"'-v_-c--_ 
(k~+m")[(p-k)" + p"][(p' _k)2+ ri] 

(2.7) 

Introducing (2.1) and performing familiar calculations, we obtain, 
as the meson current contribution to A. M. M. , 

(2.8) 

where 

------------ .1/JXte'rna.{ field. 

-------";'7";>---- n u.cI eon.. 

~ pion. of »lass !'-
~ ~u.l1/nta,of Ina.ss A 

Fig. 1. 
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(2.9) 

with 

I,,, (r;) = J1 dx ox\l-x) and I = J1 dx x2ln x
2 
+.; (I-x) 

ox-+r;(I-x) 1 0 x2 +r; (I-x) 

It is readily seen that for .; --) 00 

oi)J(", = g2 j(4rr) ,~l!r I,,,(r;) , 

(2.10) 

(2.8), 

which is tne familiar result of conventional calculations1o
). 
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We can find correspondence with field mixture as follows (see 
Fig. 1). The contribution I,,, (r;) and I", (~) comes from (a) and (b), 
respectively. The difference in sign disappears because (b) contains 
two LlF functions. The contribution -211 , on the other hand, comes 
from (c) and (d). The negative sign before 11 in (2.9) reflects the 
difference in sign between two terms in (2. 6), 

(iii) meson current contn:butions with (2.2) 

In this case, the following replacement is made in (2.7): 
1 A2 

____ ----c< ___ --- --) -----~<-~-~----~ ~--

[(p-k)2 + ,u2J[(p' -kf+ ,u2] 2 [(p_k)2 + f12] [(p' -k)" + f12] 

x { 1 + 1 1 . (2. 11) 
[(p-k)2 + A2] [(p' -kY+A2] J 

It is easily seen that two terms on the right hand side of (2.11) 
give the same contributions. Final result is 

(2.12) 

where 

(2.13) 

with I,,,(r;) and 11 defined in (2.10). 
With regard to correspondence with mixed field theory, we 

only note that 11 comes from 1/2{(c)+(d)} of Fig. 1 and I",(r;) from 
(a). That this interpretation is reasonable can be seen if (2.11) is 
rewritten in a similar way to (2.6). 

(iv) quantum, electrodynamical analogue 

GOTd) has shown that the high frequency part, which plays an 
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essential role in pseudoscalar nieson theory, is not so effective in 
quantum electrodynamics (Q.E. D.). In order that our covariant 
cut-off procedure can really have the meaning of cut-off, it is 
necessary that our procedure gives smaller effects in Q. D. than 
in meson theory. Therefore, we consider, in this subsection, the 
effect of modifications investigated in preceding subsections when 
applied to quantum electrodynamics. In this case we have no 
contribution analogous to the one of meson current. 

The effective interaction Hamiltonian for this case is 

Hqed (x) = (2rr)-4( -4e~) AlL (x) ¢(x) J d'k 

(2p", + kp,)(r . k) - imkp. f ( ) 

X [(p+ky+le2] [(p'+lc2)+1i:2]k2 cp x, 
(2.14) 

where Ie is electron mass. We make the replacement 

DAk) = 1 / k"~DI .. (k) c(k}) A" l[k"W+A'JJ , (2.15) 

corresponding to (2. 1). A. M. M. is given by 

oIm = e~i(4rr)rlrr [' dr; ~"---.'--:--
. "'.J 0 x2 +(1 

(2.16) 

in Bohr magnton. Here (=(J./.IC? and if (-)co_ we have the well­
known resultll

) 

09R = e~ I (4rr) ·1/(2rr) • (2.16), 

(v) numerical 'results and discussions 

All numerical results obtained in the preceding four subsections 
are tabulated in Tables I and II. Table I contains values of 1.l!JJ(" 

and 09)1:", obtained by modifying dz.. functions according to (2.1) and 
(2.2). In Table II are given 0!JJ( of an electron calculated according 
to the replacement (2.15), 

From Table I we see that the introduction of c (/i;2) corresponds 
to cut-off in some way, In fact, a!JJ(" and oIm,,,, are monotonically 
increasing' functions of the cut-off parameter A and their values 
are qualitatively plausible. Quantitatively, we note the following 
features. The introduction of C(/i;2) according to (2.1) is, as expected, 
too effective to 8V)l:Il.' and reduction rates of 8!JJ(" and oV)I:", (2.1) are 
almost proportional. (For 1, for instance, 8IDl" and BVJ~'n (2.1) are 
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TABLE I. 
am},. and am}", with the cut-off (2.1) and (2.2). illVl,. is measured in unit 
of (- g'~/4re) (3- r:1)/4re while illln", in (g2/4re) (rs/re). G means GOTO's 
result7) with cut-off at m. 

J. 

o'ln,. olD},,, (2.1) il!D}", (2.2) 

0.5 m 0.10 0.07 0.13 

1.0 m 0.19 0.14 0.19 

1.5 m 0.24 0.18 0.21 

2.0m 0.29 0.22 0.24 

co 0.47 0.35 0.35 

G 0.19 0.22 

TABLE II. 
A. M. M. of an electron as calculated according to (2.15). Unit 
used is (e2/4re) (1/2re), so that illln= 1 if no cut-off is introduced. 
G is GOTO'S7) result with the c.ut-off at electron mass /c. 

Cut off A = 0.5 Ii: 1.5,. G 

0.62 0.81 0.86 0.91 1.25 
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respectively 39.5% and 38.9% of the values without cut-off). So (2.1) 
does not show any improvement over the conventional calculation 
without cut-off and we can conclude that (2.1) cannot be used as 
the cut-off technique at least for A.M.M. problem. 

The method (2.2), on the other hand, gives results similar to 
those of GOT(7). Numerically we have* 

dp p 0.47 

dpn = -1.87 
or (2.17) 

for ~ = 1 and g2/4rr = 15. These values are close to those of GOTO, 

drip = 0.61 

dfJ,. = -1.90 
or (2.18) 

Slight difference between (2.17) and (2.18) is, as is seen from Table 

7.' The experimental values are tipp = 1.79 and till" = -1.94, 01' I :iPll/ jPn I = 0.92, while 
the theoretical ones without cut-off are (for g2/4re=15), :i11p=0.52 and 411n= -3.9, 01' 

I :illp /4pn I = 0.13. 
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I, due to the difference in oWC",. 
If the values in Table I are compared with those in Table II, 

it is quite clear that the high frequency part is not effective in 
Q.E. D., which is the ·same conclusion as Gom's?). 

§ 3. A. M. M. with Modified 81<' Functions 

In this section we shall see the effects of the convergent factor 
used to modify the nucleon propagation functions. Corresponding 
to the modification (2.1) we first consider 

(3.1) 

Since the" nucleon current contribution contains two SF functions, 
we can alternatively modify as 

(3.2) 

corresponding to (2.2). We now investigate the meson current 
contribution with (3.1) and nucleon current one with both (3.1) and 
(3.2). All numerical results are found in Table III. 

( i ) meson current contribution 

The integrand of (2.7) is multiplied by the factor ,f(lc2+/n-l. 
The contribution to the A. M. M. is given as 

o.!lR", (rl/4rc) (r~/rc) J", , (3.3) 

where 

(3.4) 

with I", (1) defined by (2.10) and 

I, = dx -----'-----... ~'-----j l x" 
- 0 x2 + (/;-1) 1) x+r; . 

(3.5) 

For ;--+00, 12 vanishes and 0[1,,,,, reduces to (2.8'). On the other 
hand, we have, for 1 (A =m)* 

(3.6) 

If we put 1}=O in (3.6) J,,, diverges. (The same is true about (3.l0)). This infrared 
type divergence has been frequently met in the fourth order calculation of an 
electron A.M.MY\ 
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(ii) nucleon current contribution with (3.1) 

The integrand in (2.3) gets the extra-factor ;/4[(p+k)2+;/"]-1 x 
[Cpr + k)2 + ;/2]-J •. Calculations are similar to those in § 2 (ii) and the 
result is 

(3.7) 

with 
J(l) ., (3.8) 

where 

I;l f dx 
0 

1 

and (3.9) 

It is quite obvious that oUA" reduces to (2.4') for ~--';.oo. For 
~=1, J';!,) becomes 

= 1/3. rl 
dx ,~:--~x:-:-r,~_.=:::­

.10 
(3.10) 

(iii) nucleon current c(mtribution with (3.2) 

In this case the integrand of (2.3) is multiplied by facto!' 
;/2/2· {[(p+k)2+ /(2]-1 + [cpr +k)"+;/2l'1}. Arising two terms are readily 

seen to give the same contributions to o!mn • We only write down 
the result. 

(3.11) 

where 

(3.12) 

For ~=1, we have 

( 1 x·1 

J;;) = 1/2· J 0 dx -=------:=- (3.13) 

Although we have no relation as (2.6) in this case, we note 
remarkable similarities between (3.4) and (2.5), (3.8) and (2.9), (3.12) 
and (2.13). 

(iv) Q.E. D. analogue 
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We have two possible substitutions (3.1) and (3.2) in this case. 
For the sake of simplicity, we have investigated the case A = Ie. 

In this particular case calculations are straightforward and we 
find that aD), contains the divergent factor 

JI 1 -t:r_ dx 
o x2 

for the substitution (3.1), and 

JI 1 + x dx 
o x 

for (3.2). In either case there would appear no' divergence if a 
photon were of nonvanishing mass. We have noted. above that 
expressions (3.6) and (3.10) for f = 1 have infrared divergence if 
we put 1}=0 (vanishing meson mass). This exactly corresponds to 
the situation we have just met. 

This kind' of divergence was of no harm in the fourth order 
calculation of A.M.M. in Q.E.D.. KARPLUS and KIWLL12

) could avoid 
the difficulties by letting photon have an infinitesimal virtual mass 
8 and it was shown that the contributions containing 8 cancell each 
other when added altogether and the final results are independent 
of 8. In our case, however, we have no term to be added and 
hence nothing to do with the difficulty. 

Therefore, we may conclude that modification of Sp functions 
cannot correspond to the physical cut-off proced me in Q. E. D.. It 
will be seen in the next subsection that this is true for the meson 
theory, too, although we have no divergence difficulty in this case. 

(v) numet'ical results and discussions 

Numerical results obtained in the foregoing subsections are 
given in Table III below. We readily see the inadequacy of the 
procedure considered in this section as a cut·ff technique. In fact 
the dependence of awc" and oWC", on the cut-off parameter A shows, 
if we remember GoTO'S analysis'), that (3.1) and (3.2) cannot corres­
pond to cut-off physically. Further, as mentioned in § 3 (iv), the 
same method gives unreasonable divel'gent results when applied 
to Q.E. D.. Therefore, we may conclude that the modification of 
Sp functions in any way cannot be used as a cut-off technique at 
least for A.M.M .. 
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oW},. and IHl)}", calculated with the cut-off procedure (3.1) and 
(3.2). Units used are the same as those in Table I. 

2m 

00 

0.45 

0.36 

0.47 

0.37 

0.39 

0.47 

0.82 

0.40 

0.35 

§ 4. A.M.M. Cut Off in the Final Integrations 
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In this section we investigate the third method to introduce 
the factor c (k~) into calculations, that is to introduce it into the 
final integration over the virtual four momenta. Intuitively this 
procedure appears to correspond to the physical sense of cut-off 
most faithfully. Further we have no trouble on the consistency 
of the renormalization because in this procedure we deal with the 
final expressions after required subtractions*. Unfortunately, how­
ever, we shan see that this procedure cannot be used as a cut-off 
method in the following at least for' A. M. M .. 

If we start from the effective Hamiltonian (2. 3) and (2. 6) and 
perform conventional calculations without any modification, we 
obtain the following expressions: 

aVRn = i(g"/4rr) (3 -r3)/2rr3 .mzJ' dx X"J d1k 1 (4.1) 
o [k" + Ilr 

am", = -i(g"/4rr)(2r:l/rr3) m~ [I dXx"(I-x)Jd.Jk 0 1 , 
J 0 [Tc- + 11]3 

(4.2) 
where 

11 = fi" (I-x) + m2x" . 

* This is not the case for procedures considered in §2 and §3, where cUc2l's are intro­
duced into calculations before renormalization. In the conventional calculations 
of A.M.M. we drop infinite terms of the form L;firp.</JAp. (L==) since the3e can be 
incoorporated into the electric charge renormalization. More rigorously, these terms 
can cell each other due to the gauge invariancy of the theory and we need no charge 
renormalization as a whole. This situation is clearly unchanged by the procedure 
of § 3. It must be noted, however, that the procedures considered in § 2 and § 3 do 
change this character of the theory, although we do not adhere to this point. 
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We easily get (2.4)' and (2.8)' by performing the integrations over 
kv-. 

Now we multiply the integrands in (4.1) and (4.2) by the factor 
cW) to obtain 

where 

ap)(n = -(g2/4rr) (3- r:;)/4rr· f: dx x3 I(~, 7J) , 

aIDC,,, (g2/4rr)(r:l/ rr) I dx x2 (1-x) I (~, 7J) , (4.3) 

e ) 
x2 + 7J (1 - x) f . 

3IDC" and aflJl", given here are easily seen to reduce to (2.4)' and 
(2.8)' for ~~CO • 

Numerical values are given in Table IV. We see that the 
procedure considered in this section can correspond to cut-off in 
some sense. Quantitatively, however, we note that, for A=m,oIDC" 
and af./J(", are respectively 49% and 26% of the values obtained 
without any modification, that is 09)(", is much more damped than 
3[1)(". Thus the procedure considered in this section does not better 
the situation about tbe second order A. M. M.. It has become clear 
by GOTO'S investigation- that the high frequency part is not so 
effective in aun", as in aVJ~". Comparing this fact with Table IV, 
we see that the procedure cuts the contributions off in different 
ways for avn" and 09)("," It is too effective for meson current 
contribution. 

(4.1) and (4.2) were derived after many transform.ations, so that 
the four momentum kv- appearing in these equations is far from 

TABLE IV. 
o~l)}" and i)\l)}n; cut-off in the final integ·ration. 
Units are the same as used in Table 1. 

,\ J ___ ~~ _____ . __ 2_m _______ oo __ _ 

Il ffi}" 0.23 

g ~l)}>n 0.09 

0.34 

0.25 

0.47 

0.35 
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the quantity to be interpreted as four momentum of virtual 
quantum. Therefore, it might be not surprising that we were led 
to the conclusion stated above. 

§ 5. Decays of a Neutral Pion into Two Photons 

The lifetime of a neutral pion is one of the most remarkable 
examples in which conventional meson theory fails to show agree­
ment with experimental values even in order of magnitude. In 
fact the conventional calculation gives 

T = a2(g2j4rr) (m2p3j4rrO) I 112 , 

where a = (e2 j4rr) and 

1= J d4

k [(p-k?+m2][(q~kf+m,2J(ki+nL2) 

(5.1) 

(5.2) 

in which q i' is the four momentum of the neutral pion and Pi' is 
. that of emitted photon. If the integral (5.2) is performed neg­
lecting the contributions of the order (pjm)2 or higher, we obtain 

I = J d4k __ 1 -' = irr2/ (2m2) . 
(k2+m2y 

(5.3) 

Substituting (5.3) into (5.1), the life time becomes T=4.2 x 10- 17 sec. 
for (g2/4rr) = 15, which is too short compared with the experimental 
value l3

) T~10-15 sec .. 
Now, we want to modify the integral (5.3) by c (k2) as 

1= ,12 J d4k 1 . 
(k2+m2) (k2+A2) 

(5.4) 

The integration is performed quite easily and the result is 

1= irr2j(2m2) f J:dxx~ /[ f +(l-E:}x T == (irr2/2m2)A(f) . (5.5) 

The life time calculated by substituting this value into (5.1) 
is tabluated in Table V for several values of f. We see that the 
values are very satisfactory. Especially the lifetime for A=m is 
very close to that of GOTO'S (3.4 x 10-16 sec.), which shows that the 
procedure adopted in this section can really correspond to cut-off 
for the process considered. 

The modification (5.5) is the same as the one used in §4 or 
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(3.2). Both of these did not give reasonable results and were con­
cluded not to correspond to cut-off in the problem of A.M.M. Thus 
we find that how to introduce G W) must depend on the process 
considered in order that it can have the meaning of a cut-off. 

TABLE V. 
Values of A (~) in (5.5) and the corresponding lifetime 
of a neutral pion for g~/4rr= 15. 

~ M 1 U 2 00 

A (~) 1/6.9 1/3 1/2.1 1/1.7 1 

r(S6C.) 2.0 X 10- 15 3.7 X 10- In 1.8 >< 10- '" 1.3 X 10 - II; 4.2 X 10- 17 

~ 6. Radiative Corrections to Sp and r5 
According to BIWEOKNER et al.14

), the lowest order radiative cor:· 
rection to the nucleon propagation function is, by scattering process 
at low energies, of the order «(.l/m)(g~/4rr) for PI/~ state and g~/4rr for 
SI/2 state*. Recently, WYLD

15
) has applied silpilar argument to show 

that quite the same situations obtains for the lowest order radia­
tive correction to the vertex operator r5 • These favorable features 
of the theory arise from the renormalization procedure and it is 
desirable that the cut-off method which we have used does not 
alter the features. In this section we shall investigate how the 
cut-off method used in §2 changes the situation. 

Without cut-off, the lowest order radiative correction to Sj,,(p) 

(6.1) 

where 

f (p, 1') = J1 dx [ (l-:x) irp-m In ¢ (p~, f?), + 2m~x2 (: -~)-J ' 
o ~rp+m ¢(-m-,fJ-) ¢(-m-,fJ-) 

¢ (pe, 1'2) = (I-x) fJ2+xm2+ x (I-x) p2 . 

Noting the identity (2.6), we see that the same quantity becomes 

S)';)(p) = -3g2/(16rr~) ~M-r;) SAp) [f (p, (.l) - f (p, A)] , (6.2) 

,~ We do not speak of the damping of pair formation effect, since it has become clear 
that it. is quite inadequate to discuss the effect by taking into account only this 
simple correction. See reference 15 and 16. 
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if we use the cut-off procedure of § 2. 
(6. 2) vanishes if PI' is the momentum of a free nucleon. There­

fore, it is clear that (6.2) is of the order (r4m) (g2/4rr) for Pl/2 state 
in the low energy pion-nucleon scattering. The correction amounts 

-3g2/(16rr2)2~/(~-7J) [Im(7J)-In'(~)] == -(g2/4rr)D(f) , (6.3) 

for 81/2 state, where the integral Im is defined by (2.10). As is seen 
from Table IV, the correction cutoff at nucleon mass is about 
80% of the value with no cut-off. We can say that the radiative 
corrections to the nucleon propagation function is not so sensitiv 
to the cut-off as A. M.M.. This shows that the renormalization 
procedure, which gave the expression (6.1), has removed most of 
the contributions from high frequency part. 

Let us now consider the vertex operator. The lowest order 
radiative correction to r5 is, without cut-off, 

y;,(p, p', p) = g2/(16rrZ)r5 J:dxtxdyj {p2(1---x)+ mZ(l+x)-(irp)(irp')(l-x) 

+ m( -irp+irp')} / A(x,y,p)- p2(1-x)/[m2x2+ (1Z(1-x)] 

-2ln[A(x,y,p)/[m2x2+pZ(1-x)]]} , (6.4)15) 

where 

A(x,y,p) = ri(1-x)+m2x+p2xy(1-x) 

+ p'2x (1-x)(1-y) + (p_p')2x2Y(1_Y) . 

Noting the identity (2.6), we find that the same quantity becomes 

~(~-7J)-I[y;'(p,p"f1)-Y5(P,P',,l)], (6.5) 

if we introduce the cut-off procedure in §2. 
Following the argument of WYLD15

), we see that both Y;,(P) and 
y;, (,l) are of the order (p/m) (g2/4rr) for P1/ 2 state at low energy. For 
81/2 state, on the other hand, (6.5) becomes 

(g2/16rr2)2e(~-7J)-J.f5JldX- (1-~) ., ==(g2/4rr)r5G(~). (6.6) 
o f(l-x +x-

The effect of cut-off is not large as can be seen from Table VI. 
Thus we may conclude that the favorable character of the 

theory mentioned at the begining of this section is not altered by 
the cut-off method used here. 
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TABLE VI. 
Radiative corrections to Sz,'and ro. Tabulated values are those 
of D(t;) and G(t;) defined in (6.3) and (6.6). respectively. 

D(t;) 

G(t;) 

1 

0.18 

0.10 

2 

0.21 

0.12 

§ 7. Discussions and Conclusions 

00 

0.23 

0.16 

Nobody knows what kind of cut-off corresponds to physical 
reality, if the procedure is necessary not only to avoid the infinities 
but also for the internal consistency of the theory. At present, 
we have no means to answer the problem other than to see to 
what degree the method reproduces the experimental values. We 
have been investigating the cut-off method of introducing FEYN~!AN'S 
convergent factor oW) from this standpoint. Although this method 
has an advantage over Gm:o's in that it is covariant, it is not clear 
if the method can have the practical meaning of cut-off just for 
that reason. 

Conclusions we have obtained are the following: (1) Regarding 
A. M. M., the moification of the pion propagation function by c(k~) 

gives reasonable and favorable result. Here, one C(k2) must be 
introduced for one virhtal pion (not one LI]i')' No other method 
gives reasonable result. (2) We have seen, applying the same 
method to Q. D., that the high frequency part is not so effective 
in Q.E. D. as in pseudoscalar meson theory. (3) As for the decay 
of a netural pion, most satisfactory result has been obtained by 
introducing one o(k') into the final integration. We may conclude 
that the method should depend on the process we consider, if we 
compare this result with that in the protem of A.M.M.. (4) The 
feature, that the lowest order radiative corrections to S". and 1'5 

are both of the order (p/m) for P1f2 state and 1 for Sl/2 state in 
the pion-nucleon csattering at low energies, is not altered by the 
cut-off method of modifying LIp function. 

Since the examples we have considered are much limited, it 
is very difficult to obtain a general conclusion on the method. As 
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a plausible conjecture, however, we may say that the introduction 
of one e(k~) for one virtual pion (not Lh~ gives a good result if the 
process contains any virtual pion. If, on the other hand, the process 
contains no virtual pion at all, the introduction of one e(k~) into 
the final integration over a momentum will do. (This is equivalent 
to modify SF' by e(k2) if the contribution on the order (p/m)" or higher 
is neglected). It is desirable in order to establish these statements 
to investigate further application of the method. 

The profound difficulty about the renormalization theory recent­
ly discussed by LEEl7) made some physisists believe that the cut-off 
is necessary besides renormalization in order to secure the internal 
consistency of the theory*. If this view point is right, mOre 
thorough investigation of the cut-off method will be needed. In 
fact, we postponed in this paper the consideration on the consistency 
problem of the theory arising from the introduction of e(1c2

). This, 
with others, must be investigated in order that any cut-off method 
can be established. 

The author is very much indebted to Dr. GOTO of Gifu Univer­
sity for his frequent instructive discussions. Helpful conversations 
made during the present research with Professor ONO, Messers 
MATSU~roTO, KANAZAWA, and SHONO are gratefully acknowledged. 
Finally, thanks are due to Messers YA\IAZAKI, FURur, FUJII, SAKu~rA 
and SASAKI for their aids in numerical calcuhltions. 
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