

Instructions for use

Title An extension of Draghicescu’s fast tree-code algorithm to the vortex method on a sphere

Author(s) Sakajo, Takashi

Citation Journal of Computational and Applied Mathematics
https://doi.org/10.1016/j.cam.2008.07.021

Issue Date 2008

Doc URL http://hdl.handle.net/2115/34773

Type article (author version)

File Information fpv.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

An extension of Draghicescu’s fast tree-code

algorithm to the vortex method on a sphere ∗

Takashi Sakajo
Department of mathematics, Hokkaido University

&
PRESTO, Japan Science and Technology Agency

October 19, 2008

Abstract

A fast and accurate algorithm to compute interactions between N point
vortices and between N vortex blobs on a sphere is proposed. It is an exten-
sion of the fast tree-code algorithm developed by Draghicescu for the vortex
method in the plane. When we choose numerical parameters in the fast algo-
rithm suitably, the computational cost of O(N2) is reduced to O(N(log N)4)
and the approximation error decreases like O(1/N) as N → ∞, which is
demonstrated in the present article. We also apply the fast method to long-
time evolution of two vortex sheets on the sphere to see the efficiency. A key
point is to describe the equation of motion for the N points in the three-
dimensional Cartesian coordinates.

Keywords: fast tree-code algorithms, flows on sphere, vortex method, vortex sheet

AMS subject classification(MSC): 65Y20, 65C20, 76B47, 76M23

1 Introduction

We propose a fast numerical algorithm to compute the evolution of the incompress-
ible and inviscid fluid confined on the surface of a sphere S with radius R. Since the
vorticity, which is denoted by a scalar function ω0(θ, φ) in the spherical coordinates
(θ, φ), is conserved along the path of fluid particles, it is possible to approximate the
evolution of the vorticity region with that of many point vortices. Let us consider
a bounded vorticity region, whose support is denoted by A ⊂ S. Then, discretizing
the region with N cells, we set a point vortex at a certain position (θm, φm) in each
cell for m = 1, 2, . . . , N . The strength of the point vortex Γm is represented by

Γm =
m(A)

N
ω0(θm, φm),

in which m(A) ≤ 4πR2 is a measure of the vorticity region A on the sphere. When
the vorticity field is approximated by

ω0(θ, φ) ≈ 1
sin θ

N∑
m=1

Γmδ(θ − θm, φ − φm), (1)

∗Mailing address: Kita 10 Nishi 8, Sapporo Hokkaido, 060-0810 JAPAN, E-mail:
sakajo@math.sci.hokudai.ac.jp, TEL: +81-11-706-4660, FAX: +81-11-727-3705

1

the Euler equations are reduced to the equations for the N point vortices [11], which
are given by

θ̇m = − 1
4πR2

N∑
j 6=m

Γj sin θj sin(φm − φj)
1 + σ2 − cos θm cos θj − sin θm sin θj cos(φm − φj)

, (2)

φ̇m = − 1
4πR2 sin θm

N∑
j 6=m

Γj [cos θm sin θj cos(φm − φj) − sin θm cos θj]
1 + σ2 − cos θm cos θj − sin θm sin θj cos(φm − φj)

,(3)

for m = 1, 2, . . . , N . The approximation method for the Euler equations is known
as the vortex method. Not only is the vortex method of practical use in numerical
investigations for the Euler flows, but it is also mathematically shown that the
solution of the vortex method uniformly converges to that of the Euler equations in
two-dimensional Euclidean space when N → ∞ as long as the solution of the Euler
equations is smooth [10]. Many references regarding the vortex method are found
in [2]. Here, we introduce the parameter σ to regularize the singular behavior of the
velocity fields (2) and (3) when one point vortex approaches another point closely.
The regularization method is known as the vortex blob method that has been used
in the numerical computations of vortex sheets [15, 16, 20, 21, 22]. The discretizing
points are sometimes referred to as the point vortices for σ = 0 and the vortex blobs
for σ 6= 0, respectively.

Another computational method for the incompressible and inviscid flows on
the sphere is the contour dynamics method with a surgery technique developed
by Dritschel [6]. In this method, approximating the vorticity region A by some
subregions with piecewise constant vorticity, one has only to track the evolution of
their boundaries, since the velocity field induced by the constant vorticity region is
represented by the path integral along the boundary owing to Green’s formula. The
contour dynamics method has been used to compute the evolution of the constant
vorticity strips [7] and the polar constant vorticity cap [19]. It also gives us an
effective way to investigate flows on the rotating sphere, since the effect of rotation
is approximated by the constant vorticity strips corresponding to the background
solid-body rotation [3, 18].

Numerical computation of (2) and (3) gives rise to a serious difficulty in the
computational cost. Namely, we need O(N) amount of computations to evaluate
the velocity fields (2) and (3) for one vortex blob. Accordingly, the total of O(N2)-
operations is required to finish the evaluation for all the points. The same difficulty
arises in numerical computation of the interaction between N gravitational bodies
and between N charges, for which fast algorithms such as the fast tree-code algo-
rithms [1, 4] and the fast multipole methods [8, 9] have been developed. These
fast methods basically work as follows. Suppose that the N points are assigned
in the computational domain. Then in order to evaluate a velocity field or a force
field induced by the points at a given position, the N points are divided into two
groups, called the far-field and the near-field. The contribution from the far-field
is evaluated by using a certain approximation such as the Taylor expansion and
the multipole expansion. As for the points in the near-field, they are computed
directly. Owing to the efficient far-field approximation, the fast methods reduce the
computational cost to O(N(log N)d+1) for the fast tree-code methods and O(N) for
the fast multipole methods, where d is the dimension of the computational domain.
As far as the order of computational cost is concerned, the fast multipole methods
are better than the fast tree-code algorithms. On the other hand, however, while
the fast multipole methods work only for harmonic kernels, the fast tree-code meth-
ods can be implemented for any kernel as long as its Taylor expansion is efficiently
computed. Owing to its versatility, the fast tree-code algorithms have been used in
the numerical computation of the Euler flows. Draghicescu et al. proposed a fast

2

tree-code algorithm for the point-vortex and the vortex-blob approximations of the
Euler equations in two-dimensional and three-dimensional Euclidean spaces [4, 5].
The fast tree-code algorithm was extended successfully to numerical computations
of three-dimensional vortex sheets [16, 21] and a vortex sheet with the periodic
boundary condition [20], in which recurrence formulas were used to compute the
Taylor coefficients of their kernels effectively.

In the present paper, we extend Draghicescu’s tree-code algorithm so that we
can compute the velocity field induced by the point vortices and the vortex blobs on
the sphere. The extension is possible in theory, but it is quite hard to implement the
numerical computation in practice, since the expression of the Taylor coefficients for
(2) and (3) is so complicated that we can’t compute them efficiently. This drawback
cancels out the efficiency of the fast algorithm. In order to resolve the problem, we
rewrite eqs. (2) and (3) with respect to the three-dimensional Cartesian coordinates
instead of the spherical coordinates. Let the position of the discretizing points xm

for m = 1, . . . , N in R3 be represented by

xm = (xm(t), ym(t), zm(t)) = (R sin θm cos φm, R sin θm sinφm, R cos θm).

Then the stream function ψ(x) is recovered from the vorticity field with the inversion
formula

ψ(x) =
∫∫

S

G(x, x′)ω(x)dA,

where the Green function on the sphere is given by G(x, x′) = −(1/4π) log |x−x′|2.
(See [11]) With the singular vorticity field approximation (1), the stream function
gives rise to the equation for the N point vortices [17, 18]:

ẋm = − 1
4πR

N∑
j 6=m

Γj
xm × xj

R2 − xm · xj
, m = 1, 2, . . . , N. (4)

The regularized equation for the vortex blobs is given by

ẋm = − 1
4πR

N∑
j 6=m

Γj
xm × xj

R2 + σ2 − xm · xj
, m = 1, 2, . . . , N. (5)

The fast tree-code algorithm presented in this paper can be applied to both eqs. (4)
and (5). The change of variables enables us to compute the Taylor expansion of the
kernels in eqs. (4) and (5) easily with a simple recursive formula. A similar idea was
used in the numerical computation of a two-dimensional vortex sheet with periodic
boundary condition [20]. On the other hand, due to the Cartesian formulation, the
discretizing points might detach from the sphere if the accuracy of the computation
is too poor. In the numerical examples in this paper, we verify whether these points
stay on the surface of the sphere by checking their distances from the origin each
time step.

The paper consists of four sections. In the next section, we see how to extend
the fast algorithm to the evaluation of the velocity field (4) and give its error
estimate. In the third section, some numerical examples are shown to confirm the
efficiency of the algorithm. The last section is devoted to summary and discussion
on future applications. A formal description of the fast algorithm and a linear
stability analysis for the two vortex sheets are given in the appendices.

3

2 Fast tree-code algorithm

2.1 Mesh generation, far-field and near-field

Since we describe the fast algorithm for the sphere in R3, we set the computational
domain B as a three-dimensional box, a little bit larger than the sphere of radius
R, i.e.,

B = [−(1 + δ)R, (1 + δ)R]3.

The positive parameter δ is taken sufficiently small but not zero so that the box B
contains the sphere completely. Then we construct a tree structure of small boxes
in B by dividing the box region into two smaller box regions recursively. Since the
points are confined on the surface of the sphere, we can eliminate the boxes that
have no intersection with the sphere from the tree structure, which helps us save
the working memory on the computer. In what follows, without loss of generality,
we set the radius of the sphere R = 0.5/(1 + δ) so that the box B becomes a unit
box.

First, we generate the tree structure with the following recursive algorithm for
a given box τ = [x1, x2) × [y1, y2) × [z1, z2). At the same time, the algorithm
initializes parameters ρ(τ), yτ , L(τ) and Ak

τ , Bk
τ , Ck

τ for the box τ and the multi-
index k = (k1, k2, k3). The center point yτ of the box τ and its radius ρ(τ) are
defined by

yτ =
(

x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
, ρ(τ) = sup

y∈τ
|y − yτ | .

The parameters Ak
τ , Bk

τ and Ck
τ are required in the far-field computation and their

definitions are provided in the next subsection, while L(τ) denotes a list of the points
contained in the finest box τ , which is used to compute the near-field evaluation.
For a given integer l, which determines the finest level of the tree structure, and an
integer λ, which is the approximation order of the Taylor expansion, we give the
following mesh-generation algorithm.

Algorithm 1. (Generate the tree structure of boxes)

Input : box τ , integers j, λ and l;
GenerateMesh(τ , j, l)

if j = 3l return;
yτ = (cτ1, cτ2, cτ3) =

(
1
2 (x1 + x2), 1

2 (y1 + y2), 1
2 (z1 + z2)

)
;

Compute the radius of τ , ρ(τ);
For all k = (k1, k2, k3), |k| = k1 + k2 + k3 ≤ λ − 1, initialize Ak

τ , Bk
τ , Ck

τ ;
Initialize the list of the near-fields, L(τ);
if j mod 3 = 1

τ1 = [x1, cτ1) × [y1, y2) × [z1, z2); τ2 = [cτ1, x2) × [y1, y2) × [z1, z2);
else if j mod 3 = 2

τ1 = [x1, x2) × [y1, cτ2) × [z1, z2); τ2 = [x1, x2) × [cτ2, y2) × [z1, z2);
else if j mod 3 = 0

τ1 = [x1, x2) × [y1, y2) × [z1, cτ3); τ2 = [x1, x2) × [y1, y2) × [cτ3, z2);
end
For each τi, if τi ∩ S 6= ∅

set τi as a child box of τ ;
recursively call GenerateMesh(τi, j + 1, l);
return;

else
set ∅ as a child of τ ;
return;

4

end
return;

end

End of Algorithm

Applying the algorithm to the computational domain τ = B, we obtain the tree
structure consisting of a hierarchy of boxes of various sizes, which is denoted by Σ
in what follows. Note that the size of a box on the finest level 3l becomes h = 2−l.

Next, for a given point x ∈ S, we define the set of boxes, called the far-field of
x, F(x), and the near-field of x, N(x) as in [4].

Definition 1. (Far-field and near-field) For x ∈ S, F(x) contains all boxes τ with
center yτ such that the following condition is satisfied.

ρ(τ) ≤ hν
∣∣R2 − x · yτ

∣∣ , (6)

and τ is maximal. Let F (x) = ∪F(x). The parameter ν > 0 is determined to control
the efficiency of the fast algorithm and the accuracy of the numerical computation.
The near-field of x is defined by N(x) = Σ \ F (x).

The definitions of the far-field and near-field are the same as those given in [4]
except for the condition (6) defining the far-field. Let us remember that the original
far-field condition in [4] is given by

ρ(τ) ≤ hν |x − yτ | . (7)

The condition (7) would work in practice, but we found it convenient to use (6)
instead to facilitate the error estimate below. As a matter of fact, the choice of
the condition is not a serious problem for R < 0.5, since

∣∣R2 − x · yτ

∣∣ ≤ |x − yτ |
holds for arbitrary yτ ∈ R3 and |x| = 0.5. Hence, the far-field of x in the present
algorithm becomes automatically that of the three-dimensional fast tree-code algo-
rithm.

2.2 Far-field approximation

The fast algorithm evaluates the following velocity field uN (x, t) induced by the
given vortex blobs at yj (j = 1, · · · , N) in eq. (5):

uN (x, t) = − 1
4πR

N∑
j=1

Γj
x × yj

R2 + σ2 − x · yj
≡ − 1

4πR

N∑
j=1

Γjγ(x, yj)D(x,yj), (8)

where γ(x, y) = x × y and D(x,y) = (R2 + σ2 − x · y)−1. The contribution from
the near-field is computed directly, and that from the far-field is approximated by
the Taylor expansion of D up to the (λ − 1)th order. That is to say, the velocity
field uN is approximated by

uλ
N (x, t) = − 1

4πR

∑
yj∈N(x)

Γjγ(x, yj)D(x,yj) −
1

4πR

∑
τ∈F (x)

uλ,τ
N (x, t), (9)

in which
uλ,τ

N (x, t) =
∑
yj∈τ

Γjγ(x, yj)
∑

|k|≤λ−1

ak(x, yτ)(yj − yτ)k. (10)

The Taylor coefficients of D are given explicitly by

ak(x, yτ) =
1
k!

Dk
yD(x, y)|y=yτ =

|k|!
k!

(
R2 + σ2 − x · yτ

)−|k|−1
xk, (11)

5

where k! = k1!k2!k3!, |k| = k1+k2+k3 for the multi-index k = (k1, k2, k3), and Dk
y =

∂|k|

∂y
k1
1 ∂y

k2
2 ∂y

k3
3

and yk = yk1
1 yk2

2 yk3
3 for y = (y1, y2, y3). The explicit representation

(11) saves the computational time as in the previous works [4, 20, 16, 21]. In the
actual numerical computation, the Taylor coefficients ak(x, yτ) = a(k1,k2,k3)(x, yτ)
are computed with the following simple recursive formulas:

a(k1+1,k2,k3)(x,yτ) =
|k| + 1
k1 + 1

D(x,yτ)x1 a(k1,k2,k3)(x,yτ),

a(k1,k2+1,k3)(x, yτ) =
|k| + 1
k2 + 1

D(x,yτ)x2 a(k1,k2,k3)(x,yτ),

a(k1,k2,k3+1)(x, yτ) =
|k| + 1
k3 + 1

D(x,yτ)x3 a(k1,k2,k3)(x,yτ).

and a(0,0,0)(x, yτ) = D(x,yτ).
With the notation yj = (yj1, yj2, yj3), we reduce the far-field approximation

(10) to

uλ,τ
N (x, t) =

∑
|k|≤λ−1

ak(x, yτ)
(
x2C

k
τ − x3B

k
τ , x3A

k
τ − x1C

k
τ , x1B

k
τ − x2A

k
τ

)
, (12)

in which Ak
τ , Bk

τ and Ck
τ are defined by

Ak
τ =

∑
yj∈τ

Γjyj1(yj − yτ)k, Bk
τ =

∑
yj∈τ

Γjyj2(yj − yτ)k, Ck
τ =

∑
yj∈τ

Γjyj3(yj − yτ)k.

(13)
These coefficients are assigned to each box τ ∈ F (x) that contains the point yj .
They are computed for all the points in advance and reused in the far-field approxi-
mation, which is a key device to evaluate the velocity field faster. Let us note that,
in the numerical code, the computation of the Taylor polynomial (yj − yτ)k is the
most time-consuming step. We compute it with a recursive multiplication, which is
faster than with the built-in power function.

The description of the fast tree-code algorithm is given in Appendix A, which
is the same as that of the paper [4] except for the definitions of the far-field condi-
tion and the coefficients Ak

τ , Bk
τ and Ck

τ . Hence, the computational cost becomes
O(Nλ3 log N) as in [4]. Moreover, for example, when we choose the order of the
Taylor approximation as λ = O(log N), it becomes O(N(log N)4).

2.3 Error estimate

We give an error estimate of the fast algorithm for the point-vortex approximation,
i.e. σ = 0, which is easily extended to the vortex-blob approximation. Let the
constant C be defined by

C = max
1≤j≤N

m(A)
4πR

ω0(θj , φj) = N max
1≤j≤N

Γj

4πR
.

Then, the error estimate becomes

∣∣uN (x, t) − uλ
N (x, t)

∣∣ =

∣∣∣∣∣∣ 1
4πR

∑
τ∈F (x)

∑
yj∈τ

Γjγ(x,yj)
∑
|k|=λ

ak(x, yτ)(yj − yτ)k

∣∣∣∣∣∣
≤ C

N

∑
τ∈F (x)

∑
yj∈τ

|γ|
∑
|k|=λ

|ak(x, yτ)||(yj − yτ)k|. (14)

6

Let us remember that |γ(x, yj)| = |x × yj | ≤ R2 due to |x| = |yj | = R and
|yj − yτ | ≤ ρ(τ) for yj ∈ τ , and the Taylor coefficient ak(x,yτ) with |k| = λ is
estimated by

|ak(x, yτ)| ≤ λ!
k!

|R2 − x · yτ |−λ−1Rλ+1 ≤ λ!
k!

ρ−λ−1(τ)hν(λ+1)Rλ+1.

Here, it follows from

(a + b + c)λ =
∑
|k|=λ

λ!
k!

ak1bk2ck3

that
∑

|k|=λ λ!/k! = 3λ. We also note that ρ(τ) ≥
√

3
2 h for arbitrary τ , and∑

τ∈F (x)

∑
yj∈τ =

∑
τ∈F (x) nτ ≤ N , where nτ is the number of the points con-

tained in the box τ ∈ F (x). Hence, we obtain

∣∣uN (x, t) − uλ
N (x, t)

∣∣ ≤ CR2

N

∑
τ∈F (x)

∑
yj∈τ

∑
|k|=λ

|ak(x, yτ)|ρλ(τ)

≤ CRλ+3

N

∑
τ∈F (x)

∑
yj∈τ

∑
|k|=λ

λ!
k!

ρ−1(τ)hν(λ+1)

≤ CRλ+3

N
3λ 2√

3
h−1

∑
τ∈F (x)

∑
yj∈τ

hν(λ+1)

≤ C ′Rλ+33λhν(λ+1)−1 ≤ C ′′hνλ−1, (15)

for some constants C ′ and C ′′. Hence, for ν = O (3/λ), we finally have∣∣uN (x, t) − uλ
N (x, t)

∣∣ ≤ C ′′h2. (16)

The error estimate is the same as the fast algorithm for the planar case [4].

3 Numerical tests

3.1 Efficiency of the algorithm

To confirm the theoretical results given in the previous section, we consider the
vortex-blob approximation (5) with σ = 0.05 as a test problem. Suppose that
vortex blobs with the unit strength are uniformly located along M lines of latitude
of the sphere with radius R = 0.5,

z(i) = R − i

M + 1
, for i = 1, . . . ,M.

The positions of the vortex blobs are specified by

x
(i)
j =

(√
R2 −

(
z(i)

)2 cos 2πj/N,

√
R2 −

(
z(i)

)2 sin 2πj/N, z(i)

)
, (17)

for j = 1, . . . , N ′. Thus we obtain the N = MN ′ vortex blobs, to which we apply
the fast algorithm. The configuration is suitable for the numerical test of the fast
algorithm, since the points spread over the whole sphere.

The parameters ν, λ and l in the fast algorithm, which appear in the far-field
condition (6), the approximation order of the Taylor expansion, and the level of the
tree structure of the computational boxes respectively, are determined as ν = 1

n
and l = n from the number of the vortex blobs N = 2n. The numerical compu-
tation is carried out by Opteron 275 processor with 6GB memory. We vary the

7

(a) N λ = 4 λ = 6 λ = 8 λ = 10
4096 3.25e-4 1.84e-5 1.18e-6 8.50e-8
16384 4.31e-4 2.37e-5 1.49e-6 1.07e-8
65536 4.51e-4 2.50e-5 1.58e-6 1.15e-7
262144 4.74e-4 2.65e-5 1.72e-6 1.27e-7
1048576 4.89e-4 2.74e-5 1.80e-6 1.36e-7
(b) N λ = 4 λ = 6 λ = 8 λ = 10
4096 4.23e-4 3.32e-5 1.35e-6 8.35e-8
16384 6.91e-4 3.60e-5 2.09e-6 1.35e-8
65536 7.78e-4 4.07e-5 2.35e-6 1.48e-7
262144 8.05e-4 4.17e-5 2.41e-6 1.53e-7
1048576 8.17e-4 4.20e-5 2.41e-6 1.53e-7

Table 1: (a) L2 relative error E
(2)
N and (b) maximum relative error E

(∞)
N of the

velocity field (4) between the fast algorithm and the direct summation for the
configuration (17).

approximation order λ from 4 to 10 and calculate the L2 relative error E
(2)
N and

the maximum relative error E
(∞)
N between the velocity field evaluated by the fast

tree-code algorithm uλ
N (xi) and that by the direct summation uN (xi), which are

defined by

E
(2)
N =

(
N∑

i=1

∣∣uN (xi) − uλ
N (xi)

∣∣2) 1
2

(
N∑

i=1

|uN (xi)|2
) 1

2
, E

(∞)
N =

max
1≤i≤N

∣∣uN (xi) − uλ
N (xi)

∣∣
max

1≤i≤N
|uN (xi)|

,

for the given configuration of vortex blobs xi, i = 1, . . . , N . Table 1 shows the L2

relative error and the maximum relative error for various N and λ. It indicates
that the relative errors decrease as λ increases for fixed N . On the other hand, the
errors stay in the same order for fixed λ.

Table 2 shows that the computation time of the fast algorithm is smaller than
that of direct summation for large N , although it is ineffective for small N . In
order to compare the speed-up rate of the present fast tree-code algorithm with the
previous one [20], we pick the result for N = 65536, λ = 6 and ν = 0.00625. This
shows that the fast tree-code algorithm computes the velocity field 2.94 times faster
and the approximation error is 4.1 × 10−5. On the other hand, the fast tree-code
for the two-dimensional vortex sheet with periodic boundary condition computes
the velocity field about 50 times faster for N = 65536, λ = 8 and ν = 0.05 and
the approximation error is 3.7 × 10−5 [20]. Hence, the present fast algorithm on
the sphere is less effective than that for the two-dimensional vortex sheet. This is
because, for a given approximation order of the Taylor expansion λ, we need O(λ3)
operations to compute the Taylor coefficients (11) and the parameters (13), whereas
O(λ2) computations is required for the two-dimensional case.

Now, in order to check the accuracy and the computational efficiency of the fast
algorithm given theoretically in the previous section, we rearrange the computa-
tional results in Table 3 so that λν ∼ 0.5, and plot them in Figure 1. They indicate
that the maximum error decreases like O(h2) ∼ O(1/N) and the computation time
increases like O(N(log N)4), which supports the theoretical results.

8

10-7

10-6

10-5

10-4

103 104 105 106 107

E
rr

or
 E

N
(

∞
)

N

(a) Maximum Error
1/N

100

101

102

103

104

105

103 104 105 106 107

T
im

e
(in

 s
ec

on
ds

)

N

(b) Computational time
O(Nlog(N)4)

Figure 1: Plot of the maximum error E
(∞)
N and computation time vs. the number

of the vortex blobs N . Numerical parameters are given in Table 3.

9

N λ = 4 λ = 6 λ = 8 λ = 10 direct ν

4096 0.7 1.6 3.1 6.5 0.6 ν = 0.083
16384 4.9 11.9 20.3 34.7 10.2 ν = 0.071
65536 40.3 71.8 98.0 156.2 164.3 ν = 0.0625
262144 310.5 433.2 576.5 908.8 2629.3 ν = 0.055
1048576 2034.4 2694.5 4018.2 6050.5 42060.5 ν = 0.05

Table 2: Computation time in seconds for the evaluation of the velocity fields for
the configuration (17).

N 4096 65536 1048576
λ 6 8 10
ν 0.083 0.0625 0.05

E
(∞)
N 3.32e-5 2.35e-6 1.53e-7

Time (s) 1.6 98.0 6050.5

Table 3: Error estimate and computation time for the evaluation of the velocity
field for the configuration (17), rearranged so that λν keeps constant.

3.2 Long time evolution of two vortex sheets

We compute the long-time evolution of two vortex sheets on the sphere as another
test. A vortex sheet is a surface across which the velocity field of the incompress-
ible and inviscid fluid changes discontinuously. It has been studied numerically in
many papers as not only a mathematical model for the sheet-like coherent vortex
structures [14, 15, 21, 22], but also a numerical test problem for the fast tree-code
algorithms [4, 5, 16, 20].

Suppose that the two vortex sheets lie along the lines of latitude Θ1 and Θ2.
Since the vorticity exists only in the vortex sheets, we just discretize each of them
with the vortex blob method and track their evolution numerically. The initial
position of the ith vortex sheet on the sphere of radius R = 0.5 is given by

z(i)(α) = R(cosΘi + ε sin 2πα), (18)

x(i)(α) =
√

R2 −
(
z(i)

)2 cos 2πα,

y(i)(α) =
√

R2 −
(
z(i)

)2 sin 2πα,

for i = 1 and 2. The parameter α ∈ [0, 1) is a Lagrangian variable moving with
the fluid particle. A small first-mode perturbation is imposed on z(i) in (18), since
the two vortex sheets rotate in the longitudinal direction with some constant speeds
without the perturbation and thus we observe no complex interaction between them.
The stability of the first-mode perturbation is given in Appendix B, which indicates
that the stability depends on the values of Θ1 and Θ2. The amplitude of the
disturbance is ε = 0.02. Then we discretize 0 ≤ α ≤ 1 by N points to obtain the N
vortex blobs. Since the strengths of the vortex sheets are assumed to be uniform,
the strengths of the vortex blobs are identical. Accordingly, the initial positions of
the vortex blobs are given by x

(i)
m ≈ x(i)(m

N) with the same strength Γ(i)
m = 1/N ≡ Γ

for i = 1, 2 and m = 1, 2, . . . , N . With the initial data, we solve numerically the

10

following 2N -dimensional ordinary differential equations for m = 1, . . . , N .

dx
(1)
m

dt
= − Γ

4πR

N∑
j 6=m

x
(1)
m × x

(1)
j

R2 + σ2 − x
(1)
m · x(1)

j

− Γ
4πR

N∑
j=1

x
(1)
m × x

(2)
j

R2 + σ2 − x
(1)
m · x(2)

j

,(19)

dx
(2)
m

dt
= − Γ

4πR

N∑
j 6=m

x
(2)
m × x

(2)
j

R2 + σ2 − x
(2)
m · x(2)

j

− Γ
4πR

N∑
j=1

x
(2)
m × x

(1)
j

R2 + σ2 − x
(2)
m · x(1)

j

.(20)

The first summations on the right hand side of the equation represent the self-
induced velocity, while the second ones are the interaction between the two vortex
sheets. The temporal integration is carried out with the fourth order Runge-Kutta
method, whose time step size is ∆t = 0.05. Each of the vortex sheets is discretized by
N = 131072, i.e. we use 262144 vortex blobs in total. The regularization parameter
is σ = 0.05. We set the parameters of the fast tree-code algorithm as ν = 0.055
and λ = 10. Then, according to Table 1 and Table 2, the fast tree-code algorithm
evaluates the velocity field 3 times faster than the direct summation method with
approximation error of O(10−7), which is required accuracy for the computation of
vortex sheets. As we have mentioned in Introduction, we verify if the vortex blobs
stay on the surface of sphere by checking the condition ||xm| −R| < 1.0× 10−7 for
all m every time step. We hardly observe the move-off of the vortex blobs from the
surface of sphere in the numerical examples given here.

Before showing numerical results, let us discuss a numerical difficulty in the
numerical computation of vortex sheets. According to the linear stability analysis of
a single vortex sheet on the sphere [22], a small perturbation grows very rapidly due
to the Kelvin-Helmholtz instability and thus the evolution of vortex sheets becomes
an ill-posed problem in the sense of Hadamard. Hence, the accumulation of round-
off error inevitably deteriorates the accuracy of the numerical computation. What
makes the matter worse, since the fast algorithm gives rise to not only round-off
error but also the approximation error, these errors affect the computational result
more seriously. In order to maintain the accuracy of the numerical computation,
we adopt the Fourier filtering technique. As for the detailed description of the
technique, we would like the readers to refer to the paper [15]. The threshold of the
filter is set to 1.0 × 10−9.

Figure 2 shows the evolution of the two vortex sheets up to t = 26. The base
latitudes of the two vortex sheets are given by Θ1 = 0.3π and Θ2 = 0.5π. The
first-mode disturbance in (18) is linearly unstable as is shown in Appendix B. Since
the two vortex sheets are well separated compared to the amplitude of the initial
disturbance ε = 0.02, each of the vortex sheets becomes unstable independently
due to the Kelvin-Helmholtz instability before they interact with each other. The
vortex sheet in the northern hemisphere becomes unstable earlier than that near
the equator. Then they evolve into structures with many rolling-up spirals and
very thin filaments. After that, the two vortex sheets interact strongly and become
complex.

Another computational result is shown in Figure 3 for the configuration (18)
with Θ1 = π/3− π/20 and Θ2 = π/3 + π/20 and ε = 0.02. Linear stability analysis
in Appendix B shows that the first-mode disturbance is linearly unstable. Since
the growth rate of the disturbance is larger than that of the first example, the
northern vortex sheet becomes unstable earlier. Afterwards it rolls up due to the
Kelvin-Helmholtz instability immediately, the two vortex sheets begin interacting
with each other before the southern vortex sheet rolls up, since the initial distance
between them is closer than the first example. As a result of the complex interaction,
the two vortex sheets gather in the northern polar region and a big coherent spiral
structure is separated out of the region and stays around the equator, which is also
a complicated pattern.

11

T:4.00

T:8.00

T:12.00

T:16.00

T:20.00

T:22.00

T:24.00

T:26.00

Figure 2: Long time evolution of two vortex sheets for Θ1 = 0.3π and Θ2 = 0.5π
up to t = 26. Each vortex sheet is approximated by 131072 vortex blobs.

Both numerical results with N = 262144 vortex blobs keep the fine resolution
up to t = 26. It takes twenty days to compute the evolution with the Opteron
275 processor. It is quite difficult to compute the evolution for such a long time
without the fast tree-code algorithm. Let us finally mention how the regularization
parameter affects the numerical results. As was shown in [15], in some range of
σ, the numerical result is qualitatively similar except that the spirals tend to have
infinitely many windings as σ → 0. On the other hand, for excessively small σ, the
numerical computation loses its accuracy due to the ill-posedness of the problem. In
order to keep the accuracy for smaller σ, more discretizing vortex blobs are required.

4 Summary and discussion

A fast tree-code algorithm to evaluate the interaction between point vortices and
vortex blobs on a sphere has been described. The fast method is applicable to
the numerical computation of inviscid incompressible flow on the sphere, since the

12

T:4.00

T:8.00

T:12.00

T:16.00

T:20.00

T:22.00

T:24.00

T:26.00

Figure 3: Long time evolution of two vortex sheets up to t = 26. The initial base
latitudes for them are given by Θ1 = π/3−π/20 and Θ2 = π/3+π/20 respectively.

13

motion of the N discretizing points is derived when the Euler equations are approx-
imated by the vortex method.

The tree-code algorithm to the use of flow over a sphere is an extension of the
fast algorithm developed by Draghicescu [4] for the two-dimensional and three-
dimensional Euler equations in Euclidean space. However, a naive implementation
of the algorithm to eqs. (2) and (3) on the sphere is practically ineffective, since
the high-order Taylor coefficients of the velocity field in the equations are expressed
in a complicated way. We resolve the difficulty by representing the equations of
the N points in the three-dimensional Cartesian coordinates, for which the Taylor
coefficients are easily computed with a simple formula. Owing to the representation
of the equation (5), the fast algorithm works very effectively. The error estimate
shows that the approximation error decreases as O(1/N) with an appropriate choice
of the parameters in the algorithm. The computational cost is largely reduced to
O(N(log N)4), which is the same order as the three-dimensional tree-code algo-
rithm [4]. The efficiency of the fast method is examined and thus the theoretical
error estimate and the reduction of computational cost are confirmed. We also
compute the long-time evolution of two vortex sheets, which shows very complex
interactions between them for a long time.

Let us finally discuss possible future directions. The fast algorithm gives us a
new way to investigate many interesting problems such as the statistical theory of
point vortices on the sphere [12]. On the other hand, it is unavailable to compute
the Euler equations with the Coriolis force on the rotating sphere, since the vorticity
is no longer a conserved quantity. However, we have two possible extensions of the
vortex method to the rotating problem. The first method is that we approximate
the effect of rotation by strips of constant vorticity corresponding to the solid body
rotation of the sphere and then compute the interaction between the point vortices
and the vorticity strips with the vortex method and the contour dynamics method.
This idea was used to observe the interaction between a coherent vortex structure
and the background rotation [3, 18]. Another possibility is to develop a Lagrangian
method based on the invariance of the potential vorticity for the Euler flows on the
rotating sphere. The fast tree-code algorithm is available to compute the velocity
field at the grid points for a given distribution of the point “potential” vortices.
This idea will be examined in the future research.

Acknowledgments

This work is partially supported by Ministry of Education, Science, Sports and
Culture, Grant-in-Aid for Young Scientists (A) #17684002 2007, Grant-in-Aid for
Exploratory # 17654018 2007, and Grant-in-Aid for formation of COE at Hokkaido
University.

A Description of the fast tree-code algorithm

Here we give the formal description of the tree-code algorithm. First, we define the
following two recursive algorithms called in the main algorithm.

Algorithm 2. (Compute the coefficients Ak
τ , Bk

τ , Ck
τ in (13) for all the node boxes

τ containing the discretizing point at y with strength Γ)

Input : box τ , integer k, position of the discretizing point y with strength Γ;
ComputeNodeCoefficients(τ , k, y, Γ)

if τ = ∅ return;
if y ∈ τ then for all k, |k| ≤ λ − 1

14

add Γy1(y − yτ)k to Ak
τ ;

add Γy2(y − yτ)k to Bk
τ ;

add Γy3(y − yτ)k to Ck
τ ;

if k = 3l then
add y to the list of the near-field, L(τ);
return;

else
Recursively call ComputeNodeCoefficients(τi, k+1, y, Γ) for all
the children of τ , τ1 and τ2;
return;

end
end

end

End of Algorithm

Algorithm 3. (Compute the velocity field at y)

Input : box τ , integer k, the position of the discretizing point y;
ComputeFarNearField(τ , k, y)

if τ = ∅ return;
if ρ(τ) < hν |R2 − y · yτ | then

Compute the far-field approximation according to (12);
return;

else
if k = 3l then

Compute the contribution from the points in the near-field list L(τ)
directly;
return;

else
Recursively call ComputeFarNearField(τi, k + 1, y) for all the
children of τ , τ1 and τ2;
return;

end
end

end

End of Algorithm

Then we finally have the description of the fast tree-code algorithm in a simple
form.

Algorithm 4. (Fast Tree-code for the vortex method on the sphere)

Input: integer n; real λ; real ν; real Γj ; real yj , j = 1, . . . , n;
Output: uλ

h(x, t) for all x = yj , j = 1, . . . , n;
Stage 0 (mesh generation, done only once)

GenerateMesh(B, 0);
end
Stage 1 (Compute coefficients Ak

τ , Bk
τ , Ck

τ)
For j = 1, . . . , n, call ComputeNodeCoefficients(B, 0, yj , Γj);

end
Stage 2 (Compute the velocity field (8))

For j = 1, . . . , n, call ComputeFarNearField(B, 0, yj);
end

End of Algorithm

15

B Linear stability of the first-mode perturbations
for two vortex sheets

Linear stability analysis for a single vortex sheet on the sphere with pole vortices [22]
revealed that the low-mode spectra of perturbations become neutrally stable due
to the effect of the curvature of the sphere or the outer flow induced by the pole
vortices. On the other hand, high-mode spectra are always linearly unstable and
their exponential growth rate is proportional asymptotically to their mode-number,
which is known as the Kelvin-Helmholtz instability.

In this appendix, we consider the linear stability of the first-mode spectra of
perturbations imposed on two vortex sheet. Suppose that the positions of the two
vortex sheets are represented by (θi(α, t), φi(α, t)) for i = 1, 2 in the spherical co-
ordinates, and their strengths are identical. Then, with the following two functions
F and G,

F (θ, φ, θ′, φ′) = − 1
4π

sin θ′ sin(φ − φ′)
1 − cos θ cos θ′ − sin θ sin θ′ cos(φ − φ′)

,

G(θ, φ, θ′, φ′) = − 1
4π sin θ

cos θ sin θ′ cos(φ − φ′) − sin θ cos θ′

1 − cos θ cos θ′ − sin θ sin θ′ cos(φ − φ′)
,

the equations of motion of the two vortex sheets on the unit sphere are described
as follows.

∂θ1

∂t
= PV

∫ 2π

0

F (θ1, φ1, θ
′
1, φ

′
1)dβ +

∫ 2π

0

F (θ1, φ1, θ
′
2, φ

′
2)dβ, (21)

∂θ2

∂t
= PV

∫ 2π

0

F (θ2, φ2, θ
′
2, φ

′
2)dβ +

∫ 2π

0

F (θ2, φ2, θ
′
1, φ

′
1)dβ, (22)

∂φ1

∂t
= PV

∫ 2π

0

G(θ1, φ1, θ
′
1, φ

′
1)dβ +

∫ 2π

0

G(θ1, φ1, θ
′
2, φ

′
2)dβ, (23)

∂φ2

∂t
= PV

∫ 2π

0

G(θ2, φ2, θ
′
2, φ

′
2)dβ +

∫ 2π

0

G(θ2, φ2, θ
′
1, φ

′
1)dβ, (24)

in which θi = θi(α, t), φi = φi(α, t), θ′i = θi(β, t) and φ′
i = φi(β, t). The first terms

on the right hand side of the equations are defined in the sense of Cauchy’s principal
value integral. See [22] for the derivation of the equations. Let us note that we have
eqs. (19) and (20), when we discretize the equations (21) – (24) with the vortex
blob method and describe them in the three-dimensional Cartesian coordinates.

When the two vortex sheets lie along the lines of latitude, i.e. θi(α, t) = Θi and
φi(α, t) = α for i = 1, 2, the configuration is a stationary solution for the equations.
We also assume that Θ1 < Θ2 without loss of generality. Then we consider the
following linear stability of the first-mode spectra ϑ

(i)
±1 and ϕ

(i)
±1 for i = 1, 2:

θi(α, t) = Θi + ϑ
(i)
±1(t) exp(±iα), φi(α, t) = α + ϕ

(i)
±1(t) exp(±iα).

The linearized terms for the first singular integrals in the equations have already
been given in [22]. For the equations (21) and (22), they are

1
2 sinΘi

ϕ
(i)
±1, (25)

and for the equations (23) and (24),(
1

2 sin3 Θi

− 1 + cos2 Θi

2 sin3 Θi

)
ϑ

(i)
±1(t). (26)

16

Regarding the linearized terms for the second integrals, we compute them with the
computer software, Mathematica 6; For the equation (21), it follows from (25)
and ∫ 2π

0

∂F

∂θ1
(Θ1, Θ2, α, β)dβ =

∫ 2π

0

∂F

∂φ1
(Θ1, Θ2, α, β)dβ = 0,∫ 2π

0

∂F

∂θ′2
(Θ1, Θ2, α, β) exp(±iβ)dβ =

±iAB

2 sinΘ1 sinΘ2
exp(±iα),∫ 2π

0

∂F

∂φ′
2

(Θ1, Θ2, α, β) exp(±iβ)dβ = − AB

2 sinΘ1
exp(±iα),

in which A and B are defined by

A = cotΘ2 +
1

sinΘ2
, B = cotΘ1 −

1
sin Θ1

,

that we have the linearized equations for ϑ
(1)
±1(t).

dϑ
(1)
±1

dt
=

±iAB

2 sinΘ1 sin Θ2
ϑ

(2)
±1 +

1
2 sinΘ1

ϕ
(1)
±1 −

AB

2 sinΘ1
ϕ

(2)
±1.

Similarly, we have the linearized equations for (22).

dϑ
(2)
±1

dt
=

∓iAB

2 sinΘ1 sin Θ2
ϑ

(1)
±1 −

AB

2 sinΘ2
ϕ

(1)
±1 +

1
2 sinΘ2

ϕ
(2)
±1.

The linearized equation of (23) for ϕ
(1)
±1 becomes

dϕ
(1)
±1

dt
= −2 cos2 Θ1 − 2 cosΘ1 + 1

2 sin3 Θ1

ϑ
(1)
±1 −

AB

2 sin2 Θ1 sinΘ2

ϑ
(2)
±1 ∓

iAB

2 sin2 Θ1

ϕ
(2)
±1,

in which the linearized terms for the second integrals in (23) come from the following
integrals. ∫ 2π

0

∂G

∂φ1
(Θ1, Θ2, α, β)dβ = 0,∫ 2π

0

∂G

∂θ1
(Θ1, Θ2, α, β)dβ = −cos2 Θ1 − 2 cosΘ1 + 1

2 sin3 Θ1

,∫ 2π

0

∂G

∂φ′
2

(Θ1, Θ2, α, β) exp(±iβ)dβ =
∓iAB

2 sin2 Θ1

exp(±iα),∫ 2π

0

∂G

∂θ′2
(Θ1, Θ2, α, β) exp(±iβ)dβ = − AB

2 sin2 Θ1 sinΘ2

exp(±iα).

The linearized equation for ϕ
(2)
±1 is similarly obtained as follows.

dϕ
(2)
±1

dt
= − AB

2 sin2 Θ2 sinΘ1

ϑ
(1)
±1 −

2 cos2 Θ2 + 2 cosΘ2 + 1
2 sin3 Θ2

ϑ
(2)
±1 ±

iAB

2 sin2 Θ2

ϕ
(1)
±1,

in which the linearized term for ϑ
(2)
±1 is derived from∫ 2π

0

∂G

∂θ2
(Θ1,Θ2, α, β)dβ = −cos2 Θ2 + 2 cosΘ2 + 1

2 sin3 Θ2

,

17

for the equation (24). Consequently, we have the following linearized matrix for the
first-mode spectra.

d

dt


ϑ

(1)
±1

ϑ
(2)
±1

ϕ
(1)
±1

ϕ
(2)
±1

 = S±


ϑ

(1)
±1

ϑ
(2)
±1

ϕ
(1)
±1

ϕ
(2)
±1

 ,

where

S± =


0 ±iAB

2 sin Θ1 sin Θ2

1
2 sin Θ1

− AB
2 sin Θ1

∓iAB
2 sin Θ1 sin Θ2

0 − AB
2 sin Θ2

1
2 sin Θ2

−2 cos2 Θ1−2 cos Θ1+1
2 sin3 Θ1

− AB
2 sin2 Θ1 sin Θ2

0 ∓iAB
2 sin2 Θ1

− AB
2 sin2 Θ2 sin Θ1

−2 cos2 Θ2+2 cos Θ2+1
2 sin3 Θ2

±iAB
2 sin2 Θ2

0

 .

Suppose that λ+ is the eigenvalue of S+, then λ− = λ̄+ is the eigenvalue of S− due
to S+ = S̄−. Hence, the spectra ϑ

(i)
±1 and ϕ

(i)
±1 are linearly unstable if Re(λ+) > 0.

Let us apply the stability analysis to the examples given in this paper. We com-
pute the eigenvalues of S+ numerically. For the first example in which Θ1 = 0.3π
and Θ2 = 0.5π, the four eigenvalues become λ+ = −0.573599i, 0.5i, 0.36977 +
0.0367995i and −0.36977 + 0.0367995i, which indicates that the first-mode distur-
bance is linearly unstable. As for the second case where Θ1 = π/3 − π/20 and
Θ2 = π/3 + π/20, they are λ+ = 0.839196i, −0.643002i, 0.684347 − 0.980968i and
−0.684347 − 0.980968i. The growth rate of the first-mode spectra for this case is
larger than that for the first example.

Finally, we note that the first-mode spectra are not always linearly unstable.
Figure B1 shows the maximum of the real part of the four eigenvalues of S+, in
which we fix Θ1 = 0.3π and change Θ1 < Θ2 < π. For Θ2 < Θc ≈ 0.62π, the
two eigenvalues are pure imaginary numbers and the other two have non-zero real
parts. However, for Θ2 > Θc, all the eigenvalues become pure imaginary numbers
and thus the first-mode spectra are neutrally stable.

References

[1] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation algorithm”,
Nature, vol. 324, pp. 446–449, 1986.

[2] G.-H. Cottet and P. D. Koumoutsakos, “Vortex methods, theory and practice”,
Cambridge Univ. Press, 1994.

[3] M. T. DiBattista and L. M. Polvani, “Barotropic vortex pairs on a rotating
sphere”, J. Fluid Mech., vol. 358, pp. 107–133, 1998.

[4] C. I. Draghicescu, “An efficient implementation of particle methods for the
incompressible Euler equations”, SIAM J. Numer. Anal., vol. 31 No. 4, pp.
1090-1108, 1994.

[5] C. I. Draghicescu and M. Draghicescu, “A fast algorithm for vortex blob inter-
actions”, J. Comput. Phys., vol. 116, pp. 69–78, 1995.

[6] D. G. Dritschel, “Contour dynamics/surgery on the sphere”, J. Comput. Phys.,
vol. 79, pp.477-483, 1988.

[7] D. G. Dritschel and L. M. Polvani, “The roll-up of vorticity strips on the surface
of a sphere”, J. Fluid Mech., vol. 234, pp. 47–69, 1992.

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ea

l p
ar

t o
f t

he
 e

ig
en

va
lu

e

Θ2 (x π)

Figure B1: Maximum real part among the eigenvalues λ+ of the linearized matrix
S+ for Θ2 ∈ (Θ1, π) with Θ1 = 0.3π.

[8] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations”, J.
Comput. Phys., vol. 73, pp. 325–348, 1987.

[9] L. Greengard and V. Rokhlin, “Rapid evaluations of potential fields in three di-
mensions”, Springer Lecture Notes in Mathematics, vol. 1360, Springer, Berlin,
pp. 121–141, 1988.

[10] J. Goodman, T. Y. Hou and J. Lowengrub, “Convergence of the point vortex
method for the 2-D Euler equations”, Comm. Pure Appl. Math., vol. 43, pp.
415–430, 1990.

[11] Y. Kimura and H. Okamoto, “Vortex motion on a sphere”, J. Phys. Soc. Japan,
vol. 56, pp, 4203–4206, 1988.

[12] C.C. Lim and J. Nebus, “Vorticity, Statistical Mechanics, and Monte Carlo
Simulation”, Springer Monographs in Mathematics, Springer-Verlag, New
York, 2006.

[13] T. Y. Hou, J. Lowengrub and R. Krasny, “Convergence of a point-vortex
method for vortex sheets”, SIAM J. Numer. Anal., vol. 28, pp. 308–320, 1991.

[14] R. Krasny, “A study of singularity formation in a vortex sheet by the point-
vortex approximation”, J. Fluid Mech., vol. 167, pp. 65–93, 1986.

[15] R. Krasny, “Desingularization of periodic vortex sheet roll-up”, J. Comput.
Phys, vol. 65, pp. 292–313, 1986.

[16] K. Lindsay and R. Krasny, “A particle method and adaptive treecode for vortex
motion in three-dimensional flow”, J. Comput. Phys., vol. 172, pp. 879–907,
2001.

19

[17] P. K. Newton, “The N -vortex problem, analytical techniques”, Springer-
Verlag, 2001.

[18] P. K. Newton and T. Sakajo, “The N -vortex problem on a rotating sphere. III.
Ring configurations coupled to a background field”, Proc. R. Soc. A, vol. 463,
pp. 961–977, 2007.

[19] L. M. Polvani and D. G. Dritschel, “Wave and vortex dynamics on the surface
of a sphere”, J. Fluid Mech., vol. 255, pp. 35–64, 1993.

[20] T. Sakajo and H. Okamoto, “An application of Draghicescu’s fast summation
method to vortex sheet motion”, J. Phys. Soc. Japan, vol 67, No. 2, pp.462–470,
1998.

[21] T. Sakajo, “Numerical computation of a three-dimensional vortex sheet in a
swirl flow”, Fluid Dyn. Res., vol. 28, pp.423–448, 2001.

[22] T. Sakajo, “Motion of a vortex sheet on a sphere with pole vortices”, Phys.
Fluids, vol. 16, pp. 717–727, 2004.

20

