<table>
<thead>
<tr>
<th>Title</th>
<th>K-Ar Ages of White Mica Fractiones from the Susunai Metamorphic Rocks in Sakhalin, Far East Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Gouchi, Nobuo; Omata, Masashi; Katoh, Takayuki; Itaya, Tetsumaru; Watanabe, Teruo</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大学理学部紀要 = Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 23(2): 281-286</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td><a href="http://hdl.handle.net/2115/36783">http://hdl.handle.net/2115/36783</a></td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>23-2_p281-286.pdf</td>
</tr>
</tbody>
</table>
K-Ar AGES OF WHITE MICA FRACTIONS FROM THE SUSUNAI METAMORPHIC ROCKS IN SAKHALIN, FAR EAST RUSSIA.

by

Nobuo Gouchi*, Masashi Omata**, Takayuki Katoh***
Tetsumaru Itaya+ and Teruo Watanabe++

(with 2 tables and 2 text-figures)

Abstract

K-Ar ages of four samples of metamorphic rocks from the Susunai Range, South Sakhalin have been obtained. These ages are 68-59 Ma. The ages are correlated to the young K-Ar ages of the Kamuikotan metamorphic rocks in Hokkaido.

Introduction

The Susunai metamorphic massif in the southeastern part of Sakhalin is considered to be the northern extension of the Kamuikotan metamorphic belt (Dobretsov and Kuroda, 1969). The massif as a whole is a tectonic melange zone surrounded by Cretaceous or younger units.

Rikhter (1981, 1986) divided the Susunai metamorphic rocks into three blocks, i.e. north, middle and south. Each block is bounded by fault (Text-fig. 1). The metamorphic rocks are composed mainly of pelitic and mafic schists with sporadic occurrence of eclogite.

Omata (1991) identified three major deformation phases in the area as shown in Table 1. The most distinguishable structure is F2 folds with wave length of several tens meters. However, F3 folds are also ubiquitous and have distorted F1 and F2 fold-axes. Therefore, foliation planes and fold axes of F1 and F2 are widely scattered (Text-fig. 2). There are some structural differences between the north and middle blocks as follows, the schistosity of D1 deformation in the north block trends NE-SW and dips 20°-30° to NW, but that of the middle block trends NE-SW and dips 40°-50° to NE. F2 folding axes of D2 deformation in the north block plunges to NW, while the middle block has folds of NW-SE direction as...
1. Oligocene-Quaternary sediments and sedimentary rocks  
2. Upper Cretaceous sedimentary rocks in the Melensky zone  
3. Siliceous-terrigenous sedimentary rocks  
4. Volcanic-siliceous rocks  
5. Amphibolite and amphibole-schist  
6. Serpentinite and serpentinite melange  
7. Main thrust zone  
8. Fossil locality  
9. Strike and dip of schistosity  
K2: Upper Cretaceous  
K1: Lower Cretaceous  
MZ: Mesozoic  
T: Tertiary  
I: South Susunaiskaya  
II: Middle Susunaiskaya  
III: North Susunaiskaya
Table 1 Deformation sequence in the Susunai metamorphic rocks

<table>
<thead>
<tr>
<th>Fold</th>
<th>Lineation</th>
<th>Foliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 F1: isoclinal fold</td>
<td>L1: mineral lineation stretching lineation</td>
<td>S1: schistosity plane</td>
</tr>
<tr>
<td>mushroom-like fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 F2: tight~close fold</td>
<td>L2: intersection of S1</td>
<td>S2: axial-plane cleavage</td>
</tr>
<tr>
<td></td>
<td>with S2</td>
<td></td>
</tr>
<tr>
<td>D3 F3: open~gentle fold</td>
<td>L3: intersection of S1</td>
<td>S3: axial-plane cleavage</td>
</tr>
<tr>
<td></td>
<td>with S3</td>
<td></td>
</tr>
</tbody>
</table>

shown in Text-fig. 2.

Four pieces of schists were collected from the east coast area in the Susunai metamorphic massif to date them with K-Ar age determination method. They are quartzose and pelitic schists from the both north and middle blocks (Text-fig.1). Mica rich fractions from them were prepared by Gouchi and dated by Itaya using HIRU (Itaya et al., 1991).

Description of the samples

1) 7307 (north block) and 7649 (middle block)
   Quartzose schists with pale greenish colour, having quartz-albite-white mica-chlorite.
2) 7311 (north block) and KUR043 (middle block)
   Dark-coloured pelitic schists with well developed micro-fold, having quartz-albite-white mica-carbonaceous material+minor pyrite and chlorite.

Result and discussion

K-Ar ages of the four samples are shown in Table 2. K contents of the fraction from quartzose schists are comparatively low, showing much impurity for the separation of white mica. However, their ages are nearly the same as those for the associated pelitic schists which were much better for the separation of mica. The result shows that the schists from the middle block (68–65 Ma in age) are slightly older than those from the north block (62–59 Ma).

Table 2 K-Ar ages of the Susunai metamorphic rocks

<table>
<thead>
<tr>
<th>Number of Specimen</th>
<th>K (wt. %)</th>
<th>Rad. argon40 (10^-4ccSTP/g)</th>
<th>Non Rad. Ar(%)</th>
<th>K-Ar age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7307</td>
<td>3.28±0.07</td>
<td>799±18</td>
<td>50.9</td>
<td>61.7±1.8</td>
</tr>
<tr>
<td>7311</td>
<td>6.06±0.12</td>
<td>1413±17</td>
<td>20.8</td>
<td>59.2±1.4</td>
</tr>
<tr>
<td>KUR043</td>
<td>6.11±0.12</td>
<td>1556±18</td>
<td>16.5</td>
<td>64.5±1.5</td>
</tr>
<tr>
<td>7649</td>
<td>3.77±0.08</td>
<td>1020±14</td>
<td>29.2</td>
<td>68.4±1.6</td>
</tr>
</tbody>
</table>
Text Fig. 2 Structural map along the eastern coast of the Susumai Range
Rikhter (1986) compiled the K-Ar ages of the Susunai metamorphic rocks and classifield into four stages: 1) 206-178 Ma for hornblendite and crossite bearing mafic rocks, 2) 133 Ma for eclogite suffered weak retrogressive metamorphism, 3) 96-90 Ma for amphibole schists and muscovite-quartz schists, 4) 77-55 Ma for glaucophane-muscovite schists, muscovite-quartz schists and muscovite schists.

The analysed metamorphic rocks, which consist of matrix of the tectonic melange zone, represent the youngest stage of the Susunai massif. Field relationships among those rocks of different stages are very important for fully understanding the formation of the Susunai metamorphic melange belt. The schists dated in this study are correlated to the young K-Ar ages in the Kamuikotan metamorphic rocks (Iwasaki et al, 1991).

Conclusions

There are some structural differences between the north and the middle blocks of the Susunai massif. K-Ar ages from the metamorphic rocks in the middle block are slightly older (68-65 Ma) than those from the north block (62-59 Ma). These ages are correlated to the young K-Ar age in the Kamuikotan metamorphic rocks in Hokkaido.

Acknowledgements

An opportunity for field survey in the Susunai metamorphic massif was realized by cooperation between Hoppoken Chishitsu Research Group (representative Dr Y. Kitagawa) and Geological Department “Sakhalingeology”, Sakhalin. Drs. D. Semyonov and N. Kito, and Messrs S. Ishizaki, V. Radysh, Y. Podzorov, A. Zharov and V. Galversen joined our field survey or guided us. Drs. Y. Igarashi and Mr. Y. Goto of Hokkaido University gave us valuable suggestion for publishing this paper. Professors K. Nakamura and M. Kato encourage our survey. We express our sincere thanks to all scientists mentioned above. Cost of field study for T. Katoh is met by a grant from Tokyo Geographical Society.

References


Omata, M. 1991. Geology and rock deformation around the Etanbetsu pass, the Kamuikotan belt, Hokkaido, Japan. Master thesis, Faculty of Science, Hokkaido University.


Academy of Science of USSR, 551, 24/551 76(551. 64), 90 pp. (in Russian)

(Manuscript received on June 10, 1992; and accepted on June 29, 1992)