Instructions for use

Title

Genetic and antigenic analyses of a Puumala virus isolate as a potential vaccine strain

Author(s)

Abu Daud, Nur Hardy; Kariwa, Hiroaki; Tkachenko, Evgeniy; Dzagurnova, Tamara; Medvedkina, Olga; Tkachenko, Peter; Ishizuka, Mariko; Seto, Takahiro; Miyashita, Daisuke; Sanada, Takahiro; Nakauchi, Mina; Yoshii, Kentaro; Maeda, Akihiko; Yoshimatsu, Kumiko; Arikawa, Jiro; Takashima, Ikuo

Citation

Japanese Journal of Veterinary Research, 56(3): 151-165

Issue Date

2008-11

DOI

10.14943/jjvr.56.3.151

Doc URL

http://hdl.handle.net/2115/35115

Type

bulletin (article)

File Information

56-3_p151-165.pdf
Genetic and antigenic analyses of a Puumala virus isolate as a potential vaccine strain

Nur Hardy Abu Daud1), Hiroaki Kariwa1,*, Evgeniy Tkachenko2), Tamara Dzagurnova2), Olga Medvedkina2), Petr Tkachenko2), Mariko Ishizuka1), Takahiro Seto1), Daisuke Miyashita1), Takahiro Sanada1), Mina Nakauchi1), Kentaro Yoshii1), Akihiko Maeda3), Kumiko Yoshimatsu4), Jiro Arikawa4), and Ikuo Takashima5)

1)Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
2)Russian Academy of Medical Sciences, Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow 142782, Russia.
3)Department of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
4)Department of Microbiology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan

Received for publication, October 23, 2008; accepted, November 18, 2008

Abstract

Puumala virus (PUUV), a causative agent of hemorrhagic fever with renal syndrome (HFRS), is prevalent in Europe and European Russia. No vaccine has been developed for PUUV-associated HFRS, primarily because of the low viral yield in cultured cells. A PUUV strain known as DTK/Ufa-97 was isolated in Russia and adapted for growth in Vero E6 cells maintained in serum-free medium. The DTK/Ufa-97 strain produced a higher viral titer in serum-free medium, suggesting that it may prove useful in the development of an HFRS vaccine. When PUUV-infected Vero E6 cells were grown in serum-free medium, the DTK/Ufa-97 strain yielded more copies of intracellular viral RNA and a higher viral titer in the culture fluid than did the Sotkamo strain. Phylogenetic analysis revealed that PUUVs can be classified into multiple lineages according to geographical origin, and that the DTK/Ufa-97 strain is a member of the Bashkiria-Saratov lineage. The deduced amino acid sequences of the small, medium, and large segments of the DTK/Ufa-97 strain were 99.2% to 100%, 99.3% to 99.8%, and 99.8% identical, respectively, to those of the Bashkirian PUUV strains and 96.9%, 92.6%, and 97.4% identical, respectively, to those of the Sotkamo strain, indicating that the PUUVs are genetically diverse. However, DTK/Ufa-97 and other strains of PUUV exhibited similar patterns of binding to a panel of monoclonal antibodies against Hantaan virus. In addition, diluted antisera (i.e., ranging from 1:160 to 1:640) specific to three strains of PUUV neutralized both homologous and heterologous viruses. These results suggest that the DTK/Ufa-97 strain is capable of extensive growth and is antigenically similar to genetically distant strains of PUUV.

Key words: hantavirus, hemorrhagic fever with renal syndrome, Puumala virus, vaccine
Introduction

Hantaviruses belong to the genus Hantavirus, within the family Bunyaviridae. These viruses cause two zoonoses: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Hemorrhagic fever with renal syndrome is caused by Hantaan virus (HTNV), Seoul virus (SEOV), Puumala virus (PUUV), Dobrava-Belgrade virus (DOBV), and Amur virus (AMRV), and occurs primarily in Asia and Europe. HPS occurs in the Americas and is caused by Sin Nombre virus (SNV), Andes virus (ANDV) and other hantaviruses14,24,26. Hantaviruses are transmitted via aerosolized excretions of rodents in the family Muridae. Their viral genomes contain large (L), medium (M), and small (S) segments of negative-stranded RNA, which encode a viral RNA-dependent RNA polymerase, a glycoprotein precursor, and a nucleocapsid protein (NP), respectively27.

Five viruses are known to cause human HFRS in Russia. Specifically, PUUV and DOBV cause HFRS in European Russia18,21,29,36, while HTNV, SEOV, and AMRV cause HFRS in Far Eastern Russia19. Sporadic cases of PUUV-and DOBV-induced HFRS were recently detected in the western Siberian regions of Russia35. The principal hosts for HTNV, AMRV, SEOV, and PUUV are Apodemus agrarius, Apodemus peninsulae, Rattus norvegicus, and Myodes glareolus, respectively. Detailed phylogenetic analyses of strains from Europe have shown that DOBV strains derived from Apodemus flavicollis form a separate evolutionary lineage (i.e., DOBV-Af), while strains derived from A. agrarius are more diverse. Strains from central Europe and central European Russia form the DOBV-Aa lineage, and are distinct from the Saaremaa strains of northeastern Europe10,11. In the Sochi district of southern Russia, a previously unknown DOBV variant (i.e., DOBV-Ap) was identified in Apodemus ponticus, a novel hantavirus host, and determined to cause HFRS12,32. Although the DOBV strains from Apodemus hosts in European Russia and Europe share high amino acid sequence similarity, phylogenetic analyses in humans and an animal model reveal that they form separate lineages with distinct virulence traits13. A novel DOBV-Ap lineage associated with A. ponticus emerged in an area south of European Russia, confirming the reputation of DOBV as the most virulent of the European hantaviruses12.

Approximately 200,000 cases of HFRS are reported worldwide each year4, including 150,000 cases in China14,16, 600 to 1,000 cases in Korea8, 1,000 cases in Finland, and 200 cases in Sweden22,33. In Russia, HFRS has the highest incidence and morbidity of all human zoonotic virus infections. Approximately 6,000 to 8,000 clinical cases of HFRS are reported in European Russia every year. Of these, most are caused by PUUV and a smaller fraction are caused by DOBV. As the strains of HFRS in European Russia are caused by several distinct hantaviruses and vary in severity, it is inappropriate to refer to the disease as ‘nephropathia epidemica’. Consequently, the WHO Working Group proposed the term ‘hemorrhagic fever with renal syndrome’ to describe similar clinical syndromes in Russia, Europe and Asia34.

HFRS can be prevented by reducing exposure to live rodents and their excreta. However, rodent control measures are expensive and difficult to maintain over long periods, as it would be impossible to completely eradicate the viral hosts. Hence, immunization would be the most effective way to decrease HFRS morbidity in endemic regions of Russia.

Several commercial hantavirus vaccines are produced in China and Korea4,37. These vaccines are effective against HTNV and SEOV infections, but do not provide immunity to antigenically distinct PUUVs. No vaccine has been developed against PUUV, primarily because of the low viral yield in cultured cells. A potential vaccine strain (i.e., DTK/Ufa-97) was isolated from a patient with HFRS during a large 1997 outbreak in the Bashkirdia region of Russia23. High titers of the virus were prepared in Vero E6 cells grown in serum-free medium (SFM). Here, we perform genetic and antigenic characterizations of the DTK/Ufa-97 strain.

Characterization of a Puumala virus isolate from Russia
Materials and Methods

Cell lines and culture media: Vero E6 cells were purchased from American Type Culture Collection (Manassas, VA, USA) and cultivated in Eagle’s minimum essential medium (MEM; Invitrogen, Carlsbad, CA, USA) supplemented with 2 mM L-glutamine (Sigma, St. Louis, MO, USA), 10% fetal bovine serum (FBS), 100 IU/ml penicillin, and 100 µg/ml streptomycin (penicillin-streptomycin) (Cambrex, East Rutherford, NJ, USA). Vero E6 cells were adapted to SFM via growth in virus production (VP)-SFM (Invitrogen) containing 2 mM L-glutamine for 2 months.

Viral strains: The potential vaccine strain (i.e., DTK/Ufa-97) was isolated in 1997 from a deceased HFRS patient in Bashkiria, Russia and was adapted to Vero E6 cells grown in SFM. Two other PUUV strains were used, including a prototype Sotkamo strain that originated from *M. glareolus* in Finland and a Kazan strain that originated from *M. glareolus* in Kazan, Russia. Strains 76-118, SR-11, and H5 were used as representative HTNV, SEOV, and AMRV strains, respectively. All virus strains were propagated in Vero E6 cells prior to use.

Plaque assay: Freshly trypsinized Vero E6 cells (i.e., 1 ¥ 10⁶ cells/well) were seeded into the flat-bottom wells of six-well Multiwell Cell Culture Plates (BD Biosciences, San Jose, CA, USA). The medium was aspirated from the cultures and 0.2 ml aliquots of serial 10-fold viral dilutions were inoculated into the wells. The viruses were allowed to adsorb for 1 hr at 37°C, whereupon 10 ml of an overlay mixture [i.e., Eagle’s MEM “Nissui 1” (Nissui Pharmaceutical Co., Ltd., Ueno, Tokyo, Japan) supplemented with 2 mM L-glutamine (Sigma), 10% FBS, and 1.5% SeaKem GTG Agarose (Cambrex)] was added to each well. After one week, 2 ml of a 0.025% solution of Neutral Red (Wako, Osaka, Japan) in overlay medium was added to each well. The wells were examined for plaques 7 days after staining.

Sampling for analysis of PUUV replication: Vero E6 cells grown in MEM and Vero E6 cells adapted to SFM were used to assess PUUV replication. The cells were infected with DTK/Ufa-97 or Sotkamo and cultured for 21 days. Culture fluids and infected cells were collected at 2, 6, 12, and 21 hours post-infection and at 3, 7, 10, 14, 17, and 21 days post-infection (dpi). The culture medium was changed every 7 days. The collected fluids were centrifuged at 1,200 rpm for 5 min, and the supernatants were stored at -80°C as viral stocks. Infected cells were collected in MEM or SFM using a cell scraper. The cells were then suspended and centrifuged at 1,200 rpm for 5 min. The resulting cell pellets were stored at -80°C until further use.

Indirect immunofluorescence assay: Monoclonal antibodies (MAbs) specific to glycoproteins Gn and Ge of strain HTNV 76-118 were obtained from mouse ascitic fluid and used in indirect immunofluorescence assay (IFA) for the antigenic characterization of DTK/Ufa-97. Hantavirus-infected Vero E6 cells were spotted onto 24 well slides. The slides were incubated for 4 hr at 37°C, fixed in cold acetone for 20 min, washed in phosphate-buffered saline (PBS) and distilled water, air dried, and stored at -40°C until further use. Diluted MAbs (i.e., 1:10 to 1:1,000,000) derived from the hybridoma or ascitic fluids were spotted onto the slides, which were then incubated for 1 hr at 37°C and washed three times with PBS. The slides were then incubated in Alexa Fluor 488-conjugated goat anti-mouse IgG (i.e., final dilution =1:1,000; Invitrogen) for 1 hr at 37°C. The slides were washed and 90% glycerol was applied. The IFA titer of each MAb was expressed as the reciprocal of the maximum antibody dilution that yielded granular and scattered fluorescence in the cytoplasm.

Focus assay and titration of viruses: Approximately 2 ¥ 10⁵ Vero E6 cells/ml MEM (i.e., 0.5 ml/well) were seeded into eight chamber slides (Iwaki, Nihonbashi, Tokyo, Japan), maintained in a CO2 incubator overnight, and infected with serially di-
luted stocks of Sotkamo or DTK/Ufa-97 strains. After adsorption for 1 hr in a CO2 incubator, the virus inoculum was removed and MEM containing 1.5% carboxymethyl cellulose sodium salts (Wako) was layered onto the cells at a concentration of 0.6 ml/well. The cells were then cultured in a CO2 incubator for 14 days at 37°C.

The resulting viral foci were visualized by IFA. Briefly, the cultured Vero E6 cells were washed three times with PBS, fixed with 0.2 ml/well of methanol for 20 min under UV light in a safety cabinet in a BSL3 laboratory. After removing methanol, the slides were thoroughly air-dried, and washed with PBS. The slides were then incubated in anti-PUUV hamster serum (i.e., final dilution=1:1,000) for 1 hr. After washing, 90% glycerol was applied to the slides, and the viral foci were counted and measured under a fluorescence microscope. The focus diameters were expressed in µm, and the viral titers were expressed as focus-forming units/ml (i.e., ffu/ml).

Focus reduction neutralization test: The endpoint titers of the neutralizing antibodies were determined using focus reduction neutralization test (FRNT). Hamster immune sera specific to PUUV strains DTK/Ufa-97, Kazan, and Sotkamo; and mouse immune sera specific to HTNV strain 76-118, AMRV strain H5, and SEOV strain SR-11 were used to compare the antigenicity of DTK/Ufa-97 to that of other PUUV and hantavirus strains. Serial 2-fold dilutions of immune sera (30 µl) were mixed with equal volumes of viral stock (i.e., 60 ffu /30 µl) and incubated for 1 hr at 37°C. The mixture was then used to inoculate Vero E6 cell monolayers grown in 96-well flat-bottom plates at a concentration of 50 µl/well (Nunc TM, Roskilde, Denmark). After adsorption for 1 hr at 37°C, the inocula were removed and MEM containing 1.5% carboxymethyl cellulose sodium salts was layered onto the cells (i.e., 200 µl/well). The cells were cultured in a CO2 incubator for 7 days at 37°C, washed with PBS, fixed with methanol, and air-dried.

The fixed cells were incubated with MAb E5/G6 (i.e., final dilution=1:200) for 1 hr at 37°C. After three washes with PBS, the cells were incubated with Alexa Fluor 488-conjugated goat anti-mouse IgG (i.e., final dilution=1:1,000) for 1 hr at 37°C. The stained foci were counted under a fluorescence microscope, and the FRNT titer was defined as the highest dilution of serum associated with at least an 80% reduction in focus formation.

RNA isolation and reverse transcription: Total RNA was isolated from DTK/Ufa-97-infected Vero E6 cells using Isogen (Nippon Gene), according to the manufacturer’s protocol. In preparation for first-strand cDNA synthesis, 11 µl of the extracted RNA (i.e., 5 µg) was mixed with 1 µl of random primers (i.e., 3 µg/µl, Invitrogen) and 1 µl of 10 mM dNTPs (TaKaRa, Otsu, Japan). The mixture was heated at 70°C for 10 min, cooled to 25°C over the span of 10 min, and chilled on ice for 3 min. Reverse transcription was performed via the addition of 4 µl of 5× first-strand buffer (Invitrogen), 2 µl of 0.1 mM DTT, and 1 µl of SuperScript II (200 U/µl, Invitrogen). The cDNA synthesis reaction was allowed to proceed for 50 min at 42°C, and was stopped by heating at 70°C for 15 min.

Real-time polymerase chain reaction: Before cDNA synthesis for real-time polymerase chain reaction (PCR), RNA was treated with DNase. Briefly, 15 µg RNA was mixed with 5 µl of 10× DNase buffer (TaKaRa), 2 µl of RNase-free DNase I (5 U/µl; TaKaRa), 0.5 µl of RNase Out ribonuclease inhibitor (40 U/µl; Invitrogen), and double-distilled water (DDW) to a final volume of 50 µl. The tubes were incubated for 30 minutes at 37°C, precipitated with lithium chloride (Ambion, Austin, TX, USA), and dissolved in 30 µl of DDW. The DNase-treated RNA was used for cDNA synthesis as described above.

Real-time PCR was then performed on the DNase-treated samples. Primers and minor groove binder (MGB) probes specific to the PUUV
S segment were designed using Primer Express software (ver. 2.0; Applied Biosystems, Foster City, CA, U.S.A.), and probes were labeled with 5’ reporter dye, 6-Carboxyfluorescein (FAM) and a 3’-MGB/non-fluorescent quencher. After optimization of the primer and probe concentrations, samples were assayed in quadruplicate 25 µl reactions. Each reaction contained 2.25 µl of cDNA, 12.5 µl of 2× TaqMan Universal PCR Master Mix (Applied Biosystems), 0.225 µl each of 100 µM forward and reverse primers (i.e., Sotkamo62Fw: 5’-TCCAAGATGATAACCCTGAC-3’ and Sotkamo257Rv: 5’-TTCCCTGGACACAGCATCTGC-3’, respectively), 0.46 µl of 10.9 µM fluorescent probe (i.e., Sotkamo194: 5’-TGTCAGCACTGGAGGA-3’), and 9.34 µl of DDW. Samples were incubated at 50°C for 2 min and 95°C for 10 min, followed by 60 thermal cycles of 95°C for 15 sec and 60°C for 1 min. Real-time data were collected using the 7000 Sequence Detection System (Applied Biosystems).

Real-time PCR data were normalized to rodent GAPDH expression. The same amount of cDNA (i.e. 2.25 µl) was mixed with 12.5 µl of 2× TaqMan Universal PCR Master Mix, 0.25 µl each of 10 µM rodent GAPDH forward and reverse primers, and 0.25 µl of 20 µM rodent GAPDH probe (VIC-labeled). All primers and probes were purchased from Applied Biosystems.

Nucleotide sequencing analysis: The cDNA derived from the total RNA of DTK/Ufa-97-infected Vero E6 cells was amplified using Platinum Taq DNA polymerase high fidelity (Invitrogen), according to the manufacturer’s instructions. The reaction mixture also contained 2 pmol of primers specific to the S, M, and L segments of the DTK/Ufa-97 strain, in a final volume of 25 µl. After an initial denaturation step (i.e., 94°C for 2 min), the cDNA was amplified via 35 thermal cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C for 4 min.

The 3’- and 5’-ends of the S, M, and L segments were amplified using RNA isolated from the infected-cell culture medium and the 5’ RACE System for Rapid Amplification of cDNA Ends (ver. 2.0; Invitrogen). In preparation for 5’-end amplification, randomly primed synthetic cDNA was dCTP-tailed using a terminal deoxynucleotidyl transferase. The tailed cDNA was amplified using a 5’ RACE abridged anchor primer (AAP, Invitrogen) and PUUV-specific primers. In preparation for 3’-end amplification, the isolated RNA was CTP-tailed using poly(A) polymerase (Ambion), and the tailed RNA was reverse-transcribed using AAP and SuperScript™ II (Invitrogen). The cDNA was amplified using PUUV-specific primers and an abridged universal amplification primer (Invitrogen).

The amplified products were electrophoresed in agarose gels, stained with ethidium bromide, and visualized under UV light. The DNA fragments were excised from the gel and purified using the Wizard SV Gel and PCR Clean-up System (Promega, Madison, WI, USA), according to the manufacturer’s instructions. Purified DNA fragments were directly sequenced at least two times in the forward and reverse directions using the ABI-PRISM Dye Terminator Sequencing Kit and the ABI 3130 Genetic Analyzer (both from Applied Biosystems).

Phylogenetic analysis: Hantavirus nucleotide (nt) and deduced amino acid sequences were compared using Genetyx software (ver. 8). The ClustalX program package (ver. 2.0) was used to generate a phylogenetic tree using the neighbor-joining method with 1,000 bootstrap replicates.

Statistical analysis: The viral RNA copies in infected Vero E6 cells and virus titers in cultured media were compared by Student’s t-test. P values of 0.05 or less were considered statistically significant.

Results

Plaque and focus formation by PUUV strain DTK/Ufa-97

To examine the plaque-and focus-forming abilities of DTK/Ufa-97, Vero E6 monolayers were inoculated with virus and the resulting plaques
and foci were enumerated. Vero E6 cells infected with DTK/Ufa-97 exhibited small plaques (average diameter=1 mm to 2 mm) at 14 days post-infection, whereas cells infected with the PUUV Sotkamo strain did not form plaques (data not shown). In addition, the DTK/Ufa-97 foci (average diameter ± S.D., 196 µm ± 46 µm) were more than twice as large as the Sotkamo foci (average diameter ± S.D., 80 µm ± 6 µm) (data not shown).

Viral RNA copy number and virus titer

The DTK/Ufa-97-infected Vero E6 cells and the corresponding culture media were collected at various intervals after infection, and the viral RNA copy number and viral titer were determined. Viral RNA expression remained unchanged in Vero E6 cells grown in MEM, with approximately 1 × 10³ to 7 × 10³ copies of viral RNA transcribed during the 24 hr following infection. The copy number increased to approximately 5 × 10⁴ copies at 3 dpi and remained at that level until 21 dpi (Fig. 1). In comparison, Sotkamo RNA replication occurred more slowly, reaching a plateau level at 7 dpi. When SFM was used instead of MEM, the DTK/Ufa-97 RNA copy number increased to 2.4 × 10⁵ by 14 dpi and remained at that level until 21 dpi. However, fewer than 4 × 10⁴ copies of Sotkamo RNA were present at 21 dpi.

When Vero E6 cells were grown in MEM, the DTK/Ufa-97 viral titer reached a peak of 2.8 × 10⁵ ffu/ml at 7 dpi, then decreased to 1.4 × 10⁴ ffu/ml at 10 dpi and remained unchanged until 21 dpi (Fig. 2). In contrast, the Sotkamo titer reached a peak of 2.1 × 10⁴ ffu/ml at 7 dpi, then declined to 6.0 × 10³ ffu/ml at 10 dpi and remained unchanged until 21 dpi. When Vero E6 cells were grown in SFM, the DTK/Ufa-97 titer reached peaks of 4.5 × 10⁴, 8.3 × 10⁴, and 9.3 × 10⁴ ffu/ml at 7, 14, and 21 dpi,
respectively, whereas the Sotkamo titer remained less than 3.1×10^3 ffu/ml throughout the observation period.

Sequencing of the complete DTK/Ufa-97 genome

The full-length S, M, and L segments of the DTK/Ufa-97 genome were sequenced, and the resulting data were deposited into the DNA Data Bank of Japan under accession numbers AB297665, AB297666, and AB297667, respectively. To our knowledge, this is the first complete genomic sequence of a human PUUV isolate from Russia. The S, M, and L segments of the DTK/Ufa-97 strain were 1,829, 3,682, and 6,550 nts in length, respectively (data not shown). These sequences differ from those of the Sotkamo genome only in the length of the S segment, which was 1 nt longer in Sotkamo strain (data not shown).

Amino acid and nucleotide sequence comparisons

The nucleotide sequence of the DTK/Ufa-97 S segment was 99.9%, 100%, 99.5%, 99.5%, 93.9%, 93.9%, and 85.3% identical to the sequences of PUUV strains CG1820, P360, K27, CG17, Fs808, Kazan, and Sotkamo, respectively. Nucleotide sequence identity was greater than 93% among the Russian PUUVs; however, the Russian and Finnish PUUV Sotkamo strains were approximately 84% identical (Table 1). The predicted amino acid sequences of all of the PUUVs, including the Sotkamo strain, were more than 96% identical (Table 1).

The nucleotide sequence of the DTK/Ufa-97 M segment was 99.6%, 99.8%, 99.8%, 99.4%, 85.8%, 82.8%, and 80.3% identical to those of PUUV strains CG1820, P360, K27, CG17, Kazan, Sotkamo, and Umea/hu, respectively (Table 2). The M segments of the Bashkirian viruses, including DTK/Ufa-97, were more than 99% identical at the nucleotide level, whereas the M segments of the Bashkirian and Northern European strains were approximately 80.3% to 83.2% identical. The Russian PUUV M segments were more than 94.5% identical at the amino acid level, whereas the entire group of PUUV M segments were more than 88% identical (Table 2).

The PUUV L segments were more than 81% identical at the nucleotide level, while the amino acid sequences of the L segment were at least 93% identical among all PUUVs (Table 3).

Phylogenetic analyses

We examined the evolutionary relationship between DTK/Ufa-97 and other hantaviruses by performing phylogenetic analyses of the S, M, and L genome segments using the neighbor-joining method. The DTK/Ufa-97 strain was determined to be a member of the PUUV group, and all three
segments of the DTK/Ufa-97 strain were determined to be members of the Russia/Bashkirie-Saratov lineage (Figs. 3A and 3B). The PUUV branching patterns were consistent with geographical origin, and PUUVs from European Russia (i.e., including the Bashkirie-Saratov, Tataria, and Samara PUUVs from the Volga river region) occupied a single cluster. The Russian/Omsk PUUVs clustered with the Sotkamo strain (Fig. 3A).

Table 1. Nucleotide and amino acid identities of the hantavirus S segment

<table>
<thead>
<tr>
<th>Nucleotide identities (%)</th>
<th>PUUV</th>
<th>HTNV (^{\text{a}})</th>
<th>SNV (^{\text{a}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ufa-97</td>
<td>CG1820</td>
<td>P360 (^{\text{c}})</td>
</tr>
<tr>
<td>PUUV</td>
<td>–</td>
<td>99.9</td>
<td>99.5</td>
</tr>
<tr>
<td>CG1820</td>
<td>99.7</td>
<td>–</td>
<td>99.9</td>
</tr>
<tr>
<td>P360</td>
<td>100</td>
<td>99.7</td>
<td>–</td>
</tr>
<tr>
<td>K27</td>
<td>99.2</td>
<td>98.9</td>
<td>99.2</td>
</tr>
<tr>
<td>CG17</td>
<td>100</td>
<td>99.7</td>
<td>100</td>
</tr>
<tr>
<td>Fs808</td>
<td>99.4</td>
<td>99.2</td>
<td>99.4</td>
</tr>
<tr>
<td>Kazan</td>
<td>98.9</td>
<td>98.6</td>
<td>98.9</td>
</tr>
<tr>
<td>Sotkamo</td>
<td>96.9</td>
<td>96.6</td>
<td>96.9</td>
</tr>
<tr>
<td>HTNV</td>
<td>59.3</td>
<td>59.0</td>
<td>59.3</td>
</tr>
<tr>
<td>SNV</td>
<td>69.7</td>
<td>69.9</td>
<td>69.7</td>
</tr>
</tbody>
</table>

* Amino acid identities (%)

Nucleotide region to be compared: nt 172-1,239
\(^{\text{a}}\) Hantaan virus
\(^{\text{b}}\) Sin Nombre virus
\(^{\text{c}}\) DTK/Ufa-97 strain
\(^{\text{d}}\) PUUV originated from HFRS patients
\(^{\text{e}}\) Sotkamo strain

Table 2. Nucleotide and amino acid identities of the hantavirus M segment

<table>
<thead>
<tr>
<th>Nucleotide identities (%)</th>
<th>PUUV</th>
<th>HTNV (^{\text{a}})</th>
<th>SNV (^{\text{a}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ufa-97</td>
<td>CG1820</td>
<td>P360 (^{\text{c}})</td>
</tr>
<tr>
<td>PUUV</td>
<td>–</td>
<td>99.6</td>
<td>99.8</td>
</tr>
<tr>
<td>CG1820</td>
<td>99.3</td>
<td>–</td>
<td>99.5</td>
</tr>
<tr>
<td>P360</td>
<td>99.8</td>
<td>92.3</td>
<td>–</td>
</tr>
<tr>
<td>K27</td>
<td>99.7</td>
<td>99.1</td>
<td>99.7</td>
</tr>
<tr>
<td>CG17</td>
<td>99.6</td>
<td>99.0</td>
<td>99.6</td>
</tr>
<tr>
<td>Kazan</td>
<td>95.0</td>
<td>94.5</td>
<td>95.1</td>
</tr>
<tr>
<td>Sotkamo</td>
<td>92.6</td>
<td>92.2</td>
<td>92.7</td>
</tr>
<tr>
<td>Umea</td>
<td>88.9</td>
<td>88.4</td>
<td>88.9</td>
</tr>
<tr>
<td>HTNV</td>
<td>53.4</td>
<td>51.9</td>
<td>52.2</td>
</tr>
<tr>
<td>SNV</td>
<td>65.5</td>
<td>64.5</td>
<td>64.8</td>
</tr>
</tbody>
</table>

* Amino acid identities (%)

Nucleotide region to be compared: nt 53-3,494
\(^{\text{a}}\) Hantaan virus
\(^{\text{c}}\) Sin Nombre virus
\(^{\text{d}}\) DTK/Ufa-97 strain
\(^{\text{e}}\) PUUV originated from HFRS patients
\(^{\text{f}}\) Sotkamo strain
Table 3. Nucleotide and amino acid identities of the hantavirus L segmenta.

<table>
<thead>
<tr>
<th></th>
<th>Nucleotide identities (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Puumala virus (PUUV)</td>
<td>HTNVb</td>
<td>SEOVc</td>
<td>SNVd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ufa-97e</td>
<td>CG1820</td>
<td>Kazan</td>
<td>Sotf</td>
<td>Umeag</td>
</tr>
<tr>
<td>Ufa-97</td>
<td>\textemdash</td>
<td>99.1h</td>
<td>87.1</td>
<td>84.5</td>
<td>81.3</td>
<td>67.0</td>
</tr>
<tr>
<td>CG1820</td>
<td>96.3h</td>
<td>\textemdash</td>
<td>87.1</td>
<td>84.6</td>
<td>81.4</td>
<td>67.0</td>
</tr>
<tr>
<td>Kazan</td>
<td>97.4h</td>
<td>97.4h</td>
<td>\textemdash</td>
<td>88.1</td>
<td>81.9</td>
<td>67.1</td>
</tr>
<tr>
<td>Sotkamo</td>
<td>98.9h</td>
<td>98.9h</td>
<td>93.2h</td>
<td>\textemdash</td>
<td>66.5</td>
<td>66.3</td>
</tr>
<tr>
<td>Umea</td>
<td>93.8h</td>
<td>93.8h</td>
<td>94.1h</td>
<td>93.2h</td>
<td>\textemdash</td>
<td>66.5</td>
</tr>
<tr>
<td>HTNV</td>
<td>68.8h</td>
<td>68.8h</td>
<td>68.8h</td>
<td>68.6h</td>
<td>67.2h</td>
<td>\textemdash</td>
</tr>
<tr>
<td>SEOV</td>
<td>68.5h</td>
<td>68.3h</td>
<td>68.2h</td>
<td>68.4h</td>
<td>66.8h</td>
<td>64.7h</td>
</tr>
<tr>
<td>SNV</td>
<td>77.8h</td>
<td>77.1h</td>
<td>77.4h</td>
<td>77.6h</td>
<td>76.1h</td>
<td>68.9h</td>
</tr>
</tbody>
</table>

a) Nucleotide region to be compared: nt 52-6,524
b) Hantaan virus
c) Seoul virus
d) Sin Nombre virus
e) DTK/Ufa-97 strain
f) PUUV originated from HFRS patients
g) Sotkamo strain

Table 4. Antigenic characteristic of Ufa-97 and other hantavirus strains.

<table>
<thead>
<tr>
<th>MAbs against glycoprotein of HTNV</th>
<th>Antigenic site</th>
<th>IFA titera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Puumala</td>
<td>Hantaan</td>
</tr>
<tr>
<td></td>
<td>Ufa-97b</td>
<td>Kazan</td>
</tr>
<tr>
<td>8B6</td>
<td>Gn-a (1)</td>
<td>–</td>
</tr>
<tr>
<td>6D4</td>
<td>Gn-a (2)</td>
<td>–</td>
</tr>
<tr>
<td>10F11</td>
<td>Gn-a (2)</td>
<td>+</td>
</tr>
<tr>
<td>2D5</td>
<td>Gn-b</td>
<td>–</td>
</tr>
<tr>
<td>3D5</td>
<td>Gn-b</td>
<td>–</td>
</tr>
<tr>
<td>16D2</td>
<td>Gn-b</td>
<td>–</td>
</tr>
<tr>
<td>HCO2</td>
<td>Ge-a (1)</td>
<td>–</td>
</tr>
<tr>
<td>16E6</td>
<td>Ge-a (2)</td>
<td>–</td>
</tr>
<tr>
<td>EB06</td>
<td>Ge-b</td>
<td>+</td>
</tr>
<tr>
<td>11E10</td>
<td>Ge-c</td>
<td>+++</td>
</tr>
<tr>
<td>17G6</td>
<td>Ge-d</td>
<td>+</td>
</tr>
<tr>
<td>5B7</td>
<td>Ge-d</td>
<td>++</td>
</tr>
<tr>
<td>20D3</td>
<td>Ge-e</td>
<td>+</td>
</tr>
<tr>
<td>8E10</td>
<td>Ge-f (1)</td>
<td>+++</td>
</tr>
<tr>
<td>1G8</td>
<td>Ge-f (1)</td>
<td>+++</td>
</tr>
<tr>
<td>3B6</td>
<td>Ge-f (1)</td>
<td>+++</td>
</tr>
<tr>
<td>23G10-1</td>
<td>Ge-f (2)</td>
<td>–</td>
</tr>
<tr>
<td>7G6</td>
<td>Ge-f (2)</td>
<td>–</td>
</tr>
<tr>
<td>18F5</td>
<td>Ge-f (2)</td>
<td>–</td>
</tr>
</tbody>
</table>

a Antibody reactivity is defined as: –, <1:10; +, 1:10; ++, 1:100; ++++, 1:1,000; ++++, >1:1,000

b DTK/Ufa-97 strain
The nt sequences of the S, M, and L segments were obtained from the Genome Sequence Database. Multiple sequence alignment was performed using ClustalX software (ver. 2.0), and a phylogenetic tree was derived using the neighbor-joining method. Bootstrap values resulting from 1,000 replications are listed above each branch. A) Phylogenetic analysis of the 1068 nt S segment (i.e., approximately nucleotides 172 to 1239). The accession numbers for the S segment sequences are as follows: Thottapalayam, AY526097; Dobrava Belgrade, L41916; Saaremaa, AJ616854; Thailand 741, AB186420; Seoul 80-39, AY273791; Hantaan, M14626; Amur H5, AB127996; Fusong Cr 247, EF442087; Tobetsu 60Cr 93, AB010731; Puu Fyn, AJ238791; Puu Balkan1, AJ314600; Puu Opina 916, AF294652; Puu Berkel, L36943; Puu CG13891, U22423; Puu Cg-Ertf, AJ238779; Puu Umea/hu, AY526219; Puu Vindeln/L20Cg/83, Z48586; Puu Sotkamo, X61035; Puu CG215, AF367066; Puu CRF308, AF367070; Puu F-s 808, AF411446; Puu Kazan, Z84204; Puu CG17/Baskiria-2001, AF442613; Puu K27, L08804; Puu P360, L11347; Puu DTK/Ufa-97, AB297665; Puu CG1820, M32750; Puu CRF308/Omsk, AF442617; Puu Sotkamo, X61034; Puu Kazan, Z84205; Puu CG17/Baskiria-2001, AF442614; Puu K27, L08754; Puu P360, L08755; Puu DTK/Ufa97, AB297666; Puu CG1820, M29979; Tula Moravia/5302v/95, Z69991; Black Creek Canal, L39949; Bayou, L36929; Sin Nombre NM H10, L25784; Oran 22996, AF482715; and Andes Chile-9717869, AF291702. B) Phylogenetic tree of the 3442 nt viral M segment (i.e., approximately nucleotides 53 to 3494). The M segment accession numbers are as follows: Thottapalayam VRC-66412, EU001329; Dobrava-Belgrade DOBV/Ano-Poroi/Af19/1999, AJ410616; Seoul 80-39, S47716; Amur H5, AB127993; Hantaan 76-118, Y00386; Topografov, AJ011647; Khabarovsk, AJ011648; Puu CG13891, U22423; Puu Cg-Ertf, AJ238779; Puu Vindeln, Z49214; Puu Vranica, U14136; Puu Umea/hu, AY526218; Puu CRF308/Omsk, AF442617; Puu Sotkamo, X61034; Puu Kazan, Z84205; Puu CG17/Baskiria-2001, AF442614; Puu K27, L08754; Puu P360, L08755; Puu DTK/Ufa97, AB297666; Puu CG1820, M29979; Tula Moravia/5302v/95, Z69993; Andes Chile-9717869, AF291703; Oran O122996, AF028024; Black Creek Canal, L39950; Bayou, L36930; New York NY-2, U36803; and Sin Nombre NM H10, L25783. Asterisks indicate viral strains of human origin.
The antigenic profile of the DTK/Ufa-97 strain was compared with that of other hantaviruses using IFA with a MAb panel. Six of the MAbs used in this study were specific to the HTNV envelope Gn glycoprotein, while 13 were specific to the Gc glycoprotein (Table 4). All MAbs specific to HTNV glycoproteins cross-reacted with AMRV, yielding very similar patterns. In addition, some MAbs specific to HTNV glycoproteins cross-reacted with SEOV, yielding somewhat dissimilar patterns (Table 4). Of the MAbs specific to antigenic sites of the Gn-a, Gn-b, Gn-a, and Gn-f(2) envelope glycoproteins, only MAb 10F11 cross-reacted with any of the PUUV strains. However, MAbs specific to the antigenic sites of the Gc-b, Gc-c, Gc-d, Gc-e, and Gc-f(1) glycoproteins reacted with all hantaviruses tested, including the PUUV strains (Table 4). In general, the PUUV strains exhibited similar reaction patterns to the latter group of MAbs (Table 4).

Cross-neutralization test

To further investigate the antigenic characteristics of DTK/Ufa-97, hamsters were infected with the DTK/Ufa-97, Kazan, and Sotkamo strains and immune sera were collected. These sera were then used to neutralize homologous or heterologous PUUV strains. All sera proved effective at high neutralizing titers (i.e., dilutions of 1:160 to 1:640) (Table 5). The PUUV immune sera exhibited lower neutralizing titers against HTNV, AMRV, and SEOV. However, immune sera specific to HTNV, AMRV, and SEOV exhibited high neutralizing antibody titers to homologous viruses but lower titers to heterologous viruses. These results indicate that the antigenic properties of DTK/Ufa-97 are similar to those of other PUUVs, with regards to the induction of neutralizing antibodies.

Discussion

Hemorrhagic fever with renal syndrome has the highest incidence and morbidity of all human zoonotic viral infections in Russia. Approximately 97% of HFRS cases are caused by PUUV in the European regions of Russia, whereas 3% of HFRS cases are caused by HTNV, SEOV and AMRV in the far-Eastern regions of the country\(^{18,30}\). An HFRS vaccine is urgently needed, as morbidity rates are high and approximately 12.5 million people (i.e., 25% of the population) in European regions are at risk for PUUV infection. Several hantavirus vaccines have been produced; however, none are effective against PUUV-induced HFRS. The difficulties in developing a PUUV vaccine stem from the low viral yield in cell culture. High titers of a potential vaccine strain, known as DTK/Ufa-97, can be cultured in SFM-grown Vero E6 cells. Here, we demonstrate that the DTK/Ufa-97 strain yields more viral RNA in infected Vero E6 cells.
cells and higher viral titers in the culture fluid of infected cells, when compared with the Sotkamo strain (Figs. 1 and 2). Our data clearly indicate that the DTK/Ufa-97 strain replicates more efficiently than the Sotkamo strain in SFM-cultured Vero E6 cells, as well as in MEM supplemented with FBS.

Minimum essential medium supplemented with FBS has been empirically shown to provide good conditions for cell growth and is commonly used in the formulation of growth media. However, FBS is a potential carrier of infectious agents such as fungi, bacteria, viruses, and prions, which could contaminate a final vaccine preparation\textsuperscript{2). Therefore, SFM is a safer alternative, as it does not contain components of animal or human origin. Several cell lines, including BHK-21\textsuperscript{7) and Vero cells\textsuperscript{17), have been successfully established in SFM.

A lot of PUUV sequences have been deposited in the DNA database, however, few full-length PUUV genome sequences are available, particularly for human isolates. Therefore, we determined the full-length nucleotide sequence of the DTK/Ufa-97 strain. To our knowledge, this is the first characterization of a Russian PUUV isolate from an HFRS patient. Our phylogenetic analysis revealed that the DTK/Ufa-97 strain is closely related to PUUV strains from the same geographic region (i.e., Bashkiria-Saratov) (Fig. 3). Our analysis identified four Russian PUUV clusters: Bashkiria-Saratov, Tataria, Samara, and Omsk (Fig. 3A). The first three clusters appeared on the same branch, while the Omsk cluster was more closely related to the Finland virus than to the other Russian viruses. This result is consistent with a previous report, in which the genetic identities of Russian and Finnish PUUV strains strongly correlated with their geographic origins5,25).

The identities of predicted amino acid sequences in the S, M, and L segments were approximately 96.3%, 92.2%, and 93.2%, respectively among all PUUVs. However, the nucleotide sequences identities of the S, M, and L segments were much lower (i.e., approximately 84.5%, 80.3%, and 81.3%, respectively) (Tables 1-3). Few studies have examined the antigenic properties of PUUV; thus, we also examined the antigenic characteristics of DTK/Ufa-97 using MABs. We compared the antigenicity of three PUUV strains (i.e., DTK/Ufa-97, Kazan, and Sotkamo), as well as other hantaviruses. The reaction patterns exhibited by the DTK/Ufa-97 strain were strikingly similar to those of other Russian and Finnish PUUVs (Table 4), but different than those of other hantaviruses, especially with regards to the Gn protein.

Envelope glycoproteins are presumed to play a major role in the induction of protective immunity and neutralizing antibodies\textsuperscript{1,20). Our cross-neutralization test demonstrated that a neutralizing antibody specific to the DTK/Ufa-97 strain also neutralized other PUUV strains at almost same antibody titer. In addition, antibodies to other PUUV strains cross-neutralized the DTK/Ufa-97 strain and homologous viruses (Table 5). Although the various PUUVs exhibit geographic-dependent genetic variation, they seem to share similar antigenic properties. Therefore, the DTK/Ufa-97 strain may prove useful in inducing protective immunity against a variety of PUUV strains, and may aid in the development of a DTK/Ufa-97-based vaccine.

Our findings revealed that the PUUV strain DTK/Ufa-97 grows well in Vero E6 cells cultured in SFM, and that it is antigenically similar to other PUUVs. These data may aid in the development of a PUUV vaccine strain based on DTK/Ufa-97.

Acknowledgments

We thank Dr. Junko Maeda for her useful suggestions and excellent technical support. We also appreciate the technical advice provided by Dr. Richard Yanagihara (University of Hawaii) and Satoru Arai (National Institute of Infectious Diseases, Japan) regarding our efforts to sequence the 3' and 5' ends of the hantavirus genome. This study was supported in part by Grants-in-Aid for Scientific Research (16405034 and 17255009) from the Japanese Ministry of Education, Culture,
Sport, Science and Technology, and by a Health Grant for Research on Emerging and Re-emerging Infectious Diseases from the Japanese Ministry of Health, Labor and Welfare. This study was also supported by the 21st Century COE Program for Zoonosis Control (Hokkaido University).

References

31) Tkachenko, E., Dzagurova, T., Bashkirtsev, V., Bernshtein, A., Apekina, N., Sedova, N., Okulova, N., Korotina, N., Nabatnikov, P., Malkin, A., Smirnov, A., Morozov, V., Yunicheva,

