Title	急速砂ろ過池ろ層の洗浄効果に関する研究
Author(s)	丹保, 憲仁; 丸山, 俊朗; 海老江, 邦雄
Citation	衛生工学, 12, 37-52
Issue Date	1966-03
Doc URL	http://hdl.handle.net/2115/36178
Туре	bulletin (article)
File Information	12_37-52.pdf

急速砂 過池 月 層の 洗 浄 効 果 に 関 す る 研 究

丹 保 憲 仁 丸 山 俊 朗 海老江 邦 雄

An Experimental Study On the Surface—and Back—washing Of Rapid Sand Filters

Norihito TAMBO Toshiro MARUYAMA Kunio EBIE

An experimental study was made in order to improve washing-methods of rapid sand filters more effectively and economically. The layout of experimental equipments employed is indicated in Fig-1.

The filters used were composed of twin square columns with $35\,cm \times 35\,cm$ cross sectional area to each. The filter sands with an effective size of $0.5\,mm$ and a uniformity coefficient of 14 were placed on the $43\,cm$ gravel collecting layers with $62\,cm$ thickness.

Filter influent had an average turbidity of 30° p. p. m. which came from the added kaolinite.

Two series of experimental works were performed. One was for combination method of surface—and back—washing. The other was for simple back washing.

Analyses were made with respect to the required quantity of washing water which needed to reach 995% removal of floc particles retained in filter sands.

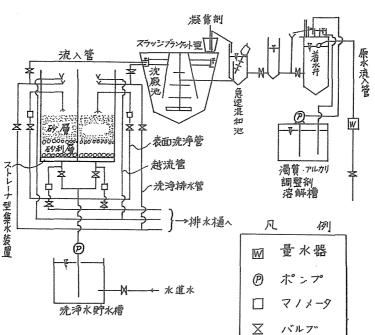
As a result, it was found that a combination method with 20% sand bed expansion was considered to be the most economical to keep filter beds in good condition.

In addition, other new observations are also presented in this paper.

1) まえがき

急速砂ろ過池ろ層の洗浄効果については今日まで幾多の実験研究が行なわれてきたが、いまだに工学的なプロセス制御に応用できる操作公式は開発されていない。

それは洗浄に関係する諸因子,即ち(1)逆流洗浄速度および表面洗浄水量(水圧),(2)水温(水の粘度),(3)閉塞汚泥の濃度分布,(4)ろ過砂の有効径および均等係数,(5)洗浄排水の引き出し法などが,その時々の操作条件下で複雑に変動するためである。


そうした中で、一般に洗浄効果の良否は一定洗浄時間後の排水の濁度を観察測定することによって 判定していた。しかし使用した洗浄水量が一定の場合でも、上に述べた各因子の値が異なれば、即ち 洗浄条件が変わつていればそれが結果に大きく影響するのは当然である。

今回の実験研究には,逆流洗浄法と表面洗浄・逆流洗浄併用法とについて,洗浄水量を指標として 最適洗浄法の検討を行ない実際のろ過池の経済的な運転に対する指針を得る目的で行なわれた。

2) 実験装置

実験装置は本学科水処理実験室内に設置し、札幌市藻岩浄水場よりの水道水に濁質添加を行ない、 これを実験用原水とした。実験期間は昭和38年12月16日より昭和39年2月20日までの67 日間である。

実験装置のフローシートは図ー1に示す様に、札幌市の水道水を直接量水器を通して着水井に貯水 し、とこから自然流下で急速混和池、スラツジブランケット型沈澱池を経て、実験用ろ過池である1 号池、2号池へ別系統の配管により流入させた。

図ー1 実験装置のフロシート

ろ過池流入管にはスルースバルブを取りつけてあり流入水量を予め調整出来るようにしてある。そ の他ろ過池には浄水管(ろ過水引き出し管),排水管,逆流洗浄管,表面洗浄管,越流管,洗浄排水 管,試料採水管の他,各池に15本の損失水頭計を設けた。浄水管端部に水銀柱マノメーターを取り つけ、ろ過水量の調節は予め検量しておいた水銀柱差圧をバルブの開閉によつて得られるようにした。 浄水管の途中より分岐させた捨水管によつて直接ろ過水を排水できる。逆流洗浄管は,洗浄水槽(容 量 3.2 4 ㎡)に貯留されてある水道水を,ポンプで圧送して逆流洗浄を行ないうるように,ろ 過池に 接続しており、洗浄排水はろ過池内上部の朝顔型越流管より洗浄排水管を通つて排水される。表面洗 浄管は逆流洗浄管の途中より分岐させ,その噴出口をろ過池中央に位置させ,その場で噴出口を上下 動出来るように改良した。試料採水管は洗浄排水管の途中より分岐させて採水容易なようにろ過池前 方へ引き出される。また,ろ渦池に流入した余分の水量を速やかに排水して池内水面を一定に保つよ うに越流管が設けられてある。ろ過池内にはそれぞれ表面洗浄装置を取りつけてあるが両者とも固定 式であり、砂層膨張率に従つて噴出口の位置を上下動出来るようになつている。逆流洗浄管と表面洗 **浄管の涂中には水銀柱マノメーターとバルブを取りつけ流量調節は予め検量しておいた関係からバル** ブで適宜行なわれる。前記の損失水頭計は、水面指示用の他、砂層、砂利層の全面にわたり、損失水 頭の変化は絶えず測定できる。また各ろ過池に硬質ガラス製の観測窓(幅10cm,高さ84cm)を取 りつけ砂層の膨張面の測定,濁度流出状態およびその他の内部観察に便利なようになつている。

次に実験用ろ過池に関連した必要数値を記す。

- o ろ過面積·····-各池 3 5cm平方(1225 cm²)
- Oろ過速度 ·····水銀柱マノメーターにより 1 2 0 ^m/日 に調節。
- o下部集水装置……ストレーナー型(4個)
- ○砂層·····厚さ 6 2 cm, 有効径 0.5 mm, 均等係数 1.4, 最大粒径 1.0 8 mm, 最小粒径 0.4 5 mm。
- ○砂利層……厚さ4 3 cm。

最大径 3 0 mm,最小径 2 mm (2~3 0 mmの砂利を 4 層)

- Oろ過時砂面上水深…… 7 8 cm。
- o洗浄時水深……水位はろ過時より18cm下がる。
- ○表面洗浄水量……今回の実験に於いては終始200ℓ/㎡/分に固定させた。

その他,洗浄水槽は屋外に置かれたので凍結防止のため1500ワットの投げ込みヒーターを2本用意した。

3) 実験および測定の方法

今回の実験で採用したフロックの形式方法, ろ過速度, ろ過継続時間, 最終総損失水頭, 洗浄排水の採水法および濁度の測定法は次の通りである。

○フロックの形式……原水が札幌市の水道水であるため濁度が殆んどなく,従つて濁質として精製 白陶土を原水に対して 2 5 p.p.m.添加することとした。またアルカリ度調整剤としては消石灰, および凝集剤としては硫酸ばん土を用いた。これらの最適注加量は一連のジャーテストを行なつて 決定した。即ちビーカーに原水 1ℓ をとり 1%標準濁度懸濁液を 2.5 CC加えて 2.5 p.p.m.とし、これに 1%硫酸はん土溶液と 2%消石灰溶液の量を種々変化させてジャーテストを行ないフロックが最もよく形成された時の値を最適注加量として本実験に用いた。最適注加量は白陶土 2.5 p.p.m. に対して消石灰 1.0 p.p.m.,硫酸はん土 2.5 p.p.m., であつた。又,この際の pH 値は 7.5 であつた。

装置内を流れる原水量はキャリプレーションの結果 2.9.160 m $^{\prime}$ 1.0 $^{\prime}$ 1.0 $^{\prime\prime}$ 1.0 の間を変動していることがわかつたので,原水量を 3.5 m $^{\prime\prime}$ 1.0 として各薬剤の一日使用量は次の通りである。

原 水 …… 33 m/日 白 陶 土 …… 825 g/日 消 石 灰 …… 330 g/日 硫酸バンド …… 825 g/日

また,白陶土と消石灰とは予め風呂桶 2 個に濃縮液を作つておきポンプで適量,原水に注加した。他方硫酸バンドは 2 0 ℓ 入りのガラス瓶に水 2 0 ℓ に 8 2 5 ℓ を答解させ,これをサイフオンにて 1 $3.9^{m\ell}$ /分 注入した。

0ろ過速度 …… 水道施設基準解説によると急速ろ過池に於ける標準のろ過速度は $100\sim150^{m}$ /日で一般に 120^{m} /日 が採用されているとあるので今回の実験では 120^{m} /日 を採用した。

o ろ過継続時間 ……一定の総損失水頭がほぼ一定の汚泥量を砂層に抑留するものとみなして、総損失水頭が $120\sim150$ cm の間に達した時、ろ過を打ち切り砂層の洗浄を行なつた。この時のろ過継続時間はフロックの形成のよしあしによって変動したが、大体に於いて $20\sim2$ 8時間であった。

○最終総損失水頭……ろ過打ち切りの指標としてこの値を用いたが、前記の通り $120\sim150$ cm に 達した時に損失水頭指示板上に取りつけられたガラス管内の水面位置を正確に読んだ。

以上の条件で原水に白陶土と消石灰の混合液を注入し、更に急速混和池で硫酸バンド溶液を適加するとともに急速攪拌し、スラッジプランケット型沈澱池で緩速攪拌してフロックの形成を促進し、上澄水をろ過池へ流入させた。フロックの形成状態および流量を正確に一定に調整するのは困難であるため、総損失水頭がほぼ一定の時ろ過池の砂層に抑留されている汚泥量はほぼ一定であると考えて砂層の洗浄を開始した。

○洗浄排水の採水方法……表面冼浄および逆流洗浄を開始してから,汚泥の流出状況により, 1 5 秒, 3 0 秒, あるいは 1分間隔に容量 5 0 $m\ell$ のポリエチレンの容器に洗浄排水を採水した。時間はストップウオツチで測定した。採水した試料は光電比濁計によつて濁度測定を行なつた。

○濁度の測定法……濁度の測定は平間式光電比濁計を使用した。精製白陶土で100度の濁度標準液を作り、これが光電比濁計で、透過率50%を与えるように設定して測定を行なつた。なお、濁度が200度以上ある試料については200mℓ入りのメスシリンダーで10倍、20倍あるいは30倍に蒸留水で希釈して測定を行なつた。

4) 実験の種類

表面洗浄と逆流洗浄との組み合わせを変えることにより種々の洗浄方法が考えられる。つまり,逆流洗浄のみの場合には,これの膨脹率を変化させることにより,表面洗浄と逆流洗浄とを併用させる場合には,表面洗浄時間を変化させると同時に逆流洗浄に対する表面洗浄の開始時を変化させたり,表面洗浄管の噴出口の位置を砂層内にどの程度浸入させるかにより多数の洗浄方法が考えられる。次の表ー1は,今回の実験で行なつた洗浄方式を系列別に分類したものである。

表 - 1 実験種類一覧表

系列番号	実験番号	洗 净 方 法
		逆流洗浄のみ
	1 8	砂層膨張高さ 5.0 cm
:	2 3	" 7. 5 <i>"</i>
I	1 9	" 1 0.0 "
,	2 4	" 1 2.5 "
	2 0	″ 1 5. 0 ″
	2 6	" 1 7. 5 "
	2 1	" 2 0. 0 <i>"</i>
		表面洗净併用 (1)
П	4	表面洗浄のみ4min 逆流洗浄のみ
	1 1	
	·	表面洗净併用
	5	逆流洗浄のみ 4 min 表洗・逆洗 3 min 逆洗 ⁽¹⁾ 逆洗 ⁽²⁾
	6	" 2 " 3 "
	7	" 1 · " 3 "
Ш	8	" 1/2 " 3 "
111	9	" 0 " 3 "
	1 2	2 "
	1 3	$1\frac{1}{2}$ "
	1 4	$1\frac{1}{2}$ " $2\frac{1}{2}$ " $1\frac{1}{2}$ min
	1 5	2 " 3/4

系列番号	実験番号		洗	净 方	法	
		表面洗浄と逆	立流 洗浄 を	と同時に開始		
	1 0	砂層膨張高さ	1 5.0 cm	表洗噴出口	位置・砂面下	0 <i>cm</i>
IV	2 7	"		"	"	2. 5 //
	2 8	"	•	″	″	5.0″
	2 9	//	w	"	"	7. 5 //
		表面洗浄と道	色流 洗浄 を	と同時に開始		
	3 0	砂層膨張高さ	1 2.5 <i>cm</i>	表洗噴出口	位置・砂面下	0 <i>cm</i>
V	3 1	"		"	"	2. 5 //
	3 2	"		"	"	5. 0 //
A	3 3	"		"	"	7. 5 //
esop succession and the second succession an		表面洗浄と道	色流 洗浄を	と同時に開始		
	3 4	砂層膨張高さ	1 0. 0 <i>cm</i>	表洗噴出口	位置・砂面下	0 <i>cm</i>
VI	3 5	"		"	"	2. 5 //
	3 6	"		"	"	5.0 //
	3 7	"		"	"	7. 5 "
-		表面洗浄と通	色流洗浄る	を同時に開始		
	3 8	砂層膨張高さ	§ 7.5 cm 妻	長洗噴 出口位	置・砂面下	0 <i>cm</i>
VII	3 9	"		"	"	2. 5 "
	4 0	"		"	"	5.0 "
	4 1	"		"	"	7. 5 //
		表面洗浄と道	色流 洗浄を	を同時に開始		
	4 2	砂層膨張高さ	§ 5.0 cm 录	長洗噴出口位	置·砂面下	₀ <i>cm</i>
VIII	4 3	"		"	"	2. 5 "
	4 4	"		"	"	5.0 //
1-	4 5	"		"	//	7.5 //

5) 洗浄効果の比較方法

フロックの形成状態,流量の変動等によりろ過池の砂層に抑留される汚泥量には各実験ごとに差異 がある。ここで、各系列と各方法についての所要洗浄水量を比較するために標準化をすることによつ て比較することにした。標準化の方法は次の通りである。

単位時間間隔で採水した試料の濁度を測定し, 〔時間×濁度〕となる面積を求め, 洗浄排水の濁度 が 0度になる時間を求め、台形として計算し、各面積の総和が各洗浄方法に於いて排泥可能な全汚泥 量と考え、全面積の995%に達するに要する洗浄継続時間を求めて、それに相当する水量を計算し たっ

なお、濁度0度を与える洗浄継続時間は、上述した方法で求めた995%の排泥時には濁度はほぼ 10~30度程度内であるので、この範囲にある低濁度から2点を結んで、この勾配で直線を延長し て濁度0を示す横軸との交点から求めた。

洗浄開始の排水濁度は前にも述べたように上澄水(ろ過池流入水)の濁度が20~40度を示して いるのですべて濁度30度とした。

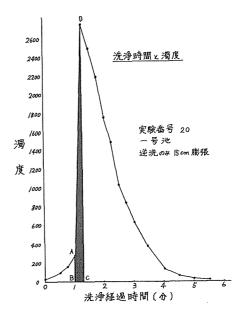
次に一例をあげて説明する。

本例は逆流洗浄のみの場合で、洗浄水量が510ℓ/m/分 つまり51cm/分 の逆流洗浄速度なる 場合で砂層膨張は 1 5cmが得られる。

図-2のように 15秒間隔に採水した相隣る試料の濁度と単位時間($\frac{1}{4}$ 分)から台形の面積(ABCD)を求めこれを△Aとする。このようにして 求めた各面積を加え全面積を求め, この全面積が全

このように考えると,ある洗浄単位継続時間まで の排泥量は、

$$\sum_{N=1}^{n} \triangle A$$


汚泥量に比例すると考えたのである。

である。但し, nは任意の洗浄継続単位時間数であ る。各 1/4 分間に流出した汚泥量の全汚泥量に対す る割合(%(1))は濁度が 0 度になるまでに要する単 位時間(1/4分)の数をmとすると,

$$\%(1) = \frac{\triangle A}{\sum_{N=1}^{m} \triangle A} \times 100$$

で表わされ、任意の洗浄経過時刻までに排出された 汚泥量の全汚泥量に対する割合(%(2))は,任意の 洗浄継続経過単位時間(1/4 分)の数をiとすると,

図-2 洗浄時間と濁度

$$\%(2) = \frac{\sum_{\Sigma}^{i} \triangle A}{\sum_{\Sigma} \triangle A} \times 100$$

$$\sum_{N=1}^{m} \triangle A$$

で表わされる。計算例を示すと、

洗浄経過時間 1分後の排水濁度 280度

" " 1分 1 5秒 " 2760度
$$\triangle A = (280 + 2760) \times \frac{1}{4} \times \frac{1}{2} = 380$$

$$\frac{1}{\Sigma} \sum_{N=1}^{5} \triangle A = 477.1875$$

$$\sum_{N=1}^{m} \triangle A = 3822.63$$

$$\frac{21}{\frac{1}{2}} = \frac{17}{x}$$

$$\therefore x = \frac{17}{42} \text{ (分)} \Rightarrow 24.3 \text{ (秒)}$$

従つて洗浄排水の濁度 0 に至る洗浄継続時間は,

$$5\frac{1}{2} + \frac{17}{42} = 5\frac{38}{42}$$
 (分) $\Rightarrow 5$ 5 5 4.3 7

15秒が本実験では単位時間にとつてあるから, $m=5\frac{38}{42}\div\frac{1}{4}=23\frac{13}{21}$ となる。

$$\%_{(1)} = \frac{\triangle A}{\underset{N=1}{\overset{\Sigma}{\text{M}}}} \times 100 = \frac{380 \times 100}{3822.63} = 10.0\%$$

$$\%_{(2)} = \frac{\sum_{N=1}^{5} \triangle A}{\sum_{N=1}^{M} \triangle A} \times 100 = \frac{477.1875}{3822.63} \times 100 = 12.5\%$$

と計算され%(2)=99.5%排泥に要する洗浄継続時間は求められるが、99.5%なる数値が得られない場合はこの数値に前後する2つの数値を比例配分することによつて洗浄継続時間を求めた。

所要水量は,全汚泥量の 9 9.5 %除去のために要する時間は 5.0 分であり,逆流洗浄水量は 5.1 0 ℓ / ℓ / ℓ であるから,

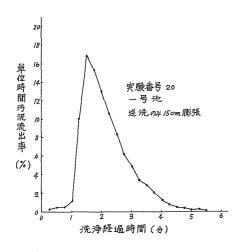

所要水量=5 1 0 \times 5 = 2550 ℓ/m 以下,同様に計算した結果が表-2 ℓ 2 と図-3 である。

表 - 2

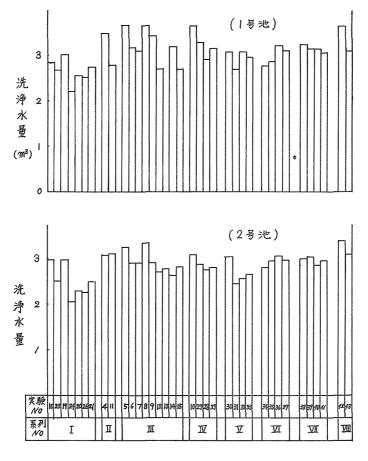
系列番号	1. 実験番号 20	ろ過継	昭和39年1月15日12時10分~16日11時0分		
洗浄方式	逆洗のみ	続時間	2 2 時間 5 0 分		
ルゲガス	膨脹高さ 1 5.0 cm	損失水頭	初期 22.8cm		
水温	ろ過中 3.8℃~4.1℃	頂大小頭	終期 136.4cm		
	洗净中 4.1℃	備考	1 号 池		
砂層位置	初期 1077 mm~終期 1075 mm		1 /2 化		

洗消 (分)) 時間 (秒)	濁 度 (度)	Δ A.	$\sum_{N=1}^{1} \triangle A$	% (1)	% (2)
	0 0	3 0	1 1. 2 5 0	1 1.2 5 0	0.3	0.3
	15		18.750	30.000	0.5	0.8
	3 0	90	20.625	50.625	0. 5	1. 3
	4 5	155	46.5625	97.1875	1. 2	2.5
1	0 0	280	380.000	477.1875	1 0.0	1 2. 5
1	15	2760	641.250	1118.4375	1 6.8	29.3
1	3 0	2500	587.500	1705.9375	1 5. 3	4 4.6
1	45	2200	495.000	2200.9375	1 3.0	5 7. 6
2	0 0	1760	407.500	26074375	1 0.6	6 8.2
2	15	1500	317.500	2924.9375	8.3	7 6. 5
2	3 0	1040	236.250	3161.1875	6.2	8 2.7
2	4 5	850	186.250	3 3 4 7.4 3 7 5	4.9	8 7. 6
3	0 0	640	143.750	3491.1875	3. 4	9 1.3
3	15		1 1 1.2 5 0	3602.4375	2.9	9 4. 2
3	3 0	380	7 9.6 2 5	3 6 8 2.0 6 2 5	2.1	9 6. 3
3	4 5		4 8.8 7 5	3730.9375	1. 3	97.6
4	0 0	134	29.1875	3760.1250	0.8	9 8.4
4	15	:	20.5625	3780.6875	0.5	9 8.9
4	30	6 5	14.5625	3794.2500	0.4	9 9.3
4	4 5		11.1875	3805.4375	0. 2	99.5
5	0 0	38	7.1875	3813.625	0.3	99.8
5	15		5.5625	38191875	0.1	99.9
5	3 0	17				
5	4 5		24.3秒			
6	0 0					
			3.4425	3822.630		1 0 0.0

図-3 単位時間毎(15秒)の濁度 流出状況

6) 所要洗浄水量についての考察

ろ過によつて砂層内に抑留された汚泥は洗浄によって排水と共に流出する部分と砂層内に抑留して次第に蓄積して行く部分の二つに分けて考えることができる。後者を無視して洗浄効果を評価することはできないと唱えている人々もいるが、今回の実験では、一応前記のようにして求めた995%排泥の所要洗浄時間に各種洗浄方式の単位時間の洗浄水量を乗じて995%汚泥排出に要する水量とした。この結果は表一3および図ー4に示す通りである。


表-3 洗浄方法と所要水量一覧表

系列 実験 番号 番号		実験 洗 浄 方 法	注	汚》	泥 9 9.5 %除去の所要水量					
番号	番号		OL.	(3"	<i>)</i>]	124	1号池	時間	2号池	時間
		逆洗のみ		砂層腸	張					
	18					5, 0 <i>cm</i>	2,828 m²	9 3 分	2,970 m³	
	23					7. 5 //	2,669	$7\frac{5}{8}$ "	2,507	7 5 "
1	19					1 0. 0 //	3,000	$7\frac{1}{2}$ "	2,975	$8\frac{1}{2}$ "
1	2 4					1 2.5 "	2,194	7 7 "	2,048	$5\frac{1}{4}$ "
	20					1 5.0 //	2,550	5.0 "	2, 283	5 3 // 16
	26					17.5 //	2,518		2,246	$4\frac{7}{12}$ "
	21					2 0. 0 "	2,7 3 8	4 ⁵ / ₁₂ "	2,475	$4\frac{1}{2}$ "
		表洗のみ	- →逆ž	ものみを	少層膨張	Ę				
2	4	4分				1 5.0 <i>cm</i>	3,478 m³	7	3,073 m°	9 1/6 分
	11	1 3/4 "				1 5.0 <i>cm</i>	2,773	$6\frac{1}{2}$ "	3,100	8.0 "

系列	実験			汚泥995%除去の所要水量				
番号	番号	DL 13	<i>// /A</i>	1号池	時間	2号池	時間	
		逆洗のみ一表洗と逆治	先→逆洗のみ				A trail for addition annual property and property and	
	5	4分 3分	1 5 cm	3,660 m°	6.0 分	3,2 4 0 m³	6.0 分	
	6	2 " 3 "	<i>"</i>	3,150 //	5.0 "	2,9 1 0 "	5 1 "	
	7	1 " 3 "	<i>"</i>	3,086 //	4 7/8 "	2,9 1 0 "	5 1 "	
3	8	$\frac{1}{2}$ " 3 "	"	3,660 //	6.0 "	3,350 //	$6\frac{1}{4}$ "	
	9	0 " 3 "	"	3,405 //	$5\frac{1}{2}$ "	2,910 //	5 1 "	
	. 12	0 " 2 "	<i>"</i>	2,653 //	$4\frac{5}{12}$ "	2,7 1 0 "	5 1 "	
	13	$0 " 1 \frac{1}{2} "$	"		m - min in min i	2,775 //	$5\frac{5}{8}$ "	
	14	$0 " 2 \frac{1}{2} "$	1 ¹ / ₂ 分→2 1 cm 1 1 5 cm	3,180 //	5.0 //	2,619 //	$4\frac{5}{8}$ "	
	15	0 " 2 "	3/4 分→ 2 1 cm 1 5 cm	2,683 //	$4\frac{1}{8}$ "	2,8 1 8 "	4 17 "	
		(逆洗・表洗同時) 逆 洗 膨 張	表 洗(3分) 管 の 位 置				,	
	10	1 5 cm	砂面下 0cm	3,650 m*	6.0 分	3,075 m	5 5 分	
4	27	"	2.5 "	3,278 //	5 1 "	2,855 //	$5\frac{1}{8}$ "	
	28	,,,,	5.0 "	2,895 //	$4\frac{1}{2}$ "	2,7 4 5 "	4 7/8 "	
	29	"	7. 5 "	3,150 //	5.0 "	2,800 //	5.0 //	
	30	1 2. 5 <i>cm</i>	砂面下 0 <i>cm</i>	3,075 m*	5 1/2 分	3, 0 3 8 m ⁶	6 1 分	
5	3 1	<i>"</i>	2.5 "	2,681″	$4\frac{5}{8}$ "	2,420 //	$4\frac{2}{3}$ "	
	32	<i>"</i>	5. 0 "	3,075 //	$5\frac{1}{2}$ "	2,550 //	5.0 //	
	3 3	"	7.5 "	2,906 //		2,6 4 8 "	5 1 "	
	3 4	1 0. 0 <i>cm</i>	砂面下 0 <i>cm</i>	2,7 65 m³	:	2,7 88 m°	-7	
6	35	"	2.5 "	2,867 "	$5\frac{2}{3}$ "	2,963 "	$6\frac{3}{4}$ "	
	3 6	"	5.0 //	3,200 //	Į.	3,050 //	7.0 //	
	3 7	"	7.5 //	3,100 //	6 1/4 "	2,963 //	6 3/4 "	

系列 実験		実験 洗		汚泥 9 9 5 %除去の所要水量			
系列 番号	番号	洗 净	1号池	時間	2号池	時間	
PP TOTAL SALAMANA MANAGEMENT		(逆洗・表洗同時) 逆 洗 膨 張	表 洗(3分) 管 の 位 置				
	38	7. 5 <i>cm</i>	砂面下 0 cm	3,2 2 5 m*	7 1 分	3,000 <i>m</i> *	2 1
7	3 9	"	2. 5 "	3,138 //	$7\frac{1}{4}$ "	3,040 //	7 5 "
/	4 0	"	5.0 //	3,138 //	$7\frac{1}{4}$ "	2,840 //	7.0 "
	4 1	"	7. 5 "	3,050//	7.0 //	2,960″	$7\frac{3}{8}$ "
0	4 2	5.0 <i>cm</i>	砂面下 0 cm	3,645 m°	10 1/2 分	3,401 m²	103分
8	4 3	"	2. 5 "	3,138 //	8 3/4 "	3,098 //	9 1/4 "

図-4 所要洗净水量

所要洗浄水量を計算する場合に必要な、砂層の膨脹高さと水量との関係は予め作つておいた検量線図より求めた。表面洗浄水量は200ℓ/㎡/分を各方式に採用した。

次に各洗浄方式で求めた所要洗浄水量について各系列ごとに考察を加えると共に、あわせて洗浄時の
あ層の観察結果をのべて効果的な洗浄方法を求めてみる。

(系列Iについて)

この系列に含まれる逆流洗浄のみによる方法は急速砂ろ過池の洗浄法としては最も古くかつ基本的なものである。ろ過の終期には、砂層上部の砂粒子間隙は大量の汚泥で満たされ、その汚泥が粘着性であればあるだけこの部分の結合は堅くなつている。この時の全損失水頭に対する砂層上層部10~15cmまでの損失水頭の割合は90%程度にも達するので、この部分に砂層内の汚泥の殆んどが抑留されていると考えられる。バルブを徐々に開いて逆流洗浄水を通してやると、この水は砂利層を通過して後、砂層をゆつくり膨張させながら上昇して、やがて砂層上部に達すると、相互の粘着力で堅く結合している部分を持ちあげて砂層本体から分離させ、そのうちの弱い部分をくずして多量の汚泥とろ砂を含んだ上昇流が勢いよく舞い上がる。これは逆流洗浄の初期に観察される現象であるが、これを経過するとその時の逆流洗浄速度に見合つた砂層膨張率で砂層内汚泥の排出が行なわれる。このように砂層が安定すると砂層全体を一つの渦とした上下循環運動流が観察される。この場合注目すべきことは、上昇流および下降流の通路と渦の中心となる部分が殆んど一定していることであり、下降流は砂層上部より汚泥を下部に持ちこみ、その一部が渦の中心やろ層の死領域(dead space)に入って泥球の生成に寄与するようになるのではないかと思われる。

また砂層より汚泥が砂上の水中に脱出する様子を観察すると、洗浄の初期には非常に濃い汚泥が排出されるが、この状態は1分から1分30秒位で突然終結してその後は汚泥濃度が極度に希薄となつて長い間続く。この濃い汚泥が脱出する時間はその時の逆流洗浄速度と関係があるようだ。濃度が急に変化する際に出来る境界面は洗浄の経過にともなつて徐々に拡散しながら上昇していく。

実験結果より得られた所要水量は砂層膨張が5 cmから12.5 cmへと増加するにつれて減少する傾向にある。所要時間についても同様のことが一層明瞭である。特に砂層膨張高が低い場合、洗浄排水の濁度が200度程度に減衰してから所要時間に達するまでに多くの時間がかかつている。こうしたことから逆流洗浄速度が低く膨張高が小さい場合には汚泥の上昇する通路となる砂層間隙が少なく、また上方にある粒子によつて妨害をうけるために汚泥の砂層脱出が困難になつているものと考えられる。その上、洗浄速度が遅いため砂粒子相互の衝突回数が減少し衝突摩擦による一次汚泥の剝離にも長時間かかるのだろうと思われる。他方、更に膨張高を増して行くと、洗浄は短時間に終了するが所要水量は次第に多くなるという結果を得た。膨張高の増加は、当然、汚泥脱出を容易にするとはいえ、逆に砂粒子相互の摩擦衝突数が必ずしも水量に正比例しないからである。本系列では砂層膨脹が12.5cmで最良の結果が得られたが、この条件の時に砂粒子の摩擦衝突及び水流のせん断作用が効果的であると共に、砂層の空隙が汚泥の排除に最もよい状態になると推定される。また実験中に砂の比重よりは小さく、20cmの砂層膨張を与える逆流洗浄水量でも排除し難い白色にかわ状の粒子が砂面を覆つた。これは逆流洗浄のみでは破壊されない汚泥塊が逆流洗浄のみを続けることにより砂面上に現われたものと思われる。

(系列Ⅱについて)

これは今日広く用いられている方法であるが実験回数が少なかったために経済的所要水量を与える 洗浄方法は得られなかった。 2 0 0 ℓ /m/ Ω の表面洗浄の噴射流のみでは砂層上層部の汚泥層を砕 くことは不可能であり,噴射流のあたる砂面部分が洗掘されるだけであった。

(系列Ⅲについて)

系列II において逆流洗浄の前に表面洗浄を行なつても何ら効果のないことを知つたので,逆流洗浄と同時あるいは逆流洗浄を先に行なつておいて,それに表面洗浄を併用させ,ある時間後に表面洗浄を打ち切つて,その後は濯ぎの意味で逆流洗浄だけにする実験を行なつた。また実験番号 1 4 , 1 5 では,濃い汚泥が砂面より分離した後排出しきるまでに長い時間がかかつているので,この時間を短縮させる目的で表面洗浄と逆流洗浄の併用後 1 5 cmの砂層膨張を与える流量を各々 $1^{1/2}$ 分 , 3/4 分流し,続いて洗浄終了時まで砂層膨張 2 1 cm を与える逆流洗浄を行なつたのであるが,本系列では洗浄終期に膨張 2 1 cm を与える逆流水量の場合に所要水量が少なくなる結果を得た。また表面洗浄は 1 ~ 2 分間逆流洗浄と同時に行なう場合が好結果を示すようである。

(系列Ⅳ~Ⅷについて)

表面洗浄管の噴射口の位置が砂層よりの汚泥脱出にどのような影響を与えるかを調べようとしたのであるが、明らかに効果的な位置を決定することはできなかつた。所要水量の点から見ると系列 I と同様に、砂層膨脹が 1 2.5 cmの場合が一般に経済的水量で洗浄を完了することができる。また砂層膨脹が 1 2.5 cm以上でも以下でも所要水量は増加する傾向にある。表面洗浄管の噴射口の位置が汚泥脱出の効果に明らかな差異を与えないことは、表面洗浄管の砂層侵入深さ 0 cm(噴射部だけ砂層内に入っている。)の場合でさえ、噴射流の砂層侵入深さが 15 cm程度あつて極度に汚染した部分を網羅しているということから納得できる。

7)結論

本実験では、急速砂ろ過池の砂層の洗浄に於いて、砂層の清浄度を高く保ち、かつ、洗浄所要水量を経済的にするためにはいかなる洗浄方式によればよいかを、種々の洗浄方式について追求した。すなわち、逆流洗浄のみによる方法より出発して、逆流洗浄前に表面洗浄を行なう方法、一定時間逆流洗浄を表面洗浄に先行させる方法、および最後に、表面洗浄管の噴出口の位置と逆流洗浄による砂層膨脹高さの関係をいろいろ組み合わせた方法などについて、砂層に抑留された汚泥の 9 9.5 %が排出されるに必要な時間を求め、それによつて所要水量を算出し、その水量の大小を比較し最適の洗浄方式を見いだそうとした。

本実験より得られた結論としては以下の通りである。

(1) 最適の逆流洗浄速度は砂層の膨張高さが 1 2.5 cm (約 2 0 %膨張率)の時である。この場合には洗浄所要水量が最も経済的な値を示している。また、寺島は逆流洗浄のみの場合に比べて表面洗浄を併用すると砂層の清浄度が高く保たれることを明らかにしており、この点からすれば今回の実験では、砂層の膨張高さ 1 2.5 cm (2 0 %)に保つた逆流洗浄のみの場合が砂層膨張高さ 1 2.5 cm での表面洗浄併用方式より水量的には優つているが、砂層の清浄度という点を考慮すると後者が優つている

のではないかと推測される。

- (2) 表面洗浄管の噴出口の位置は逆流洗浄により膨張した砂面下におくこと。すなわち,表面洗浄管の位置が膨張砂面下にあると,噴射流が直接多量の汚泥を抑留した砂層の表層部に作用するので,砂粒子の摩擦および衝突による洗浄を効果的に行なうことが出来る。また,表面洗浄管の噴出口が砂面上に出ていると,噴射水が膨張砂面に突入する際に反射流を生じその反射流によつてろ過砂が舞い上り流出するけれど,噴出口が砂面下にあると噴流は砂層内にとどまつて砂の舞い上りを極度に防止しうる。
- (3) 砂層より分離した汚泥はろ過池内の砂層より上部の水の中で拡散しつつ上昇していくため排出に長時間を要し、これが所要水量を過大にしていると考えられる。従つて経済的水量で洗浄を完了させるためには、砂層より分離脱出した汚泥を速やかに排出させるために、洗浄排水トラフを出来るだけ砂面に近く設けるとよい。
- (4) 洗浄排水濁度の変化は,単位時間毎に採水した試料の濁度を測定して片対数方眼紙の縦軸に濁度を横軸に洗浄経過時間をとつてプロットすると最高濁度が表われてからはほぼ直線的に減衰している。このことから,濁度をx,洗浄経過時間をt,係数をa,bとすると, $x=a\cdot e^{-bt}$ なる関係になるので,係数a,bが求められると任意の洗浄排水濁度のあらわれる洗浄継続時間を求めることができる。
- (5) 従来の表面洗浄の目的は、逆流洗浄に先だつて砂層上部を砕き逆流洗浄を円滑に行なわせることにあつたが次のように修正されるべきと考える。

表面洗浄を逆流洗浄に先行させても効果はなく逆流洗浄と並行して行なうのが良い。表面洗浄を併用すると逆流洗浄が円滑になるのみでなく砂層上部の汚泥の蓄積をも防ぐことができる。これは汚泥が多量に抑留されている砂層上部に噴射流による強力なエネルギーを加えて砂粒子の衝突摩擦の機会を増し、一次汚泥の剝離を促進させると同時に、噴射流を侵入させることにより、その位置より上部にある砂層膨張高が大となつて汚泥の脱出が容易になるためと考えられる。また、この噴射流によつてこの部分が砂層の上下方向の大規模な渦運動に関与することを妨げ、汚泥が下方へ運搬されるのを停止させ、泥球の形成を防止すると思われる。

参考文献

- (1) 日本水道協会;水道施設基準解説(1962) P150~155, P180, P184~196, P219~223
- (2) 巽 巖 ; "急速ろ過槽の逆洗浄効果に関する研究"

水道協会誌 第314号 P21~31

" # 第315号 P26~33

" " 第316号 P17~32

- (3) 名和野竜雄; "損失水頭分布図について" 工業用水 1656(1963) P28~34
- (4) 寺島重雄; "急速ろ過に於けるろ過砂の粒度および表面洗浄に関する研究"
- (5) 巽 巖・土田恂一; "上向砂ろ過法による高濁度の処理に関する実験的研究" 水処理技術

 $(1963, 9) P1 \sim 11$

- (6) 北村隆; "急速ろ過池に於ける障害と集配水機構" 水処理技術(1963,9) P12~17
- (7) John R. Baylis ; "Water and Sewers" P136 \sim 158
- (8) Harold E. Babbit. & James J. Daland ; "Water Supply Engineering " (1957) P480 \sim 481
- (9) Linuil G. Rich ; " Unit Operation of Sanitary Engineering" Kogakusha Compang, LTD. P 1 3 6 \sim 1 5 8
- (10) The Committy of The Sanitary Engineering ; "Water Treatment Plant Design " (1939) P49 \sim 89