

Title	Decay of glaciers, ice caps and ice sheets		
Author(s)	GREVE, Ralf		
Citation	地球温暖化による劇変を解明する.平成20年6月24日.札幌市		
Issue Date	2008-06-24		
Doc URL	http://hdl.handle.net/2115/34393		
Туре	conference presentation		
File Information	Greve.pdf		

Decay of glaciers, ice caps and ice sheets

Speaker: Atsumu OHMURA IAC, ETH Zurich, Switzerland Moderator: Ralf GREVE ILTS, Hokkaido Univ., Japan

Glaciers and small ice caps

- Number: > 160000.
- ~ 0.5 m sea-level equivalent.

Photo credit: www.glaciers-online.net

Ice sheets

~ 61 m sea-level equivalent. \sim 7.2 m sea-level equivalent.

Contribution to sea level rise

 Sea level rise in the 21st century is predicted to be mainly caused by thermal expansion of sea water and the melting of glaciers and small ice caps.

~ 0.5 m sea-level equivalent

 However, surprisingly rapid decay of the large ice sheets (Greenland, Antarctica) has been detected recently, in conjunction with a general speed-up of ice streams and outlet glaciers (ice dynamics!).

~ 7.2 m sea-level equivalent

~ 61 m sea-level equivalent

4

Recent changes of the Greenland ice sheet

Source: Witze (2008)

- Interior ice sheet: on average in balance, some regions of local thickening or thinning.
- Marginal areas: thinning predominant.
- Overall mass balance negative: -50 to -90 km³/a, corresponding to a sea-level contribution of 0.15 to 0.25 mm/a.

(Ohmura, 2004)

 New results from satellite gravity measurements indicate -239 ± 23 km³/a for the period 2002 - 2005 (sea-level contribution 0.66 ± 0.06 mm/a).

(Chen et al., 2006)

Recent changes of the Antarctic ice sheet

• The Third Assessment Report (TAR) of the IPCC lists an overall mass balance of $-376 \pm 384 \text{ km}^3/a$ (sea-level contribution 1.04 \pm 1.06 mm/a). (Church et al., 2001)

- New results from satellite gravity measurements indicate -152 ± 80 km³/a for the period 2002 - 2005 (sea-level contribution 0.42 ± 0.22 mm/a). (Velicogna and Wahr, 2006)
- Main contribution seems to be from West Antarctica.

Simulation results for Greenland

- Model time: *t* = 1990 CE (present) ... 2350 CE.
- Climatic forcing: "WRE1000" scenario (future stabilization of atmospheric CO₂ at 1000 ppm).

 Ice flow: Set-up #1 → slow basal sliding (usual approach). Set-up #2 → basal sliding accelerated by surface meltwater (controversial process).

(Greve and Otsu, 2007)

Simulation results for Greenland

Surface velocity \rightarrow differs greatly for the two set-ups!

2100 CE, set-up #2:

Simulation results for Greenland

Contribution to sea-level rise

	2100 CE	2200 CE	2300 CE
Set-up #1	0.12 m	0.55 m	1.21 m
Set-up #2	0.58 m	1.51 m	2.71 m

And there is also Antarctica...

- \rightarrow Large uncertainties due to ice-sheet dynamics
 - → IPCC AR4 (Fourth Assessment Report) sea-level predictions for the 21st century may be significantly too small!