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Charge simulation method for approximating the complex potential

in a channel domain with multiple circular islands

Yousuke AMAYA ∗ and Takashi SAKAJO †

Figure 1: The Nile, an example of the river region with many sand islands.

1. Introduction

In dealing with environmental problems in rivers, it is important to describe how chemical and
biological particles are advected by the river flows. However, the description of river flow itself is
generally difficult, since the flow domain has a complex topography as we see in Figure 1. Moreover,
the dispersion of such particles are in general non-uniform; Some pollutants spread over the whole
river, while the others stay around stagnation points of the flow. Thus as the first step of the
mathematical treatment toward the river environments, we need to develop a numerical method to
generate flows in complex domains with which the particles float.

In the present article, we propose a numerical method to construct a uniform flow in a specific
domain called “river region”, which is a channel region with many obstacles like sandbanks inside.
The mathematical devices are the theory of perfect fluids in two-dimensional planar space and the
elliptic functions.

2. Charge simulation method

Charge Simulation Method (CSM) is a well-known fast and accurate computational method to
solve the Poisson equations[1]. For a given domain Ω ⊂ C, let us consider the Poisson equations
for the function g(z),

∆g(z) = 0 in Ω, (1)
g(z) = b(z) on ∂Ω, (2)

where b(z) is a given function on the boundary ∂Ω. CSM approximates the function g(z) with a
linear combination of fundamental solutions at N charge points z = ζ1, ζ2, . . . , ζN as follows.

G(z) = Q0 +
N∑

i=1

Qi log |z − ζi|, (3)

in which Q1, . . . , QN are unknowns with the constraint
∑N

i=1 Qi = 0. We determine Qi numerically
so that the equation (3) satisfies the boundary condition (2) at given collocation points z1, . . . , zN

along the boundary, i.e. G(zi) = b(zi) for i = 1, . . . , N . This is equivalent to the following
(N + 1)-dimensional linear equation
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Figure 2: Conformal mapping from the complex z-plane to the complex w-plane




Q0 +
N∑

i=1

Qi log |z − zi| = b(zi), (i = 1, · · · , N),

Q1 + · · ·+ QN = 0,

(4)

which is solved numerically by the LU-decomposition method. CMS has a nice disposition in terms
of the error estimate between the exact solution and the approximate solution. Since the error
estimate attains its maximum at the boundary of the domain due to the maximum principle, we
can define the maximum error by E = max1≤j≤N |G(zj)− g(zj)| in which g(z) and G(z) represent
the exact mapping and the approximate mapping respectively. When the charge points are properly
set and the domain has sufficiently smooth boundaries, the maximum error decreases with O(τN )
for some 0 < τ < 1, which depends on the shape of the domain. (See, e.g., Katsurada and
Okamoto[3].)

3. Conformal mapping to the parallel slit domain

We propose how to construct the uniform flow in the river region by constructing a conformal
mapping from the complex z-plane to the complex w-plane via CSM. see Figure 2. We consider
the region D in the z-plane as a standard river region. Namely, the uniform flow is confined in
a channel-like region with two long straight boundaries, in which there are cylindrical sandbanks
C1, . . . , Cd. Next, we consider the region T in the w-plane as a channel region with parallel slits
S1, . . . , Sd. The complex potential of the flow in D is mapped to a uniform flow in T by a conformal
mapping w = f(z) = z + H(z). (e.g., See Nehari[6].) CMS approximates the function H(z).

For the sake of simplicity, we assume that the left and right doundaries of the region D corre-
spond to the imaginary axis and Rez = α in the z-plane respectively, and that the flow is periodic
in the imaginary direction with period 2π. Then, because of the principle of reflection, the flow
in D must be symmetric with respect to both imaginary axis and the other right boundary as
we see in Figure 3. Therefore, let D′ denote the reflecting image of D. The union D ∪ D′ is the
basic computational region that covers the whole z-plane double periodically. As the fundamental
solution to describe this flow in CSM, we adopt the elliptic functions. First, Weierstrass ζ-function
is defined by

ζ(z) =
1
z

+
∑

ω∈Ω′

(
1
ω

+
1

z − ω
+

z

ω2

)
, (5)

in which ω1 = α, ω2 = 2πi and Ω′ = {nω1 + mω2 | n,m ∈ Z} \ {0}, Second, the elliptic theta
function of type 1 is given by

ϑ1(z) = 2
∞∑

n=1

(−1)nh
(2n−1)2

4 sin (2n− 1)πz, (6)
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Figure 3: Doubly periodic computational region.

in which h = e
ω2
ω1

iπ. These two elliptic functions are connected through the following relation,

ζ(u) =
2η

ω1
u +

d

du
log ϑ1

(
u

ω1

)
, η = ζ

(ω1

2

)
. (7)

Now, the complex potential for the flow is approximated by the linear combination of the elliptic
theta functions:

H(z) = Q0 +
n∑

l=1

Nl∑

i=1

Qli

∑
ω

(log |z − ζli − ω| − log |z + ζli − ω|)

= Q0 +
n∑

l=1

Nl∑

i=1

Qli

{
− z

ω1
+ log

(
ϑ1{(z − ζli)/ω1}
ϑ1{(z + ζli)/ω1}

)}
, (8)

in which n is the number of the islands, Nl is that of the charge points in Cl and the collocation
points on Cl and ζli is the position of the i-th charge point inside Cl. When the channel domain
has the infinite length in the imaginary direction, namely ω2 = ∞, the approximating function (8)
is equivalent to

H(z) = Q0 +
n∑

l=1

Nl∑

i=1

Qli log
(

sin {(z − ζli)π/ω1}
sin {(z + ζli)π/ω1}

)
. (9)

(e.g., see Hurwitz and Courant [5].) Note that the actual computation of the ϑ1 function can be
carried out by truncating the inifinite product representation of ϑ1.

4. Numerical method of infinite channel

Here we consider the river region with ω2 = ∞, the infinite channel. The equation (9) is not
suitable for actual numerical computations because of the logarithmic singularity in the fundamental
solution. To avoid the appearance of the branch singularities, we substract

0 =
n∑

l=1

Nl∑

i=1

Qli log
(

sin {(z − ζl0)π/ω1}
sin {(z + ζl0)π/ω1}

)
(10)

from the function (9), in which ζl0 and −ζl0 are the positions of additional charge points, which
leads us to

H(z) = Q0 +
n∑

l=1

Nl∑

i=1

Qli

{
log

(
sin {(z − ζli)π/ω1}
sin {(z − ζl0)π/ω1}

)
− log

(
sin {(z + ζli)π/ω1}
sin {(z + ζl0)π/ω1}

)}
. (11)
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Figure 4: Computational results.

At the infinity, the flow is uniform because the flow is not affected by islands. Thus, we have
Q0 = 0. As a result we can compute the approximating conformal mapping by solving the following
linear equation for Qli and Umj :

n∑

l=1

Nl∑

i=1

Qli

{
log

∣∣∣∣
sin {(zmj − ζli)π/ω1}
sin {(zmj − ζl0)π/ω1}

∣∣∣∣− log
∣∣∣∣
sin {(zmj + ζli)π/ω1}
sin {(zmj + ζl0)π/ω1}

∣∣∣∣
}
− Umj = −Re(zmj)

for m = 1, . . . , n, and j = 1, . . . , Nl. (12)
Nl∑

i=1

Qli = 0, for l = 1, . . . , n.

in which zmj is the position of the j-th collocation point on the boundary of the island Cm. We give
three comptational results in Figure 4. The number of the collocation points and the charge points
is Nl = 64. Let rm and δm ∈ C denote the radius and the center of Cm. Then, the positions of the
collocation points inside Cm and the charge points on Cm are given by zmj = δm +rm exp(2πij/Nl)
and ζmj = δm + 0.7rm exp(2πij/Nl) for j = 1, . . . , Nl. The additional charge points for each island
Cm are put at ζm0 = δm.
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