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A Study on Model Reference Adaptive Control
In Economic Development (V)

—Model Reference Adaptive Turnpike Theorem (I)—

Yuzuru Miyata and Etsuo Yamamura

Department of Regional Planning, Division of Environmental
Planning, Graduate School of Environmental Science
Hokkaido University, 060, Japan

Abstract

The pricipal aim of this paper is to present “Model Reference Adaptive Turnpike Theorem”.
Model Reference Adaptive Turnpike Theorem shows a path of economic development which
converges to the Turnpike and the adaptation processes of technological system and its stability.
Model Reference Adaptive Turnpike Theorem is obtained by extending the theorems in our
previous papers 1) and 2) using the projective transformation. Model Reference Adaptive Turnpike
Theorem, it is hoped, would play an important role in regional economic planning policy for-

mulation.

Key Words: Model reference adaptive turnpike theorem, Model reference adaptive system,
Turnpike theorem, Dynamic input-output model, Relatively stable, Projective transformation.

1. Introduction

In our previous papers 1), 2), we applied a model reference adaptive system to
a dynamic input-output model and considered some basic theories for Model Re-
ference Adaptive I-O System. From the consideration, we could get some results
about the adaptation principle and the asymptotical stability. On the other hand,
however, there were two major problems in these previous papers. The first was
with a construction of a reference model, and the second was how to make the
reference model stable when the transfer function is strictly positive real. This
article aims at resolving these afore-mentioned problems.

The theory of dynamic imput-output analysis has a long history since W.
Leontief first introduced it. It is also generally known that Turnpike Theorem is
one of the most important results in the theory. Turnpike Theorem is applied
here to lead us to a solution to the first problem.

On the point of the stability of the reference model, the necessary condition
that the system representation matrix must be stable is too strict because the
conventional dynamic economic model takes into account the shift of economic
equilibrium during the process of adjustment of market economy and the representa-
tion matrix of the model is usually unstable. In this paper, therefore, we shall



20 Environmental Science, Hokkaido Vol. 10, No. 1, 1987

introduce a concept of the projective transformation and it is hoped that this
would act as a solution to this problem of unstability in the reference model.

2. Turnpike Theorem

Turnpike Theorem was conjectured first by Dorfmann, Samuelson, and Solow
(DOSSO) 3), and mathematically proved by Morishima 4) and Radner 5) in n-
sector economic growth model. Later many mathematical economists have proved
and extended various types of the theorem. Prominent amongst there are T.
Watanabe and J. Tsukui 6) whose results are introduced here after and which in our
aim would help charifying issues in the subsequent chapters.

Now let the notations be as follows;

A : input-output coefficient matrix (n X n)

B: capital coefficient matrix (nXn)

X(z): output vector at ¢ th period (nx1)

H (¢): final demand vector at ¢ th period (nx1, except a private investment and
assumed constant)

Then dynamic input-output model is as follows.
X(t)=AX@W)+B(X(t+ =X @) +H) (2. 1)

Further when we set a stationary equilibrium solution as X=(I— A)~! H(¢) and
define x(t) as x()=X () — X, (2. 1) is written in the form (2. 2).

2(t+1) = (I+B(I— A)) x(t) (2.2
Here let us put three assumptions.

Assumption 1. Each element of (I— A)™! is positive.

Assumption 2. Determinant of B is not zero. i.e. [Bl=x0

Assumption 3. For the eigen values y; of I+ B"YI[—A) (i=1, -, n), >l =1
holds.

For the assumption 3. Let y be Frobenius root of (I— A)~'B then we can see

Under the formulations stated above, let us consider the next programming
problems.

Programming Problem (P.P.)
max P* Bx (N)
subject to (I— A+ B) x(t) = Bx(t+1)

z(#)z0 (t=0,1,--,N)
Dual Problem (D.P.)
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min 2(1) (I— A+ B) =(0)
subject to w’(¢+1)([— A+ B)~u"({)BL0 (t=1,-, N-1)
u'(N)=P'B
u(t)=0 (t=1, -, N)
where, P: given price vector of capital goods at planned period N (nx1)
u(t) : price vector of x(¢) (nx1)
Using the relationship between (P.P.) and (D.P.), we can get
W) (I—A+B) z(0)=u”(1) Bx()=u*(2) (I—A+B) z(1)=---
Zu"(N—1) Bx(N—=1)zu«"(N)(I— A+ Bx (N—1)
=u?(N) Bx (N)=P"Bx (N

i SR

(2. 3)

By the duality theorem of dynamic programming, the necessary and sufficient
condition that sequences {z(¢)}¥, and {ii(¢)}¥., are the solution sequences of (P.P.)
and (D.P.}) is that every equality is realized in (2. 3).

Now the general solutions of (2. 1) and its dual equation
W+ 1) =u(¢)B(I- A+ B! (2. 4)

are represented as

z(t) = 21 aptih; (2. 5)
n 1 t
wu(l) = Zl ﬂ;(}:) ks (2. 6)

where, y;: eigen value of I+ B~Y[—A)
h;: eigen vector of y; and [A;]=1 (nx1)
a; : constant determined by the initial value x(0)

k. eigen vector of i which is an eigen value of B(I— A+ B)™ and |k

=1 (nx1)
fi: constant determined by the initial value (1)

Accordingly the behaviors of x(¢) and «(t) are dominated by g, This leads
us to the next two cases,

. . t .
Case 1. Case of g >|u|. In this case lim -d‘%[/)l -=1 holds so the sectorwise

t—roo 1541741

share rate of the activity outputs z(#) will asymptotically converge to the sector-
wise share rate of h. We call this case as relatively stable and- the half line
aypthy (0 20) which is drawn from the origin with the direction A, is the so-called

Turnpike or von Neumann Ray.

Case 2. Case that Fp; s.t. g <|p]. In this case if x(0) is not on Turnpike,
¢, 3 s.t. 24()<0 then economic meaning of x(f) is lost. We call the case as
relatively unstable.
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For case 1 and case 2 the following two theorems can be obtained.

Theorem 1. If (2.2) is relatively stable, the solution sequence {z(£)};., determined
by

Z2(0)=0 (2.7)
z(t+1) = <I+B‘1(I—A)> () (=0, N—2) (2. 8)

x(N):{x(M[max P'Bx(N) subject to Bz (N)<(I—A+B) z(N—1)]
(2.9

is a solution of (P.P.).
And the solution sequence {«(£)}?., determined by
©"(N) :{uT(N)jmin u"(N)(I— A+ B) x(N—1) subject to «”(N)=P"B}
(2.10)
(2.11)

=

2.
Wity =+ )(I+(I-A) BY)  ¢=N-1,N=2,-1) 2,
is a solution of (D.P.). (see Figures 1 and 2)

(proof) see reference 6)
Theorem 2. If (2.2) is relatively unstable, the solution sequence {y*x*(f)}., ob-

tained from

x*(N) :{x(N)|max P?Bx(N) subject to kf Bx(N)=1, x(N)ZO}

s neighborhood
of Turnpike V,

Turnpike S
{1220} \

output of the second commodity 2

€

Iy =)

output of the first commodity

Figure 1. Optimal Path of Outputs in Relatively Stable Case.
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¢ neighborhood
of von Neumann
price ray Vy

von Neumann
price ray

{2220}

price of the second commodity u,

b u(N)

price of the first commodity u,

Figure 2. Optimal Path of Prices in Relatively Stable Case.

2 Nt

H () = 2, <;~> prach;  (E=N—1,--,1) (2.13)
i=1 1

k= {plmax 7 subject to pBzx*(1)=(I— A+ B) z(0), 7720} (2.14)

is a solution of (P.P.)..

And the solution sequence {E*7*(t)}¥, obtained from
7

wk(l) = {u(l){min u”(1) (I— A+ B) 2{0) subject to #7(1) Bx*(1)=1, 11(1)20}

(2.15)

n 1 ¢
ult) =, B <?> k; (t=1,--, N) (2. 16)
Ex = {i:‘lmin £ subject to Eu*(N) B=PB, 520} (2.17)

is a solution of (D.P.). (see Figures 3 and 4)
(proof) see reference 6).

From the two theorems stated above, we can derive the so-called Turnpike
Theorem as follows ;

Theorem 3. (Turnpike Theorem)

For a properly choosen neighbourhood Vx of Turnpike, there exists some
finite £>0 which is independ to the planned period N, then the solution sequence
{x (@)}, of (P.P.) stays in Vx at least during the interval (N—z¢—1).

(proof) see reference 6).
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¢ neighborhood
of Turnpike Vg

Turnpike
{am]2z0}

z(N)

output of the second commodity x;

111

output of the first commodity x;

Figure 3. Optimal Path of Outputs in Relatively Unstable Case.

¢ neighborhood
of von Neumann
price ray Vu

von Neumann
price ray
{220}

price of the second commodity u;

—

price of the first commodity u;

Figure 4. Optimal Path of Prices in Relatively Unstable Case.

3. Model Reference Adaptive I-O System

In this chapter let us simply review Model Reference Adaptive I-O System
introduced in our previous papers 1), 2).

Model reference Adaptive 1-O System in Continuous Format is defined as
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follows ;

reference model

-4%’?;@— = Bm~Y(I— Am) Xm(t) — Bm~*H(t) (3.1)
adaptive model
X0 _ B“(t)([— Aly— ~—4—§tﬁ?)--> X(0)— B H) (3.2)

where, Xm(t): reference output vector (nx1)
Am : reference input-output coefficient matrix (n X n)
Bm : reference capital coefficient matrix (n X n)
(¢) : inal demand vector (nX1, except private investment)
(¢) : adaptive output vector (n X 1)

(
(

And Model Reference Adaptive I-O System in Discrete Format is defined in
the next.

H
X()
A(2) : adaptive inout-output coefficient matrix (n X n)
B(t): adaptive capital coefficient matrix (n Xn)

reference model

Xm(t+1) = Bm~(I— Am-+ Bm) Xm(t)— Bm~H (¢) (3. 3)
adaptive model

X(t+1) =B+ 1) (I- AW+ B@) X (6~ B (t+1) H() (3. 4)

For above two formulations, the next fundamental theorems can be obtained
as follows ;

Theorem 4. (Fundamental Theorem of Model Reference Adaptive I-O System
in Continuous Format)

reference model

AdXm()

= Bmi(I— Am) Xm(t)— Bm™ H(1) (3.5)
adaptive model
f%@ :B“(t)(]— Aft)— ,,.4%(9,) X —B(t) H(@p) (3.6)
Define the equivalent feedback system as
dfg) = Cme(t)+W (2) (3.7)
V(e = Ye(t) (3.8)

W) =(Cm—C@) X(t)+ (Dm—D©) H () (3.9)
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where, ¢(t) = Xm(t)— X () (3. 10)
Cm = Bm ' (I— Am) (3.11)
Dm=—Bm™ (3.12)
C)= B“‘(t)<I~A(t) - éig,t@) (3.13)
D(ty=— B () (3. 14)

Let Y be a solution of Cm*Y+ YCm= —1 and adaptation principles C(#) and
D(#) be

Cl) = Ke® g; V (@)X (0)de+ Le@(V (0 X7 (£)) +C(0) (3. 15)
D{t) = Kd® S: V (z) H” ()dz+ Ld®(V () H* () +D(0) (3. 16)
then the equivalent feedback system will be globally asymptotically hyperstable.
ie lim { Xom (1) — X (1)]| = 0 (3.17)
lim [|Cm—C ()| =0 (3.18)
Hm |[Dm—D@®)j] =0 (3.19)

100

Where Ke, Le, Kd, Ld are the positive matrices and (X) stands for the operation

that is
Ayt din by by auby - abia
ooy =] : (3. 20)

Aup Ay bm " 'bnn (2201 bm e 'annbnn

This result shows that the adaptive outputs asymptotically converge to the
reference by those adaptation principles.

Furthermore A(¢) and B(¢) are solved by
_ i

A(t) = I+D(t) C@t) g (3.21)
B(t)=—D"() (3. 22)
and }iril |Am—A@®)|| =0 (3. 23)
lim {|Bm—B{)|| =0 (3. 24)

t-+c0

Theorem 5. (Fundamental Theorem of Model Reference Adaptive I-O System in
Discrete Format)

reference model
Xm(t+1) = Bm Y{I— Am+ Bm) Xm(t)— Bm™LH (¢) (3. 25)

adaptive model
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X(t+1) =B+ 1)(I-AQ)+B@) X ()~ B¢+ 1)H () (3. 26)
Define the equivalent feedback system as
et+1)=Cme(t)+W(+1) (3.27)
Vie+1) = Ye)+ LW (¢t +1) (3. 28)
W (t+1) =(Cm—C(t+1) X (0)+ (Dm—D(+ 1) H (¢) (3. 29)
where, ¢(t) = Xm(@t)— X () (3. 30)
Cm = Bm~(I— Am+ Bm) (3. 31)
Dm = — Bm™! (3. 32)
Cle+1) = B¢+ 1)(I— A@+B) (3. 33)
D(t+1) = — Bt +1) (3. 34)
Let Y, L be solutions of
Cm"PCm—P=—1I (3. 35)
PCm=Y (3. 36)
L+L'=P (P=Pr>0 (3. 37)

and adaptation principles of C(¢) and D(¢) be

Clt+1) = Ke® z V(k+ D)X B+ Le®(Ve+1) X7 @) +C(©0)  (3.38)

DE+1) = Kd® kﬁo V (k+ D) H” (k) + Ld®(V (t+1) H*(6) +D(0) (3.39)

then the equivalent feedback system will be globally asymptotically hyperstable.

Le lim||Xm(f)—X(@)[|=0 (3. 40)
lim ([Cm—C (£)]] =0 (3. 41)
lim || Dm ~ D (0)]] =0 (3. 42)

This result shows that the adaptive outputs asymptotically converge to
reference by those adaptation principles. And A (¢#) and B(¢) are solved by

A(t) = I+D(t+1) Clt+1)+ D) (3. 43)
B(t+1)= —D\(t+1) (3. 44)
and lim || Am — A1)} =0 (3. 45)
lim || Bm — B@)]| = 0 (3. 46)

{00

The prooves of the two theorems are shown in the references 1) and 2).

the
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4. Model Reference Adaptive Turnpike Theorem

There may be many problems in the Theorems 4 and 5, however, the most
important is the stability of the reference model. In both theorems, we assume the
existences of Y and P which satisfy

Cn?Y+YCm= —1 Y=Y7>0 4. 1)
Cm™PCm—P= —1 P=P">0 4. 2)

Of course these equations show the continuous and the discrete Lyapunov’s equa
tions. So the necessary and sufficient conditions of (4.1) and (4. 2) are that the
real parts of the eigen values of Cm are less than 0 and the absolute values of
the eigen values of Cm is less than 1, respectively.

In this way, the behavior of the reference model can be described from a
point of view of eigen value as follows. Let (3.1) and (3. 3) rewrite with respect to
the distance am (£)=Xm()—(I— Am)" H{t) from the stationary equilibrium solution
(I—Am)~'H({t), then

f{%?%(i) = Bm YI— Am) xm(r) 4. 3)

am(t+1) = Bm™*(I— Am-+ Bm) xm(¢) 4. 4)
So the general solutions of (4.3) and (4. 4) are given by

xm(t) = eBn” d—dmigy (() (4. 5)

xm(t) = fi atlih; (4. 6)

where, a;: constant decided by the initial value z,(0)
1+ eigen value of Bm~'(I— Am-+ Bm)
h;: eigen vector of y; and |h;|=1

From the general solutions (4. 5) and (4. 6) we have three types of behaviors of
xm (t), (1) absolutely stable, (2) relatively stable, and (3) relatively unstable, respec-
tively. The meanings of (1), (2) and (3) are explained below again, the reason
being that we are not dealing with a continuous case in chapter 2.

(1)  Absolutely Stable

This case denotes that the real part of the eigen values of Bm™*([— Am) are
less than zero in a continuous format and the absolute values of the eigen values
of Bm~Y(I— Am+ Bm) are less than 1 in discrete format. In this case lim x,, (£} =0

t—roo

holds, i.e. lim Xm(t)=(I— A)"'H (co), accordingly Xm(t) asymptotically converges
{—ro0

to the stationary equilibrium solution (I— Am) 1H (co).

(2) Relatively Stable

This case depicts that in a continuous format there exists an eigen value of
Bm™(I[— Am) which is positive and has a maximum absolute value among the
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other eigen values. Also in discrete format there exists an eigen value which is
greater than 1 and has a maximum absolute value among the other eigen values.

In this case the asymptotial behavior of z, () is dominated by the maximum
eigen value, say g4, and the sectorwise share rate of =z, (f) converges to the one
of the half line from the origin aeth, or aypthy, respectively.

(3)  Relatively Unstable

This case shows that in continuous format there exists some complex eigen
value of Bm™'([— Am) whose an absolute value is maximum among the other
eigen values. In discrete format there exists some complex or negative eigen value
of Bm ™ (I— Am-+ Bm) whose the absolute value is maximum among the other
eigen values. This case, same as that in chapter 2, looses an economic sense.

These above-mentioned cases are shown in Figure 5. We can immediately see
that the eigen values assumed in the theorem 4 and theorem 5 are different from
ones of the case of relative stability which reflects normal economic thinking and
that the theorems 4 and 5 can not be realized except in the case of absolute
stability. Therefore some transformations are needed so that the theorems 4 and
5 are realized under the condition of relative stability.

To achieve this objective, let us introduce a projective transformation as depicted
in Figure 6. Let us assume that (3.1) and (3. 3) are relatively stable and H () is
a constant final demand vector only for simplicity purposes. Further let us assume
that the output trajectory represented by (3. 1) and/or (3. 3) asymptotically converges
to the Turnpike cut+(I—A)™'H (¢>0, ¢ is a constant and p is a Frobenius root
of Cm.) from the equilibrium solution X=(I— A)"'H. Under these assumptions we

Turnpike

relatively
stable path

stationary
equilibrium
point

(I—A)' H(eo)

output of the second commodity z;

relatively

absolutely
unstable path

stable path

output of the first commodity x;

Figure 5. Behaviours of Outputs in Absolutely Stable, Relatively
Stable, and Relatively Unstable.
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output of the second commodity z;

Turnpike
O(I—-A)H cA+(I-A)H
2(1——A)“\1H 7
projective
stationary % transformation
equilibrium _ ‘ Z-X=0X-@([-A)1H
point ([-A) H
relatively
stable path
output of the first commodity x,
Figure 6. Turnpike and Projective Transformation.

shall define the projective transformation as the foot of a perpendicular line from
the relatively stable trajectory to Turnpike. (see Figure 6) Let Z(¢) be a foot
of a perpendicular line from a point X(¢) on the relatively stable trajectory to the
Turnpike. From this we obtain the following equations.

ZH) - Xt =0X@e)—0(I-A"H (4.7)
b=yl =1 (4.8)

7t an eigen vector of

Where @ is the n X7 matrix which stands for the projective transformation. Let
X)) be XO)=Z® —X@)+0(I— A)'H, then X()=®X(t). We shall introduce a
generalized inverse matrix @ of @ because of the singularity of @ i.e. det ®=0,
then we get X(£)=9@*X (). Here the generalized inverse matrix is defined as the
matrix which satisfies the relation @@+*®=®. Though the generalized inverse
matrix is not decided uniquely in general we are able to decide uniquely by using
the initial value of X ().

By introducing @, (3.1) and (3. 3) can be written in these forms.

-‘%@- =QBYI[— A0+ X (t)— OB 'H (4.9)
X(t+1)=0B([—A+Bo*X(t)—0B'H (4. 10)

We can see easily lim X(1)=0(I— A)"'H, so (4.9) and (4. 10) are asymptotically
t-r00

stable. From this point of view the projective transformation is characterized as
the coordinate transformation which converts the unstable system into an asymptoti-
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cally stable one.

Concequently, when we adopt the technological system which asymptotically
converges to a Turnpike as a reference model, we derive the following theorems.
Theorem 6. (Model Reference Adaptive Turnpike Theorem in Continuous Format)

reference model

d—)-(;(*t) =@Bm(I— Am) O* Xm(t) —®BmH () (4.11)
Xm(t) = 0+ Xm (t) 4.12)

adaptive model

i)—%l =QB(t) (I—— At)— dg;z) ) O X)) -0 X(@t)—OB\(t) H()
(4.13)
X=0"X@) (4. 14)

Define the equivalent feedback system as

d;it) =Cme(t)+W () (4. 15)
V(i)=Y (4. 16)
W (e) =(Cm—C)) X(®)+ (Dm - D()) H (z) (4. 17)
where, ()= Xm{@) —X(© (4. 18)
Cm=0@Bm Y(I— Am) O* (4.19)
Dm=—®Bm™* (4. 20)
Clt) = (I)B‘l(t)<l— Alt)— gggﬁ o (4. 21)
D(t) = — OB (t) (4. 22)

Let Y be a solution of CmY+ YCm= —1I and the adaptation principles of C ()
and D(#) be

Clt) = K@Si V(e) X7 (c) de+ La®(V (X7 (6) +C (0) (4. 23)

D) = Kd® So V (2) H* () de+ Ld®(V (t) H* (£))+ D (0) (4. 24)
then the equivalent feedback system will be globally asymptotically hyperstable.
e lim | Xm()— X =0 (4. 25)

lim [[Cm—C(®)]| =0 (4. 26)

{—reo

11}2 [|Dm— D)} =0 (4. 27)
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This result shows that the output of the adaptive model converges to
Turnpike.

And X(), A (), B are solved by

Xt =0"X() (4. 28)

Aw=1+D0 coyo- %0 (4.29)

Bit)=—D') 0 (4. 30)
and the next equations realized.

lim [} Xm() = X (8)]] = 0 (4.31)

EQHAm—A@HZO (4.32)

lim ||Bm— B@)| =0 (4. 33)

tsoo
Theorem 7. (Model Reference Adaptive Turnpike Theorem in Discrete Format)
reference model
Xm(t+1) = @ Bm(I— Am-+ Bm) 0* Xm(t)—®Bm~H (z) (4. 34)
Xm(t) = 0+ Xm(z) (4. 35)
adaptive model

X(t+1) = 0B (t+1)(I- A@®+B®) 0+ X () — 0B ¢t+1) HE) (4. 36)

Xty =0+ X (z) (4.37)
Define the equivalent feedback system as
et+1) =Cme(t) + W +1) (4. 38)
Vie+D)=Ye@®)+LW(E+1) (4. 39)
W (t4+1) =(Cm—Ct+1) X(t)+(Dm—D(e+1)) H() (4. 40)
where, ¢(t) =Xm(H—X ) (4. 41)
Cm = @Bm Y (I— Am+ Bm) O* (4. 42)
Dm = —@Bm™* (4. 43)
Clt+1) =B (t+1)(I- A+ B()) o+ (4. 44)
D(t+1) = —®B-1(z41) (4. 45)
Let Y and L be solutions of
Cm™PCm—Cm= —1 (4. 46)
PCm=Y (4. 47)

L+LT=P (P=Pr>q) (4. 48)
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and the adaptation principles of C(¢) and D(z) be
Clt+1) = Ke® kzo Vk+)X B+ L@V (t+1) X7 (O+C(0) (4. 49)
D(t+1) = Kd® kz V (k1) H" (B)+ LAV ¢+ )H (9+D(0) (4. 50)

then the equivalent feedback system will be globally asymptotically hyperstable.

ie. 135 1 Xm(H—X @] =0 (4.51)
{i_{g [|Cm—C (1) =0 (4. 52)
133 [|Dm—D{t)|| =0 (4. 53)

This result shows that the output of the adaptive model converges to
Turnpike.

And X(#), A(t) and B(#) are solved by

X@)=0"X (4.54)

A(Q)=I+D(t+1) C{t+1) 0 —D7(0) & (4.55)

B()= —D(t+1) (4. 56)
and the following equations are realized.

l{irg N Xm(t)— X (@) =0 (4. 57)

%Lror: |Am—A@| =0 (4. 58)

lim {|Bm— B(#)|| = (4. 59)

{00

The proofs of the above two theorems are similar to ones of Theorem 4 and
Theorem 5.

5. Conclusion

This study developed the fundamental theory of the model reference adaptive
input-output system applying the theory of model reference adaptive system to the
dynamic input-output model.

By the main results of this study we can see that there exist some adaptation
processes which converge to the Turnpike even if the initial technological system
is unstable. And also the results may lead us to the solution of the problems
between the stability of the actual exonomic growth and the unstability of the
dynamic input-output table.

Because this study is in its initial stages, a number of problems were encountered
in the development of this framework. There is therefore the need for continuous
and constant appraisal of its efficiency.
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Figure 7. Adaptation Process in Model Reference Adaptive
Turnpike Theorem.

Issues worth noting include

Introducing the adaptation process by the control of the private capital or

R & D investment.

(2)
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3)

4

5)

6)

8}

Simplification of the adaptation principle.
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