

| Title            | Potential Benefits of Using Hydrogen Peroxide in Crop Production Systems |
|------------------|--------------------------------------------------------------------------|
| Author(s)        | Lin, W.C.; Block, G.S.                                                   |
| Citation         | 国際会議「持続可能な農業と環境」. 平成20年7月2日~平成20年7月6日. 札幌市                               |
| Issue Date       | 2008-07-04                                                               |
| Doc URL          | http://hdl.handle.net/2115/34423                                         |
| Туре             | conference presentation                                                  |
| File Information | 31-O33.pdf                                                               |



Potential Benefits of Using Hydrogen Peroxide in Crop Production Systems

W. C. Lin and G. S. Block Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre Agassiz, BC, Canada







## Why Hydrogen Peroxide (H<sub>2</sub>O<sub>2</sub>)?

### **Crop stress**

- Crop plants subject to various stresses in their life cycle
- Crops develop stress tolerance or lose yield
- Most stresses are related to oxidative stress
   H<sub>2</sub>O<sub>2</sub>
  - Low concentration a signaling compound
- High concentration toxic causing cell death
   In this presentation

- Can exogenous H<sub>2</sub>O<sub>2</sub> reduce chilling injury?

## Why Chilling Injury?

**Greenhouse vegetables – chilling sensitive** 

- Tomatoes
- Cucumbers
- Sweet peppers

Chilling sensitivity – storage temperature of higher than 10°C is recommended

**Consequence of chilling injury (< 10°C)** 







### Chilling Injury – symptoms and cause

Symptoms of chilling injury

- Pitting
- Decay
- Other (e.g. reduced radicle elongation)

Symptoms – most obvious after returning to room temperature

**Causes – reactive oxygen species (ROS)** 





### **Objectives – H<sub>2</sub>O<sub>2</sub> to Reduce Chilling Injury**

#### **Chilling stress**

- Experimental plant sweet potato
- Greenhouse crop sweet pepper

#### Sweet potato – leaves and shoots (during production)

Chilling injury < 10°C</li>

### Sweet peppers – colored fruits (during storage)

- Chilling injury < 7°C</p>
- Decay, high  $CO_2$ , high  $C_2H_4$
- Alternaria rot (< 7°C)</li>
- Botrytis decay (< 4.5°C)</li>

#### Sweet potato and sweet peppers – used in our study



## **Sweet Potato – Leaf** (Injury index of 0 to 5 after days at 2.5°C followed by 3 days at room temperature)

| H <sub>2</sub> O <sub>2</sub> | Non-chilled | Chilled |  |
|-------------------------------|-------------|---------|--|
| 0 mM                          | 0.12        | 2.25    |  |
| 15 mM                         | 0           | 0.38    |  |

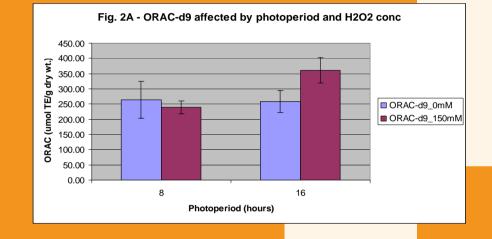


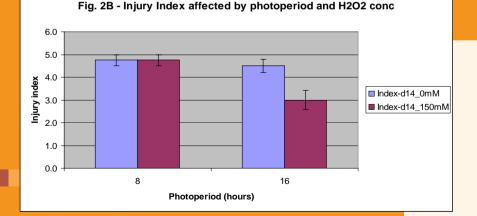


### **Sweet Potato – Leaf (Non-Chilled)**



**(** 

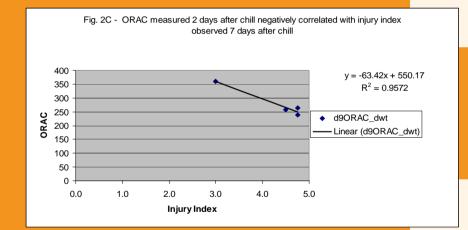

### Sweet Potato – Leaf (Chilled)




## **Sweet Potato – Shoot Tip** (3-day chill at 2.5°) followed by 2 or 7 days at 20°C)

150 mM  $H_2O_2$  + 16h photoperiod Increased antioxidant capacity (ORAC) of chilled shoot tips 2 days after chilling

150 mM H<sub>2</sub>O<sub>2</sub> + 16h photoperiod
Reduced injury index of chilled shoot tips
7 days after chilling

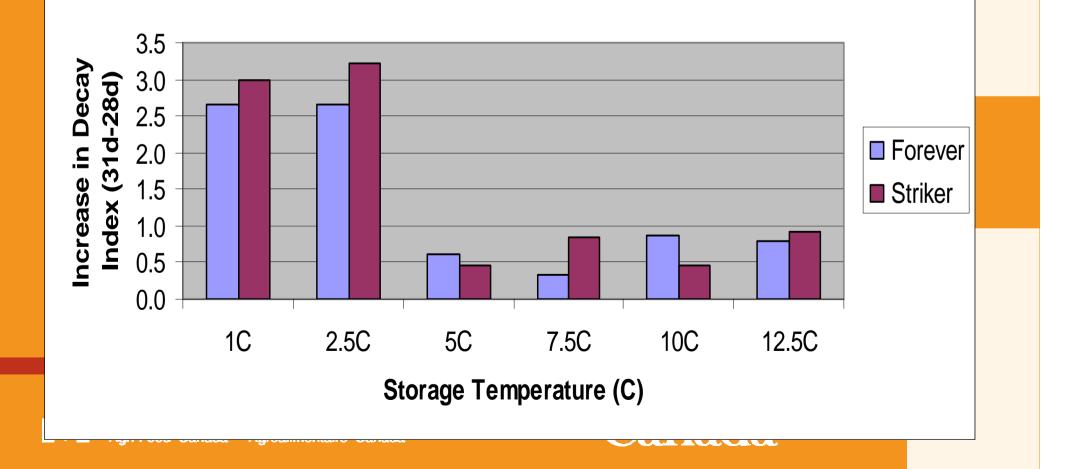





## **Sweet Potato – Shoot Tip** (3-day chill at 2.5°) followed by 2 or 7 days at 20°C)

Negative correlation between antioxidant capacity (ORAC) and chilling injury

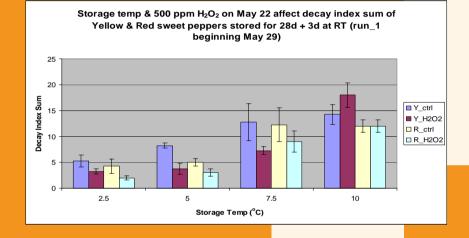
Increase of ORAC preceded the reduction of injury index



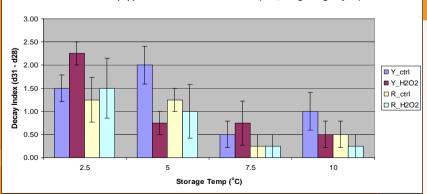





### **Sweet Pepper - Commercial Harvests**


### Increase in Decay Index after Storage - Commercial Harvests




# Effects of pulsed 500 ppm $H_2O_2$ (ca. 14.7 mM) on decay of stored sweet

**Peppers** H<sub>2</sub>O<sub>2</sub> decreased the decay of stored sweet peppers

## At 2.5° or 5°C, chilling injury occurred



Storage temp & 500 ppm H<sub>2</sub>O<sub>2</sub> on May 22 affect decay index (d31 - d28) of Yellow & Red sweet peppers stored for 28d + 3d at RT (run\_1 beginning May 29)





### Sweet Pepper – Fruit (decay index after 4week storage plus 3 days at room temperature)

| Weeks after<br>pulse H <sub>2</sub> O <sub>2</sub><br>application | 2.5°C | 5.0°C | 7.5°C | 10.0°C |  |
|-------------------------------------------------------------------|-------|-------|-------|--------|--|
| Week 1                                                            | 4.6   | 6.9   | 13.6  | 21.8   |  |
| Week 2                                                            | 6.0   | 8.5   | 15.3  | 17.7   |  |
| Week 3                                                            | 7.5   | 12.7  | 17.4  | 19.9   |  |





## H<sub>2</sub>O<sub>2</sub> – Induced Chilling Tolerance

Survival rate: after a 36h, 4°C chilling stress

- 8°C pre-treated seedlings 97 %
- H<sub>2</sub>O<sub>2</sub> pre-treated seedling 71%
- Control (25°C) 33%

Chilling of mung bean seedlings induces symptoms of oxidative stress. Both acclimation at 8°C and  $H_2O_2$  pre-treatment stimulate protective mechanisms that alleviate chilling stress. Glutathione is an essential, but not the only, protective compound.

Yu et al,. 2002. H<sub>2</sub>O<sub>2</sub> treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct. Plant Biol. 29: 1081-1087.





### H<sub>2</sub>O<sub>2</sub> – Induced Salt Tolerance

Barley: 5 – 25 mM H<sub>2</sub>O<sub>2</sub> induced maximal accumulation of osmoprotectant (e.g. glycinebetaine)

Rice: 10  $\mu$ M H<sub>2</sub>O<sub>2</sub> enhanced salt tolerance in rice seedlings

Tomato: 50 mM H<sub>2</sub>O<sub>2</sub> increased sugar content in tomato fruit by 1.5 fold

Uchida et al. 2006. Induction of biosynthesis of osmoprotectants in higher plants by hydrogen peroxide and its application to agriculture, in A.K. Rai and T. Takabe (eds.), *Abiotic Stress Tolerance in Plants*, 153-159, Springer, The Netherlands.





### **Conclusion – Our Study Indicates**

Sweet Potato –  $H_2O_2$  increased chilling tolerance of excised leaves (15 mM  $H_2O_2$ ) and shoot tips (150 mM  $H_2O_2$ )

Sweet Pepper – pulsed 500 ppm H<sub>2</sub>O<sub>2</sub> (14.7 mM) application in greenhouse decreased storage decay at 2.5 or 5°C

Beneficial effects of H<sub>2</sub>O<sub>2</sub> appear to vary with environments under which crop plants are grown

Careful experiments are necessary to define parameters of practical uses of H<sub>2</sub>O<sub>2</sub> in crop production systems





### Pacific Agri-Food Research Centre, Agassiz, British Columbia, Canada





