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In Japan, all cars must pause before crossing the railroad for avoiding the accidents. This rule
was established by a law in 1960. In fact, however, railroad crossings come to the serious bottlenecks
because of this pausing rule and this bottleneck causes heavy jams. In this study, by using cellular
automaton model we have investigated the traffic flow at railroad crossings in two cases: with pausing
and without pausing. Moreover, the lost time due to pausing at railroad crossings have been also
quantitatively estimated by both numerical simulations and analytical calculations. As the results,
we have found that these estimations are good agreement with the data by actual measurements.

I. INTRODUCTION

In recent years, many kinds of environmental efforts
have been made all over the world. One of the impor-
tant challenges to prevent the environmental pollution is
to reduce the traffic jams, since traffic jams make cars
idle away and unwanted exhaust gas are emitted. In this
study, we focus on the traffic flow at railroad crossings.
In Japan, all cars must pause before crossing the rail-
road for avoiding the accidents. This rule was estab-
lished by a law in 1960, since, at that time, the accuracy
of crossing gates is insufficient. However, nowadays, the
crossing gates have been grown in performance and the
mechanical errors are more or less on naught. In order
to abolishing the pausing rule, we contribute in terms of
mathematical theory of “Jammology”.

This paper is organized as follows, in Sec. 2 the surveys
on railroad crossings are reported. In Sec. 3, one of the
major traffic model, which is described as the stochas-
tic cellular automaton model, is improved and applied
to one-dimensional road where the railroad crossing are
included. The results of numerical simulations and an-
alytical calculations about traffic flow and lost time are
shown in Sec. 4, and conclusions are given in Sec. 5.

II. SURVEYS ON RAILROAD CROSSINGS

TAB. I shows the number of top three accidents at
railroad crossings. The leading case of railroad accidents
is that cars are stuck on the railroad. This kind of ac-
cidents is actually caused by engine stall due to pausing
and accounts for about half of the total number of acci-
dents. Note that, the accidents due to neglect of pausing
rule do not happen.

According to Japanese law, it is admitted as a spe-
cial case that cars do not need to pause at the railroad
crossing with traffic signal, when crossing gates are open

Accident Cases Number
Be stuck by closed crossing gates 105
Ignore closed crossing gates 61
At railroad crossings without a security alarm 29

TABLE I: The number of accidents about the top three

Traffic Light Green | Yellow| Red
Railroad Crossing|| Open | Alarm | Close

TABLE II: Comparative table between traffic signals and rail-
road crossing

and traffic signal is green. However, we have never seen
that the signal is red and gate is open. From compara-
tive table (TAB. II), there is no difference between the
traffic signals and the crossing gates. Thus, it would not
be an exaggeration to say that these plants result in the
wasteful overlapping investment.

In terms of traffic flow, abolishing the pausing rule
leads to removing the bottleneck and doubling the traf-
fic flow, which has major economic effects (two hundred
billion yen) as well as the idea of Electronic Toll Col-
lection (ETC) System. In terms of environmental con-
servation, the amount of oil consumption is reduced by
510 thousand kilo liter per year and environmental bur-
dens are also reduced by 1.18 million ton per year. For
all of these reasons, abolishing the pausing rule becomes
excellent amendment for resolving jams, energy saving,
environmental pollution and reducing accidents.

However, it is an undeniable fact that we have some
misgivings about abolishing the pausing rule. One of the
possible accidents is that cars may be left at a railroad as
seen in an intersection. Cars often enter into the inter-
section though the front road is bumpy and cars strand
in the intersection. If a similar phenomenon is happened



at the railroad, this situation leads to the horrible acci-
dents. One possibility for avoiding this kind of accident is
painting a road indication, where cars must not stopping
and standing. Actually, this indication is used in front of
a fire station or police station, since an emergency vehi-
cle can rush immediately to the site without blockage in
front of the station.

III. RAILROAD CROSSING MODEL BASED
ON M-SOV MODEL

In this section, we explain the modified stochastic op-
timal velocity (m-SOV) model, which is improved the
established stochastic optimal velocity (SOV) model[1],
and apply this m-SOV to the traffic model at railroad
crossing. One of the advantages of SOV model is that the
two significant stochastic models, which are the asym-
metric simple exclusion process (ASEP)[2] and the zero
range process (ZRP)[3], are reduced in the limit of low or
high sensitivity of drivers. These two stochastic models
are quite useful to calculate analytically, since they are
exactly solvable in the sense that the probability distri-
bution in the steady state can exactly calculated.

In SOV model, it is possible that a car stops even if
the front cell is empty. This phenomenon occurs from
stochastic behavior of model (not intentionally) and the
car keeps its current velocity. In contrast, it is naturally
possible that a car stops if the front cell is not empty.
This phenomenon occurs from physical behavior (inten-
tionally), but a car keeps its current velocity as well as
the stochastic stop. That is, in SOV model, if a car
stops at any time step, its velocity does not change to 0
until the car stay the same place for a long time, since
those two situations of stopping are treated exactly the
same. In fact, however, those two situations are entirely
different. Thus, we suggest modified SOV model by dis-
criminating the case that a car stops stochastically (not
intentionally) from the case that a car stops physically
(intentionally). If next cell is not empty and a car stops,
its velocity change to 0, since the stop is treated as in-
tentional. In contrast, if next cell is empty, a car stops

Stochastically Physically
Stop Stop
(OB \Z
SOV model In:fth cases, the velocity 'is updated by
=(1-a)y +av, (Ax). ()
h Loci . The velocity is
M-SOV model e velocity is updated by

updated by (7). iz

TABLE III: Comparative table of velocity update between
SOV model and m-SOV model.

not intentionally and its velocity is treated the same way
as the SOV model. Thus, we decide its velocity equals to
0 only if a car stops physically (intentionally)(TAB. III).
Let us imagine that the road partitioned into L iden-
tical cells such that each cell can accommodate at most
one car at a time, and we set the number of cars equals
to M. 3 cells at the center of the one dimensional road
are set down as the area of railroad crossing, where cars
can not stop (FIG. 1). Moreover, we impose periodic
boundary conditions and adopt parallel update. In these
simulations, we set that 1 cell corresponds to 6 meters
and 1 time step corresponds to 0.72 seconds, since the
mean velocity in city traffic is about 30 kilometers per
hour and mean headway distance is about 6 meters.

Total number of cells (L) = 16 cells
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FIG. 1: Schematic view of the CA model with railroad cross-
ing.

For comparison of traffic flow, we consider two situa-
tions: one situation is that cars must pause in front of
the railroad crossing (at the shaded cell in FIG. 1) and
another situation is that cars can enter into the railroad
crossing without pausing.

o With pausing
In this case, cars must pause in front of the railroad
crossing, even if the cell over the railroad is empty.
The velocity is updated by

(pausing and physically stopping)

t+1 0
vt =
‘ (1 —a)v} + aVops(xl —at) (otherwise).

(1)

o Without pausing
In this case, cars do not need to pause in front of
the railroad crossing. The velocity is updated by

S 0 (only physically stopping)
L (1 —a)v} + aVope(xl — 2f) (otherwise).
(2)

IV. SIMULATION RESULTS AND
ANALYTICAL CALCULATIONS

The typical space-time plots of railroad crossing sim-
ulations are given by FIG. 2. From this figure, we have
found that the jam at the bottleneck is resolved by abol-
ishing the pausing rule.

FIG.3 shows the flow-density plots, so-called the funda-
mental diagram. This figure demonstrates that the traf-
fic capacity (the maximum value of traffic flow) without
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FIG. 2: Space-time plots for parameter values (M = 3,L =
16, (about 100 meters), a = 0.1, 0 <time< 200). In the case
with pausing, cars must pause at the center (red) cell.
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FIG. 3: The fundamental diagram for parameter values (L =
16,a = 0.1). The symbol P is used to denote the rate of cars
of pausing. For example, P = 50 corresponds to the case that
a half of cars pauses at the railroad crossing.

pausing (P = 0) becomes about twice as large as the
capacity with pausing (P # 0) around p = 0.2, where
p is the density of cars. However, since the flow except
P = 0 is quite similar, we have found that the flow hardly
changes, until all car do not pause at the railroad cross-
ing.

In FIG. 4, we plot the difference of lap-time between
with pausing and without pausing. It is found that
the time difference at low density equals to about 9.5
time steps regardless of the system size. Moreover, the
time difference of all cases reaches the maximum value
at around critical density (p ~ 0.2).

Now, we have estimated the time difference analyti-
cally at the low density. At the low density we can as-
sume that the headway distance of each cars is signifi-
cantly large, i.e. we put V;pt(AxE*l) = 1. Furthermore,
we also put v) = 0 as the initial condition, since our aim
is to estimate the lost time due to pausing. Under these
assumptions, velocity updating formula ((f) in TAB. III)
is reduced to

vf“ =(1—-a)!+a. (3)

By solving this recurrence formula with initial condition

ALap-time(step)
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FIG. 4: The plots of the time difference between with pausing
and without pausing for the parameter a = 0.1.
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FIG. 5: The time difference plots of computer simulations
and analytical calculations for the parameter M = 1.

(v¥ = 0), we obtain

vi=1-(1-a). (4)

Since this formula can be regarded as the cumulative dis-
tribution function, the probability density function is

¢
a&i‘l = —(1—a)'log(1—a). (5)
Hence, the expectation value of time (7'(a)) is
< vt
T(a) = t—Ldt
@=[ %
1

~ log(l—a)’ (©)
As long as the density is low, we have reasonably good
agreement between the analytical calculations (6) and
the corresponding numerical data obtained from com-
puter simulations (see FIG. 5). For example, in the case
a = 0.1, we get the estimates 7(0.1) = 9.49122 from ana-
lytical calculations. The corresponding number obtained
from direct computer simulations is 9.5, which is shown
at the low density limit in FIG. 4.

V. CONCLUSIONS

Japanese law obliges that cars must pause in front of
the railroad crossing before enter into the railroad and



this pausing rule causes heavy jams by bottleneck effect.
In order to estimate the impact of pausing rule on traffic
flow, we have first improved the SOV model and sug-
gested the modified SOV model by discriminating two
stopping behavior of cars : stochastically and physically.
Next, we have applied this m-SOV model to the traffic
model at railroad crossing and compare the traffic flow
with pausing to the flow without pausing. As the re-

sults, we have found that the traffic flow without paus-
ing becomes about twice as large as the flow with pausing
around the critical density. In particular, we have found
that the flow hardly changes, until all car do not pause
at the railroad crossing. Moreover, the lost time due to
pausing is estimated by both computer simulations and
analytical calculations and we have obtained the lost time
is about 9.5 steps (about 6.8 seconds).
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