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Chaotic motion of the N-vortex problem on a sphere: II. Saddle centers in
three-degree-of-freedom Hamiltonians

Takashi Sakajo1, ∗ and Kazuyuki Yagasaki2
1Department of Mathematics, Hokkaido University, Sapporo 060-0810, JAPAN

2Department of Mechanical and Systems Engineering, Gifu University, Gifu 501-1193, JAPAN

This paper deals with complicated behavior in the N = 8n vortex problem on a sphere, which is
reduced to three-degree-of-freedom Hamiltonian systems. In the reduced Hamiltonians, the polyg-
onal ring configuration of the point vortices becomes a saddle-center equilibrium which has two
hyperbolic and four center directions in some parameter regions. Near the saddle-center, there ex-
ists a normally hyperbolic, locally invariant manifold including a Cantor set of whiskered tori. For
N = 8 we numerically compute the stable and unstable manifolds of the locally invariant manifold
with assistance of the center manifold technique, and show that they intersect transversely and
complicated dynamics may occur. Direct numerical simulations are also given to demonstrate our
numerical analysis.

PACS numbers: 47.10.A-,47.15.ki

I. INTRODUCTION

We consider the motion of N point vortices with the
unit strength on a sphere. Their equations of motion are
derived from the two-dimensional incompressible Euler
equations on the sphere by assuming that the vorticity is
concentrated at discrete points (Θm,Ψm), m = 1, . . . , N ,
in the spherical coordinates. They can be written in a
Hamiltonian system with N degrees of freedom [14]:

q̇m =
∂H

∂pm
, ṗm = − ∂H

∂qm
, (1)

where (qm, pm) = (Ψm, cosΘm) are the symplectic vari-
ables. The Hamiltonian H is given by

H = − Γn

4π

N∑
m=1

log(1 − cosΘm) − Γs

4π

N∑
m=1

log(1 + cosΘm)

− 1
4π

N∑
m=1

N∑
m<j

log(1 − cos γmj), (2)

in which γmj denotes the central angle between the
mth and jth point vortices such that cos γmj =
cosΘm cosΘj − sinΘm sinΘj cos(Ψm −Ψj). The param-
eters Γn and Γs represent the strengths of the point vor-
tices fixed at the north and the south poles of the sphere,
which are introduced to incorporate with an effect of ro-
tation of the sphere locally. The N -vortex problem on the
sphere including (1) has been extensively studied when
N is small. For instance, the integrable 3-vortex prob-
lem and an integrable 4-vortex problem were discussed
in detail [10, 18, 22]. See [14] for further references on
this topic.

Now, we focus on the evolution of the polygonal ring
configuration, called the N -ring, where the point vortices
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are equally spaced along a line of latitude when N is
not small. The configuration is of significance since such
coherent vortex structure is often observed in numeri-
cal simulations on planetary flows [16, 19]. The N -ring,
Θm = θ0 and Ψm = 2πm/N , is a relative equilibrium
of (1) rotating with a constant speed in the longitudinal
direction．Such relative fixed configurations with special
symmetries were investigated in a systematic way [11]
and its stability has been investigated very well [2, 3, 20].
Here we are interested in how the N -ring evolves when
it becomes unstable. In general, it is difficult to describe
the evolution of many point vortices since the degree of
freedom of the system is quite large. However, the Hamil-
tonian system (1) can often be reduced to a lower dimen-
sional system in a systematic way [21].

For N = 5n, 6n with n ∈ N, using the reduction
method, we obtain a two-degree-of-freedom Hamiltonian
system that has a saddle-center equilibrium with two hy-
perbolic and two center directions for some regions of
Γn = Γs. Near the saddle-center there is a one-parameter
family of periodic orbits by the Lyapunov center theo-
rem [12], and their stable and unstable manifolds may
intersect transversely so that horseshoe-type chaotic dy-
namics occurs. We applied a global perturbation tech-
nique [26] for N = 6 and used a numerical technique [29]
for N = 5, 6 to detect such transverse intersections [23].
These treatments can also be performed for the general
cases of N = 5n, 6n.

In the present paper, as a sequel to the previous work
[23], we study complicated dynamics of the N = 8n vor-
tex problem when the N -ring is a saddle-center. We
first reduce (1) to a three-degree-of-freedom Hamilto-
nian system. Near the saddle-center, instead of a one-
parameter family of periodic orbits, there is a normally
hyperbolic, locally invariant manifold including a Cantor
set of whiskered tori, and its stable and unstable man-
ifolds may also intersect, so that complicated dynamics
can occur [28] (see also Sec. II). An analytical technique
similar to that of [26] was also developed to treat this
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situation in [28] but is not applicable in our case. So we
use the numerical technique of [29] with assistance of the
center manifold technique [7] to show numerically that
such intersection really occurs.

This paper is organized as follows: In Sec. II, we ap-
ply the reduction method of [21] to (1) for N = 8n and
discuss complicated dynamics resulting from intersection
between the stable and unstable manifolds of the locally
invariant manifold. In Sec. III, we introduce some sym-
plectic transformations to make the problem amenable to
our analysis. In Sec. IV we describe the center manifold
calculation and numerical technique to compute the sta-
ble and unstable manifolds of the locally invariant man-
ifold. In Sec. V we perform the numerical analysis for
N = 8 and give direct numerical simulations that support
our analytical results relying on numerics. We conclude
with a summary and comments in Sec. VI.

II. INVARIANT DYNAMICAL SYSTEMS IN
THE N = 8n VORTEX PROBLEM

Linear stability analysis of the N -ring [20] gives the
explicit representation of the eigenvalues. Let λ±

m, m =
0, . . . , N , denote the eigenvalues for the N -ring equilib-
rium. Suppose that N is even and set N = 2M . Since
λ±

0 = 0 and λ±
m = λ±

N−m, we see that λ±
M are simple and

λ±
m are double for m = 1, · · · ,M − 1. Since

(
λ±

i

)2
<(

λ±
j

)2
for 1 ≤ i < j ≤ M , we have

(
λ±

k

)2
< 0 <

(
λ±

k+1

)2

for some k so that λ±
m are neutrally stable for m ≤ k and

λ+
m (resp. λ−

m) is unstable (resp. stable) for m > k.
We define two transformations for the configura-

tion (Θ1, . . . , ΘN ,Ψ1, . . . , ΨN ) ∈ PN = [0, π]N ×
(R/2πZ)N . The first transformation rotates the point
vortices by the degree 2πp/N , which is denoted by σp :
(Θ1, . . . , ΘN ,Ψ1, . . . , ΨN ) 7→ (Θ′

1, . . . , Θ
′
N , Ψ′

1, . . . , Ψ
′
N ),

where Θ′
m = ΘN−p+m, Ψ′

m = ΨN−p+m + 2πp/N for
m = 1, · · · , p and Θ′

m = Θm−p, Ψ′
m = Ψm−p + 2πp/N

for m = p + 1, · · · , N . The second one is the pole rever-
sal transformation that reverses the north and the south
poles around the x-axis; For N = 2M , it is given by πe :
(Θ1, . . . , ΘN ,Ψ1, . . . , ΨN ) 7→ (Θ′′

1 , . . . , Θ′′
N ,Ψ′′

1 , . . . , Ψ′′
N ),

where Θ′′
1 = π − Θ1, Ψ′′

1 = Ψ1, Θ′′
m = π − ΘN−m+2 and

Ψ′′
m = 2π + 2Ψ1 − ΨN−m+2 for m 6= 1.
Let φ±

m, m = 1, · · · ,M − 1, be the linear independent
eigenvectors to λ±

m, which were also given explicitly in
[20]. Then we have the following result [21].

Proposition 1. Let N = 2M = pq (p, q ∈ N) and
let Γn = Γs. If σpπeX(0) = X(0) for X ∈ PN , then
σpπeX(t) = X(t) for t ≥ 0. Furthermore, the set of

X = Xe +
∑

k

(
b+
k φ+

kq + b−k φ−
kq

)
, b±k ∈ R, (3)

is invariant with respect to σpπe, where Xe represents the
N -ring at the equator.

Note that the dimension of the vector space (3) is
[(M−1)/q] since the number of eigenvectors φ±

m is M−1,
where [r] denotes the maximum integer that is less than
or equals to r. Henceforth we set Γn = Γs = Γ.

Applying Proposition 1 to the case of N = 8n, i.e. p =
8, q = n and M = 4n, we obtain a reduced Hamiltonian
system with three degrees of freedom in which λ±

n , λ±
2n

and λ±
3n are eigenvalues for an equilibrium corresponding

the N ring. Moreover, for a certain region of Γ, we have
(λ±

n )2 <
(
λ±

2n

)2
< 0 <

(
λ±

3n

)2
so that the equilibrium

becomes a saddle-center since λ±
3n are real with λ−

3n <
0 < λ+

3n while λ±
n and λ±

2n are purely imaginary.
In this situation, we can apply a slight modification of

discussions given in [28]. The saddle-center has a four-
dimensional center manifold, which we regard as a nor-
mally hyperbolic, locally invariant manifold M having
five-dimensional stable and unstable manifolds W s,u(M ).
Here “normal hyperbolicity” means that the expansion
and contraction rates of the flow normal to M dominate
those tangent to M , and “local invariance” means that
some trajectories starting in M may escape M through
its boundary ∂M . See, e.g., [25] for the details of these
concepts. Using the normal form of Graff [6] and ap-
plying the KAM theorem [13] (see also [17]), we can
show that there exists a Cantor set of invariant tori near
the saddle-center. Each invariant torus T is whiskered
and has three-dimensional stable and unstable manifolds
W s(T ) and W u(T ), which are contained by W s(M ) and
W u(M ), respectively.

Suppose that W s(M ) and W u(M ) intersect trans-
versely. Then for any K > 2, there may be a transition
chain of K whiskered tori, Tj , j = 1, . . . ,K, on M near
the saddle-center, such that W u(Tj) intersects W s(Tj+1)
for j = 1, . . . ,K − 1. It follows that there exist trajecto-
ries starting near T1, passing near Tj , j = 2, . . . ,K − 1,
in turn and arriving near TK : “diffusion motions” occur.
Moreover, there may be a pair of distinct heteroclinic cy-
cles, {T0, T

j
1 , . . . , T j

Kj
, T0} with Kj ≥ 1, j = 1, 2 among

the transition chains. So we can find trajectories which
start in a neighborhood of T0 and return there repeatedly
after they pass near T 1

1 , . . . , T 1
K1

or near T 2
1 , . . . , T 2

K2
.

These trajectories can be assigned the symbols ‘1’ or ‘2’
depending whether they pass near T 1

1 , . . . , T 1
K1

or near
T 2

1 , . . . , T 2
K2

. Thus, they can be characterized by the
Bernoulli shift and hence chaotic dynamics occurs. This
also implies that chaotic drift of trajectories occurs in the
center directions of the saddle-center. See [28] for more
details.

Thus, the transverse intersection between W s(M ) and
W u(M ) indicates complicated dynamics. We especially
note that the complicated motions are not confined to a
small neighborhood of the saddle-center but rather global
ones. In the following, we focus on a special case of N = 8
and numerically show the occurrence of such intersection
in the reduced system since the analytical technique of
[28] is not applicable. Before that, as in [23], we modify
the reduced system by symplectic transformations so that
it becomes amenable to our analysis, in the next section.
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III. SYMPLECTIC TRANSFORMATIONS FOR
N = 8

Since σ8 is the identity map for N = 8 so that
σ8πe = πe, we reduce the system (1) via Proposition 1 to
a πe-invariant three-degree-of-freedom Hamiltonian sys-
tem whose phase space (3) is represented by

X = Xe +
3∑

k=1

(b+
k φ+

k + b−k φ−
k ), b±1,2,3 ∈ R. (4)

As in [23], introducing the generating function

W (Pm, qm) = P1q1 +
8∑

m=2

Pm(qm − qm−1), (5)

we define a symplectic transformation (qm, pm) 7→
(Qm, Pm). It follows directly from the definition of πe

that πe-invariant orbits satisfy

q1 = 0, q5 = π, qm + q10−m = 2π,

p1 = p5 = 0, pm + p10−m = 0
(6)

for m = 2, 3, 4. Since in the symplectic transformation
generated by (5)

q2 = 2π − Q3 − Q4 − Q5, q3 = 2π − Q4 − Q5,

q4 = 2π − Q5, p2 = −P3, p3 = P3 − P4,

p4 = P4 − P5,

(7)

the reduced Hamiltonian system is represented by
(Qm, Pm) with m = 3, 4, 5 and the 8-ring becomes Qm =
π/4 and Pm = 0.

We further introduce the symplectic transformation

Q3 = 1
4 (π + (1 +

√
2)x1 + 2y1 + (1 −

√
2)y2),

Q4 = 1
4 (π − (1 +

√
2)x1 + 2y1 − (1 −

√
2)y2),

Q5 = 1
4 (π + x1 − 2y1 + y2),

P3 =x2 + y3 + y4,

P4 =(1 −
√

2)x2 + y3 + (1 +
√

2)y4,

P5 =(2 −
√

2)x2 + (2 +
√

2)y4,

(8)

so that the 8-ring becomes the origin O and the
eigenspaces for the saddle and center eigenvalues cor-
respond to the x-plane and y-hyperplane, respectively.
Thus, we finally obtain the Hamiltonian system

ẋ = J1DxH(x, y), ẏ = J2DyH(x, y), (9)

where Jm is the 2m × 2m symplectic matrix,

Jm =
(

0 idm

−idm 0

)
with idm the m × m identity matrix. The expression
of H(x, y) is easily obtained by substituting (7) and (8)

into (2) under the constraints (6), but it is too lengthy
to present in the paper.

Let us assume that 5/2 ≤ Γ ≤ 4. Then the 8-ring
corresponds to a saddle-center equilibrium in (9) since
(λ±

1 )2 < (λ±
2 )2 < 0 < (λ±

3 )2. Moreover, there exists an
unstable direction associated with λ+

4 > 0 and normal to
the invariant space (4). However, we expect that some
solutions of the full system (1) exhibit similar motions
for a period repeatedly when chaotic motions occur in
the reduced system (9), since by the Poincaré recurrence
theorem [1], they must repeatedly return in a neighbor-
hood of the invariant space if they start there.

IV. NUMERICAL COMPUTATION OF W s,u(M )

Now we describe our approach for numerical compu-
tation of W s,u(M ) in (9) when M is in a small neigh-
borhood of O. Other methods for such computation are
also available [9, 24], but ours is simpler and easier to
perform and provides precise results, as we see below.

We begin with a standard asymptotic expansion
method [7] to compute the center manifold of the saddle-
center at the origin approximately up to O(|y|3) as

M = {(x, y) ∈ R2 × R4 |x = h(y)}, (10)

where h(y) = (h1(y), h2(y))T with

h1(y) =b
(1)
1100y1y2 + b

(1)
0011y3y4 + b

(1)
0300y

3
2 + b

(1)
2100y

2
1y2

+ b
(1)
0120y2y

2
3 + b

(1)
0102y2y

2
4 + b

(1)
1011y1y3y4,

h2(y) =b
(2)
1001y1y4 + b

(2)
0110y2y3 + b

(2)
0003y

3
4 + b

(2)
2001y

2
1y4

+ b
(2)
0201y

2
2y4 + b

(2)
0021y

2
3y4 + b

(2)
1110y1y2y3

(11)

(see Appendix A for the coefficients in (11)). Thus, we
can approximate (9) near the origin as

ξ̇ = J1D2
xH4(h(y),y)ξ, ẏ = J2DyH4(h(y), y), (12)

where H4(x, y) is the fourth-order polynomial approxi-
mation of the Hamiltonian H(x, y) and ξ = x − h(y).

Using the numerical technique of [29] with assistance of
the approximation (12), we compute the unstable mani-
fold W u(M ) as follows. We first numerically solve (12)
on a time-interval [−T, 0] to obtain a small trajectory
ȳ(t) on M near the origin O and its one-dimensional
unstable subspace Eu ⊂ R2 for ȳ(t) at t = 0 such that
ξ(t) → 0 as t → −∞ if ξ(0) ∈ Eu. Let eu be a unit
vector spanning Eu, which is approximated as

eu ≈ ξ(0)/|ξ(0)|, ξ(T̄ ) = ξ0 (13)

if T̄ is large and (ξ0,0) is the unstable eigenvector of
O in (9), as shown in [29]. We compute a trajectory
(xu(t), yu(t)) on W u(M ) by solving (9) under the bound-
ary conditions

xu(0) − h(yu(0)) = εueu, yu(0) = ȳ(0),
(xu(Tu), yu(Tu)) = (xu

0 , yu
0 ),

(14)
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FIG. 1: Intersection of the unstable and stable manifolds
W s,u(M ) with the section {x1 = y2 = y4 = 0} or {y2 =
y3 = y4 = 0} for Γ = 3 on the energy level ∆H = 5 × 10−3:
(a) Their projections onto the (y1, y3)-plane; (b) onto the x-
plane. The solid and broken lines represent the stable and
unstable manifolds, respectively. In plate (b), ‘•’ represents
the saddle-center at the origin.

where εu ¿ 1 and Tu are positive constants, and
(xu

0 , yu
0 ) ∈ R2 × R4 represents an approximate point on

W u(M ). Thus, numerical continuation of the solutions
(ξ(t), ȳ(t)) and (xu(t), yu(t)) for the boundary value
problem (9), (12) and (14) gives W u(M ). Similarly, we
compute W s(M ) by continuing a solution (ξ(t), ȳ(t)) of
(12) on [0, T̄ ] and a solution (xs(t), ys(t)) of (9) satisfying
the boundary conditions

xs(0) − h(ys(0)) = εse
s, ys(0) = ȳ(0),

(xs(−Ts), ys(−Ts)) = (xs
0, y

s
0),

(15)

where es ∈ R2 is a unit vector spanning the one-
dimensional stable subspace Es ⊂ R2 for ȳ(t) at t = 0
such that ξ(t) → 0 as t → ∞ if ξ(0) ∈ Es, where εs ¿ 1
and Ts are positive constants, and (xs

0, y
s
0) ∈ R2 × R4

represents an approximate point on W s(M ). Note that
as in (13), es is approximated as

es ≈ ξ(0)/|ξ(0)|, ξ(−T̄ ) = ξ0 (16)

if T̄ is large and (ξ0,0) is the stable eigenvector of O in
(9).

To carry out the above computations of continuation,
we use the computer tool “AUTO97” [5]. As the start-
ing ones for the continuation, we take solutions of the
linearized system for (12) at the origin (with T̄ and Ts,u

small), as in [23]. In the continuation T̄ , Ts,u, xs,u
0 , ys,u

0

or ȳ(±T̄ ) are chosen as the free parameters.

V. NUMERICAL RESULTS

Using the method of Sec. IV, we compute the stable
and unstable manifolds W s,u(M ) in the reduced three-
degree-of-freedom Hamiltonian system (9) for N = 8.
Figure 1 shows an example of the numerical results for
Γ = 3 and ∆H = H − H(0,0) = 5 × 10−3. We see that
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FIG. 2: Approximately computed orbits of the Poincaré map
on the locally invariant manifold M . The fourth-order ap-
proximate and exact Hamiltonian are used in plates (a) and
(b), respectively.
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FIG. 3: Orbit of the Poincaré map: (a) Its projections onto
the x-plane; (b) onto the (y1, y3)-plane when it enters in a
neighborhood of M . In plate (b), ‘+’ represents for 1st-20th
visits, ‘•’ for 21st-40th, and ‘4’ for 41st-60th.

these manifolds intersect transversely so that compli-
cated dynamics may occur in (9), as described in Sec. II.

To demonstrate the occurrence of such complicated dy-
namics, we carry out direct numerical simulations using
an approach similar to that of [23] and a computer soft-
ware named “Dynamics” [15] with an adoption of a code
named “DOP853” [8]. The code is based on the explicit
Runge-Kutta method of order 8 by Dormand and Prince
[4], a fifth order error estimator with third order correc-
tion is utilized and a dense output of order 7 is included.
A small tolerance of 10−8 is chosen in the computations
so that the numerical results are very accurate although
the method is not symplectic. Below we set Γ = 3 and
∆H = 5 × 10−3 as in Fig. 1, and often use the Poincaré
map for the section {y4 = 0, ẏ4 > 0}.

Figure 2 shows approximately computed orbits of the
Poincaré map on M . Here the fourth-order approximate
and exact Hamiltonian are used in Figs. 2(a) and (b),
respectively, while the third-order approximation is used
for M in both figures. We see that both results are al-
most the same and that all the computed orbits construct
invariant tori. This also implies that our approximations
made for computation of W s,u(M ) are appropriate.

Figure 3 shows a numerically computed or-
bit of the Poincaré map starting at (x, y) =
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(0.001, 0, 0.0861491, 0, 0.1, 0). Its projection onto
the x-plane is plotted with 20 000 points in Fig. 3(a),
and its projection onto the (y1, y3)-plane when it enters
in a neighborhood of M , {|x − h(y)| < 0.01}, is plotted
with 60 points in Fig. 3(b), where different symbols are
used for every 20 visits. Note that the points of Fig. 3(a)
are confined to some region since the energy level set
is bounded. We observe that the orbit does not only
exhibit a chaotic motion but also randomly drifts in
the center directions of the saddle-center, as described
in Sec. II. A numerical observation of such behavior
in a three-degree-of-freedom Hamiltonian system was
reported in [27] earlier.

Figure 4 shows a chaotic motion of the eight point
vortices on the sphere, which is obtained by a solution
of the reduced system (9) and corresponds to the orbits
in Fig. 3. For comparison, we show a chaotic motion of
the full system (1) without the πe-symmetry in Fig. 5.
Although the invariant space (4) is unstable, we see that
the chaotic trajectory in the full system evolves like that
in the reduced system, as predicted by the Poincaré re-
currence theorem [1] (See Sec. III and also Sec. 7 of [23]).

VI. CONCLUSIONS

In this paper we have revealed that complicated dy-
namics exists in the N = 8n vortex problem on a sphere.
Our numerical analysis with assistance of the center man-
ifold technique showed that the stable and unstable man-
ifolds of a locally invariant manifold including a Cantor
set of whiskered tori near the saddle-center N -ring equi-
librium intersect transversely in the reduced Hamiltonian
system. We gave numerical simulation results to demon-
strate that complicated behavior resulting from such in-
tersection occur in the Euler flow as well as in the re-
duced system. Thus, our dynamical systems approach
sheds light on the new interesting feature of the impor-
tant fluid problem, as in [23]. Finally, we remark that
our treatment is also valid for N = 7n as well as N = 8n
although the necessary center manifold calculations are
tedious, and that the numerical technique is applicable to
a large class of Hamiltonian systems with saddle-centers.

APPENDIX A: COEFFICIENTS OF (11)

Let

β1 =16Γ2 − 54Γ − 45,

β2 =128Γ4 − 1232Γ3 + 1140Γ2 + 6300Γ + 3375,

β3 =256Γ4 − 2304Γ3 + 7740Γ2 − 8100Γ − 10125,

β4 =8(2Γ − 15)β3.

The second-order coefficients are given by

b
(1)
1100 = − 4Γ2 + 60Γ − 279

4β1
,

b
(1)
0011 = − 2(4Γ3 − 60Γ2 + 171Γ + 45)

β1
,

b
(2)
1001 =

5(4Γ2 − 36Γ + 9)
4β1

, b
(2)
0110 =

5(4Γ2 − 24Γ + 99)
16β1

;

and the third-order coefficients are given by

b
(1)
0300 = − 1

1536β2
(176Γ4 − 26684Γ3 + 88560Γ2

− 145215Γ + 788400),

b
(1)
2100 =

1
β4

(328Γ5 − 12528Γ4 + 98154Γ3

− 254880Γ2 − 151875Γ + 1245375),

b
(1)
0120 = − 1

β4
(432Γ6 − 2376Γ5 − 28588Γ4 + 431550Γ3

− 2477700Γ2 + 6773625Γ − 7948125),

b
(1)
0102 =

1
16β2

(80Γ5 − 356Γ4 + 11976Γ3 − 81633Γ2

+ 111150Γ + 83700),

b
(1)
1011 =

1
β3

(136Γ5 − 1464Γ4 + 8658Γ3 − 21942Γ2

+ 36855Γ − 46575),

b
(2)
0003 =

5
16β2

(16Γ5 + 44Γ4 + 2840Γ3 − 12813Γ2

− 10350Γ + 2700),

b
(2)
2001 = − 1

β4
(1304Γ5 − 8736Γ4 + 8190Γ3 + 143100Γ2

− 658125Γ + 151875),

b
(2)
0201 =

15(16Γ4 + 1228Γ3 − 7216Γ2 + 18915Γ − 18000)
512β2

,

b
(2)
0021 =

1
β4

(656Γ6 − 20664Γ5 + 185100Γ4 − 757710Γ3

+ 1479600Γ2 − 1387125Γ + 1366875),

b
(2)
1110 =

1384Γ4 − 8568Γ3 − 342Γ2 + 196830Γ − 431325
32β3

.
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FIG. 4: Chaotic motion of the eight point vortices in the πe

invariant system, which corresponds to the orbit in Fig. 3.
FIG. 5: Chaotic motion of the eight point vortices in the full
system (1).
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