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Abstract. We numerically examine a quantum version of TAP (Thouless-Anderson-Palmer)-
like mean-field algorithm for the problem of error-correcting codes. For a class of the so-called
Sourlas error-correcting codes, we check the usefulness to retrieve the original bit-sequence
(message) with a finite length. The decoding dynamics is derived explicitly and we evaluate the
average-case performance through the bit-error rate (BER).

1. Introduction
Statistical mechanics of information has been applied to a lot of problems in various research
fields of information science and technology [1, 2]. Among them, error-correcting code is one of
the most developed subjects. In the research field of error-correcting codes, Sourlas showed that
the convolutional codes can be constructed by spin glass with infinite range p-body interactions
and the decoded message should be corresponded to the ground state of the Hamiltonian [3].
Ruján suggested that the bit error can be suppressed if one uses finite temperature equilibrium
states as the decoding result, instead of the ground state [4], and the so-called Bayes-optimal
decoding at some specific condition was proved by Nishimori [5] and Nishimori and Wong [6].
Kabashima and Saad succeeded in constructing more practical codes, namely, low density parity
check (LDPC) codes by using the infinite range spin glass model with finite connectivities [7].
They used the so-called TAP (Thouless-Anderson-Palmer) equations to decode the original
message for a given parity check.

As we shall see later on, an essential key point to obtain the Bayes-optimal solution is
controlling the ‘thermal fluctuation’ in order to satisfy the condition on the Nishimori line
(the so-called Nishimori-Wong condition [6]). Then, a simple question is arisen, namely, is it
possible to obtain the Bayes-optimal solution by means of the ‘quantum fluctuation’ induced by
tunneling effects? or what is condition for the optimal control of the fluctuation?

To answer these questions, Tanaka and Horiguchi introduced a quantum fluctuation into the
mean-field annealing algorithm and showed that performance of image restoration is improved
by controlling the quantum fluctuation appropriately during its annealing process [8, 9]. The
average-case performance is evaluated analytically by one of the present authors [10]. However,



there are few studies concerning such a quantum mean-field algorithm for information processing
described by spin glasses.

In this paper, we examine a quantum version of TAP-like mean-field algorithm for the problem
of error-correcting codes. For a class of the so-called Sourlas error-correcting codes, we check
the usefulness to retrieve the original message with a finite length. The decoding dynamics is
derived explicitly and we evaluate the average-case performance numerically through the bit-
error rate. We find that TAP-like mean-field approach examined here is useful to decode the
original message with a low BER for a relatively large signal-to-noise ratio.

This paper is organized as follows. In the next section, we explain our model system and
comment on the Shannon’s bound. In section 3, the Bayesian approach to the problem is
introduced. Then, quantum Sourlas codes and the preliminary analysis for the case of p → ∞ (p
is the number of bit products in the parity check) are reported. In the next section 4, we show
the bit-error rate performance at the zero temperature for finite p. In section 5, we construct
the TAP-like mean-field decoding algorithm for the Sourlas codes with finite p and examine the
average-case performance. The last section is a concluding remark.

2. The model system and the Shannon’s bound
In this section, we introduce our model system of error-correcting codes and mention the
Shannon’s bound. In our error-correcting codes, in order to transmit the original message {ξ} ≡
(ξ1, · · · , ξN ), ξi ∈ {−1, 1} through some noisy channel, we send all possible combinations NCp

of the products of p-components in the N -dimensional vector {ξ} such as J0
i1,··· ,ip = ξi1ξi2 · · · ξip

as ‘parity’. Therefore, the rate of the transmission is now evaluated as

R =
N

NCp
� p!

Np−1
(1)

in the limit of N → ∞ keeping the p finite.
On the other hand, when we assume the additive white Gaussian noise (AWGN) channel

with mean (J0p!/Np−1)J0
i1i2···ip and variance {J√p!/2Np−1}2, that is, when the output of the

channel Ji1i2···ip is given by

Ji1i2···ip =
(

J0p!
Np−1

)
J0

i1i2···ip + J

√
p!

2Np−1
η, η = N (0, 1), (2)

the channel capacity C leads to

C =
1
2

log2

(
1 +

{(J0p!/Np−1)Ji1···ip}2

J2p!/2Np−1

)
� J2

0 p!
J2Np−1 log 2

(3)

in the same limit as in the derivation (1) (we also used the fact (Ji1···ip)2 = 1). The factors
p!/Np−1 or

√
p!/2Np−1 appearing in (2) are needed to take a proper thermodynamic limit (to

make the energy of order 1 object) as will be explained in the next section.
Then, the channel coding theorem tells us that zero-error transmission is achieved if the

condition R ≤ C is satisfied. For the above case, we have R/C = (J/J0)2 log 2 ≤ 1, that is,

J0

J
≥

√
log 2. (4)

The above inequality means that if the signal-to-noise ratio J0/J is greater than or equal to√
log 2, the error probability of decoding behaves as Pe � 2−N(C−R) → 0 in the thermodynamic

limit N → ∞. In this sense, we might say that the zero-error transmission is achieved
asymptotically in the limit N → ∞, C,R → 0 keeping R/C = O(1) ≤ 1 for the above what we
call Sourlas codes.



3. The Bayesian approach
For the error-correcting codes mentioned in the previous section, Sourlas pointed out that there
exists a close relationship between the error-correcting codes and an Ising spin glass model with
infinite range p-body interactions [3]. In this section, we briefly show the relationship for the
classical system and then we shall extend the system to the quantum version.

3.1. Classical system
To decode the original message {ξ}, we construct the posterior distribution:

P ({σ}|{J}) ∝ P ({J}|{σ})P ({σ}) =
exp

[
−Np−1

2a2p!

∑
i1,··· ,ip

(
Ji1···ip − a0p!

Np−1 σi1 · · · σip

)2
]

2N (a2πp!/Np−1)1/2
(5)

where {σ} = (σ1, · · · , σN ) denotes an estimate of the original message {ξ} and a and a0 are the
so-called hyperparameters corresponding to the J0 and J , respectively. It should be noted that
we assumed that the prior P ({σ}) is uniform such as P ({σ}) = 2−N . For the above posterior
distribution, the MAP (maximum a posterior) estimate is obtained as the ground state of the
following Hamiltonian:

H({σ}|{J}) =
Np−1

2a2p!

∑
i1,··· ,ip

(
Ji1···ip − a0p!

Np−1
σi1 · · · σip

)2

(6)

It is obvious that the system {σ} described by the above Hamiltonian is an Ising spin glass with
infinite range p-body interactions. Therefore, the decoding is achieved by finding the ground
state of (6) via, for instance, simulated annealing.

In the context of the MPM (maximizar of the posterior marginal) estimate instead of the
MAP, the Bayes-optimal solution is obtained for each bit as a simple majority vote:

ξi = P (σi = +1|{J}) − P (σi = −1|{J}) = sgn

( ∑
σi=±1

σiP (σi|{J})
)

≡ sgn(〈σi〉), (7)

where P (σi|{J}) is a posterior marginal calculated as

P (σi|{J}) = tr{σ}�=σi
P ({σ}|{J}). (8)

It might be convenient for physicists to rewrite the above estimate ξi in terms of the local
magnetization of the system described by the Hamiltonian (6) as

ξi = sgn
(

tr{σ}σi exp[−H({σ}|{J})]
tr{σ}exp[−H({σ}|{J})]

)
. (9)

In the classical system specified by a given finite temperature T = 1, the Bayes-optimal solution
ξi = sgn(〈σi〉) minimizes the following BER:

pB =
1
2

(
1 − 1

N

∑
i

ξiξi

)
=

1
2
(1 − [ξξ]{ξ},{J}) (10)

[· · · ]{ξ},{J} ≡ tr{ξ}tr{J}(· · · )P ({J}|{ξ})P ({ξ}) (11)

on the Nishimori line a0/a2 = J0/J2 [6].



3.2. Quantum system
Apparently, essential key point to obtain the Bayes-optimal solution is controlling the ‘thermal
fluctuation’ in order to satisfy the condition on the Nishimori line T = 1, a0/a2 = J0/J2. Then,
a simple question arises, namely, is it possible to obtain the Bayes-optimal solution by means
of the ‘quantum fluctuation’ induced by tunneling effects? or what is condition for the optimal
control of the fluctuation? However, in the corresponding quantum system, the condition is not
yet clarified. In our preliminary study [11], we considered the quantum version of the posterior
by modifying the Hamiltonian as

Ĥ({σ}|{J}) =
Np−1

a2p!

∑
i1,··· ,ip

(
Ji1···ip − a0p!

Np−1
σ̂z

i1 · · · σ̂z
ip

)2

− γ
∑

i

σ̂x
i

σ̂z,x
i ≡ I(1) ⊗ · · · ⊗ σz,x

(i) ⊗ · · · ⊗ I(N)

I =
(

1 0
0 1

)
, σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
= |+〉〈−| + |−〉〈+|

where the subscript such as {· · · }(i) of each matrix denotes the order in the tensor product.
Then, a single bit flip: |+〉 ≡ t(1, 0) → |−〉 ≡ t(0, 1) or |−〉 → |+〉 is caused due to the existence
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Figure 1. Phase diagram of the Sourlas codes for p → ∞. In the shaded area (F), zero-error transmission is
achieved. The area P denotes the para-magnetic phase and the area SG is the spin glass phase. For instance, at
the ground state, the critical signal-to-noise ratio is (J0/J)c =

√
log 2 = 0.8326. We set TJ ≡ β−1

J .

of the second term in the Hamiltonian Ĥ. As the result, the Bayes-optimal solution

ξ̂i = sgn[tr(σ̂z
i ρ̂)] (12)

with the density matrix ρ̂ ≡ e−Ĥ({σ}|{J})/tr e−Ĥ({σ}|{J}) could be constructed by the quantum
fluctuation (which is controlled by the amplitude γ) even at zero temperature. With the
assistance of the replica method combining the static approximation in the Suzuki-Trottter
formula, the phase diagram for the case of p → ∞ is easily obtained within one step replica
symmetry breaking scheme as shown in Figure 1. At the ground state, the Ferromagnet-
SpinGlass transition takes place at the critical signal-noise ratio (J0/J)c =

√
log 2 � 0.8326.



As the result, we find that R ≤ C, namely, zero-error transmission pB = 0 is achieved beyond
the (J0/J)c. It should be noted that the critical behavior is independent of the amplitude γ.
However, for finite p, the minimum BER state is dependent on the γ and we should control it
when we construct the algorithm based on the TAP-like mean-field approximation. It is our
main issue in this article.

4. Replica analysis for finite p at zero temperature
Before we provide such a decoding algorithm, we show the performance of the MPM estimate
at zero temperature for finite p case.

By using the Suzuki-Trotter decomposition, the replicated partition function is given by

Zn = tr{σ}exp

⎡
⎣βJ

M

∑
i1,···,ip

n∑
α=1

M∑
t=1

Ji1···ip σα
i1(t)· · ·σα

ip(t) + B
∑

i

M∑
t=1

σα
i (t)σα

i (t + 1)

⎤
⎦ (13)

with B ≡ (1/2) log coth(γ/M) and βJ ≡ a0/a2.
Using the replica symmetric and the static approximations, we have the average

[Zn]{ξ},{J} =
∏

tt′ ,αβ

∫ ∞

−∞
dQαβ(t, t

′
)
∫ ∞

−∞
dλαβ(t, t

′
)
∫ ∞

−∞
dmα(t)

∫ ∞

−∞
dm̂α(t) exp [−NfRS ] (14)

in terms of the following order parameters.

mα(t) =
1
N

∑
i

σα
i (t) = m, m̂α(t) = m̂ (15)

Qαβ(t, t
′
) =

1
N

∑
i

σα
i (t)σβ

i (t
′
) =

{
χ (α = β)
q (α �= β) , λαβ(t, t

′
) =

{
λ1 (α = β)
λ2 (α �= β) (16)

where m̂α(t) and λαβ(t, t
′
) are the conjugate order parameters for the mα(t) and the Qαβ(t, t

′
),

respectively. Those are defined by
∫ ∞

−∞
dmα(t)

∫ ∞

−∞
dm̂α(t) exp

[
im̂α(t)

(
mα(t) − 1

N

∑
i

σα
i (t)

)]
= 1 (17)

∫ ∞

−∞
dQαβ(t, t

′
)
∫ ∞

−∞
dλαβ(t) exp

[
iλαβ(t, t

′
)

(
Qαβ(t, t

′
) − 1

N

∑
i

σα
i (t)σβ

i (t
′
)

)]
= 1. (18)

Then, we obtain the free energy density fRS explicitly in terms of the above order parameters
as

fRS(m,χ, q) = (p − 1)J0m
p +

(p − 1)
4

βJJ2(χp − qp) − β−1
J

∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz 2 cosh Ξ (19)

where we used the saddle point equations with respect to m̂, λ1, λ2, namely, m̂ = pβJJ0m
p−1

and λ1 = p(βJJ)2χp−1/2, λ2 = p(βJJ)2qp−1/2. Then, the saddle point equations that determine
the equilibrium state are derived as follows.

m =
∫ ∞

−∞
Dω

∫ ∞

−∞
Dz

(
Φ sinhΞ

ΞΩ

)
, q =

∫ ∞

−∞
Dω

[∫ ∞

−∞
Dz

(
Φ sinhΞ

ΞΩ

)]2

(20)

χ =
∫ ∞

−∞

Dω

Ω

∫ ∞

−∞
Dz

[(
Φ
Ξ

)2

coshΞ + γ2

(
sinh Ξ

Ξ3

)]
(21)



where we defined Φ ≡ ω
√

p(βJJ)2qp−1/w + z
√

p(βJJ)2(χp−1 − qp−1)/2 + pβJJ0m
p−1 and

Ξ ≡
√

Φ2 + γ2, Ω ≡ ∫∞
−∞ Dz coshΞ with Dz ≡ (dz/

√
2π) e−z2/2. For the solution of the saddle

point equations, the BER leads to

PB =
∫ ∞

−∞
Dw H(−zp) (22)

where we defined zp ≡ −(pβJJ0m
p−1 + w

√
p(βJJ)2qp−1/2)/

√
p(βJJ)2(χp−1 − qp−1)/2. The

error function H(x) is defined as H(x) =
∫∞
x Dz. We find that the above pB depends on γ

through the order parameters χ, q and m. At finite temperature, the phase diagrams obtained
by solving the above saddle point equations numerically were reported in our previous article
[11]. However, our interest here is rather zero temperature properties.

In order to investigate ‘pure’ quantum effects on the decoding performance of the Sourlas
codes for a finite number of the bit-products p, we here derive the saddle point equations
for quantum Sourlas codes at zero temperature, namely, TJ ≡ β−1

J → 0 in the above replica
symmetric saddle point equations. To do this, we take the limit βJ , γ → ∞ keeping Γ = γ/βJ

finite and find the relevant solution so as to satisfy χ − q → 0 and βJ (χ − q) = t = O(1). We
should notice that the parameter that controls the quantum fluctuation at zero temperature is
not γ but Γ. Then, we have immediately as

m =
∫ ∞

−∞

φDw√
φ2 + Γ2

, q =
∫ ∞

−∞

φ2 Dw

φ2 + Γ2
, t = Γ2

∫ ∞

−∞

Dw

(φ2 + Γ2)3/2
(23)

with φ = wJ
√

pqp−1/2 + φ2J2p(p − 1)qp−2t/2
√

φ2 + Γ2 + pJ0m
p−1. For the solution for the

above saddle point equations (23), the BER leads to pB = H(pJ0m
p−1/J

√
pqp−1/2). We show

the results for p = 2 and 3 cases in Figure 2. The left panel shows the behavior of magnetization
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Figure 2. The behavior of order parameters m, q (left) and the BER (right). The inset of the right panel
shows the behavior around the optimal amplitude of the transverse field. We set J0 = J = 1.

and spin glass order parameter for p = 2 and 3, that is, the number of spin products in the
parity is 2 and 3. We find that at the critical point, the second order phase transition takes place
for p = 2, whereas the first order phase transition occurs for p = 3. The right panel is showing
the BER as a function of the amplitude Γ. Thus, we find that there exists a close relationship
between the bit-error performance and quantum phase transitions [12, 13]. We also find that
there exists an optimal amplitude Γ and the BER is minimized at the value.



5. TAP-like mean-field decoding
In the previous section, we evaluated the performance of the Bayes-optimal decoding in the
Sourlas codes with finite p. Within the replica symmetric theory, we found that there exists
the optimal value of the Γ. In practice, for a given set of the parity {J}, we should calculate
the estimate ξ̂i = limβ→∞ sgn[tr(σ̂z

i ρ̂β)], ρ̂β = e−βĤ/tr e−βĤ for each bit. To calculate the trace
effectively by sampling, the quantum Monte Carlo method (QMCM) might be applicable and
useful [14]. However, unfortunately, the QMCM approach encounters several crucial difficulties.
First, it takes quite long time for us to simulate the quantum states for large number of the
Trotter slices. Second, in general, it is technically quite hard to simulate the quantum states at
zero temperature. Thus, we are now stuck for the computational cost problem.

Nevertheless, as an alternative to decode the original message practically, we here examine
a TAP (Thouless-Anderson-Palmer)-like mean-field algorithm which has a lot of the variants
applying to various information processing [15, 16]. In this paper, we shall provide a simple
attempt to apply the mean-field equations to the Sourlas error-correcting codes for the case of
p = 2.

In following, the derivation of the equations is briefly explained.
We shall start the Hamiltonian:

Ĥ = −
∑
ij

Jij σ̂
z
i σ̂

z
j − Γ

∑
i

σ̂x
i , Jij =

(
2J0

N

)
J0

ij +
J√
N

η, J0
ij = ξiξj , η = N (0, 1) (24)

Then, we rewrite the above Hamiltonian as follows.

Ĥ = −
∑

i

(Γσ̂x
i + hiσ̂

z
i ) +

∑
ij

Jij(miÎi)(mj Îj) −
∑
ij

Jij(σ̂z
i − miÎi)(σ̂z

j − mj Îj) ≡ Ĥ(0) + V̂

(25)

Ĥ(0) ≡ −
∑

i

(Γσ̂x
i + hiσ̂

z
i ) +

∑
ij

Jij(miÎi)(mj Îj) (26)

V̂ ≡ −
∑
ij

Jij(σ̂z
i − miÎi)(σ̂z

j − mj Îj), hi ≡ 2
∑

j

Jijmj (27)

where we defined the 2N × 2N identity matrix Îi, which is formally defined by Îi ≡ I(1) ⊗ · · · ⊗
I(i) ⊗ · · · ⊗ I(N). mi is the local magnetization for the system described by the mean-field
Hamiltonian Ĥ(0), that is,

mi ≡ mz
i = lim

β→∞
tr(σ̂z

i ρ̂
(0)
β ), ρ̂

(0)
β ≡ exp(−βĤ(0))

tr exp(−βĤ(0))
. (28)

Shortly, we derive closed equations to determine mi. It is very tough problem for us to diagonalize
the 2N ×2N matrix Ĥ, whereas it is rather easy to diagonalize the mean-field Hamiltonian Ĥ(0).
Actually, we immediately obtain the ground state internal energy as

E(0) = −
∑

i

Ei +
1
2

∑
i

himi, Ei ≡
√

Γ2 + h2
i . (29)

Then, taking the derivative of the E(0) with respect to mi and setting it to zero, namely,
∂E(0)/∂mi =

∑
k(∂hk/∂mi){hk/

√
Γ2 + h2

k − mk} = 0, we have

(∀i) mi =
hi√

Γ2 + h2
i

, hi = 2
∑

j

Jijmj. (30)



The above equations are nothing but the so-called naive mean-field equations for the Ising spin
glass (the Sherrington-Kirkpatrick model [17]) in a transverse field. It should be noted that
the equations are reduced to (∀i) mi = hi/|hi| = sgn(hi) = limβ→∞ tanh(βhi) which is naive
mean-field equations at the ground state for the corresponding classical system.

To improve the approximation, according to [18, 19], we introduce the reaction term Ri for
each pixel i and rewrite the local field hi such as 2

∑
j Jijmj − Ri. Then, the naive mean-field

equations (30) are rewritten as

(∀i) mi =
2
∑

j Jijmj − Ri√
Γ2 + (2

∑
j Jijmj − Ri)2

� hi

(Γ2 + h2
i )3/2

[
1 − Γ2

Γ2 + h2
i

(
Ri

hi

)]
. (31)

In the last line of the above equation, we expanded the equation with respect to Ri up to the
first order. We next evaluate the expectation of the Hamiltonian Ĥ by using the eigenvector
that diagonalizes the mean-field Hamiltonian Ĥ(0) = −∑i(Γσ̂x

i + hiσ̂
z
i ) +

∑
ij Jij(miÎi)(miÎj).

We obtain

Eg = E(0) − Γ4
∑
ij

(
J2

ij

2E2
i E2

j (Ei + Ej)

)
. (32)

Then, (∂Eg/∂mi) = 0 gives

mi =
hi

(Γ2 + h2
i )3/2

⎡
⎣1 − Γ2

Γ2 + h2
i

(
1
hi

)∑
j

J2
ijmi[2(1 − m2

i )(1 − m2
j)

3
2 + 3(1 − m2

i )
1
2 (1 − m2

j)
2]

2Γ[(1 − m2
i )

1
2 + (1 − m2

j)
1
2 ]2

⎤
⎦ .

(33)

By comparing (31) and (33), we might choose the reaction term Ri for each bit i consistently as

Ri =
∑

j

J2
ijmi[2(1 − m2

i )(1 − m2
j)

3
2 + 3(1 − m2

i )
1
2 (1 − m2

j)
2]

2Γ[(1 − m2
i )

1
2 + (1 − m2

j)
1
2 ]2

. (34)

Therefore, we now have a decoding dynamics described by

mi(t + 1) =
2
∑

j Jijmj(t) − Ri(t)√
Γ2 + {2∑j Jijmj(t) − Ri(t)}2

(35)

Ri(t) =
∑

j

J2
ijmi(t)[2(1 − mi(t)2)(1 − mj(t)2)

3
2 + 3(1 − mi(t)2)

1
2 (1 − mj(t)2)2]

2Γ[(1 − mi(t)2)
1
2 + (1 − mj(t)2)

1
2 ]2

(36)

for each bit i. Then, the MPM estimate is given as a function of time t as ξi(t) = sgn[mi(t)]
and the BER is evaluated at each time step through the following expression

pB(t) =
1
2

(
1 − 1

N

∑
i

ξiξi(t)

)
. (37)

We should notice that the naive mean-field equations are always retrieved by setting Ri = 0 for
all i. The naive mean-field equations were applied to image restoration by Tanaka and Horiguchi
[8].
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Figure 3. The dynamics of the TAP-like mean-field decoding (left, N = 1000, the error-bars are evaluated
by 10-samples). We set p = 2, Γ0 = 0.5 and J/J0 = 0.8, 2 and 1. The horizontal axis t in the left panel denotes
the number of time step in the TAP-like update described by (35)(36). The right panel shows the signal-to-noise
ratio dependence of the BER. We set p = 2 and Γ0 = 0.5.

5.1. Preliminary results
We plot several results in Figure 3. In the left panel of this figure, we plot the dynamics of
mean-field decoding. We plot them for several cases of the signal-to-noise ratio. During the
decoding dynamics, we control the Γ by means of

Γ(t) = Γ0

(
1 +

c

t + 1

)
(38)

where t denotes the number of time step in the TAP-like update described by (35)(36). In the
Figure 3, we set Γ0 = 0.5. From this figure, we find that the BER drops monotonically as
the number of iterations increases. We also find in the right panel that beyond the SN ratio
J0/J � 1, the BER drops. Although the above results are still at preliminary level, however,
from these limited results, we might confirm that TAP-like mean-field approach examined here
is useful to decode the original message with a low BER for relatively large SN ratio. It might be
important for us to consider the relationship between the performance of the TAP-like mean-field
algorithm and the averaged case performance predicted by the replica symmetric theory under
the static approximation. However, to clarify this issue, we need more careful and extended
numerical studies.

6. Concluding remark
We examined a quantum version of TAP (Thouless-Anderson-Palmer)-like mean-field algorithm
at zero temperature for the problem of error-correcting codes. Although the presented results
are still at preliminary level and we should be careful to conclude, the algorithm seems to work
well for our decoding problem. Of course, much more extended studies are needed. For instance,
we have problems to be clarified such as the structure of basin (the initial condition dependence
of the decoding dynamics), studies for the case of p ≥ 3, a comparison of the results with those
obtained by the QMCM, the relationship between the convergence of the algorithm and the
Almeida-Thouless instability which was investigated for the case of the LDPC (Low Density
Parity Check) codes [20]. Some of these issues will be investigated extensively in our future
studies.
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