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A Study on Model Reference Adaptive Control
In Economic Development (VI)

—Model Reference Adaptive Turnpike Theorem ({II)—

Yuzuru Miyata and Etsuo Yamamura
Department of Regional Planning, Division of Environmental
Planning, Graduate School of Environmental Science,
Hokkaido University, Sapporo, 060, Japan

Abstract

The principal purpose of this paper is to improve upon the Model Reference Adaptive Turn-
pike Theorems presented in our previous paper 5) so that the theorems in 5) can be realized in
the case of the relatively unstable system. As a follow up, the usefulness of the theorems obtai-

ned in this study is proved by some numerical simulations.

Key Words: Model reference adaptive turnpike theorem, Model reference adaptive system,

Turnpike theorem, Dynamic input-output model, Relatively unstable system.

1. Introduction:

‘We have applied the theory of model reference adaptive system to the dynamic
I-O system and developed some fundamental theories about model reference adaptive
[-O system in the reference 3). However, as we pointed out in the reference 5),
there were two major problems in our paper 3).

(1) How do we choose a reference model or a reference economic growth path ?
(2) What adaptation laws can we apply when the reference model is unstable?
Our previous paper 5) have given some solutions to those problems, however, these
solutions seem to be weak. Namely, as a reference path we adopted the economic
growth path which converged to the turnpike. But the mathematical condition
which realized that reference path gives some constrained conditions to the eigen
values of the reference model, and it is not clear whether those conditions are
always satisfied to actual dynamic I-O systems.

This article aims at extending the model reference adaptive turnpike theorems
which have been obtained in 5) to be applied to a more general reference model, and
also proving the usefulness of the theorems, which are obtained in this study, by
some numerical simulations.

2. Reflection on the Previous Paper:

Let us simply review the main results which were obtained in our previous
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paper 5). Now a dynamic I-O system under a fixed technology is represented as
follows ;

Xm(t+1) = Bm (I Am—+ Bm) Xm(t)— Bm ' H (1)
where, Xm(#): output vector (nx1)

H: fixed final demand vector (exogenously given but excluding private
investment) (s X 1)
Am: input-output coefficient matrix (7 X »)
Bm: capital coefficient matrix (n X n)
Let 2 be a Frobenius root of (I— Am)~' Bm, then the turnpike of (1) is expressed

as,
Xm(t) = <1+ § >L (Xm(O) —(I— Am)~! H>+(I—— Amyt H (2)

Furthermore let us consider the economic growth path represented by (1) whose
initial value is not on the turnpike, and indicate the distance between the path
and the turnpike as d(Xm (#). (see Figure 1.) We assume here that lim d(Xm(#))=0

t—rco

for arbitrary economic growth path represented by (1). Then we can observe that,
d<Xm(t)> = ||Z(t)— Xm@)l] = ||® Xm(t)—O(I— Am)~t H|| (3)
where, [{+{|: Euclidian norm

O ="yt =1

turnpike

(1)(1—/!"1)_11"1 1\t
(145 CntO—— w1 11)
7 J ( (I~ Ap)- T H

2= Au) I \

output of the second commodity

Z(6)
. (' ~ relatively stable path

stationdary

eq\.uhbnum d(Nuln) projective transformation
point (I= ) W 20— X (D)

<A N (f & A
m( ) =X m (l)—d)([— "‘1711)'11‘1
Xm(o)

output of the first commodity .y

Figure 1. Concept of the Projective Transformation.



Model Reference Adaptive Turnpike Theorem (II) 147

. . . 1
n: an eigen vector corresponding to the eigen value 1+~7 of Bm YI—
Am-+ Bm). Where 1 stands for a Frobenius root of (I— Am)~! Bm.

In our previous paper 5) we called 7 X n matrix @ the projective transformation.
That is, @ defines the linear transformation which draws a perpendicular line
from Xm{t) to the turnpike. Now let us define Xm(¢) as follows;

Xm(t) = 2(@t) — Xm @)+ 01— Am)y* (4)
It is easy to see that Xm(t)=®Xm(t). By the assumption mentioned above,
Hm(Z(t) — Xm()=0 holds, then lim Xm()=0(I—Am)~ H is realized. Conversely
L0 {-roo

when Xm(f) is given Xm(z) would be uniquely determined by the relationship
OXm(t)=Xm(t) if an inverse transformation of @ could be defined. However,
we can observe that the determinant of @ is zero and also the rank of @ is one.
Therefore we can not define the ordinary inverse transformation of @, that is to
say, the inverse matrix of @. Accordingly we had to introduce another transforma-
tion, i. e. the generalized inverse matrix @% of @, then solved Xm(#) by Xm(s)=
@+ Xm(t). Where the generalized inverse matrix @+ is a nxn matrix defined by
QO*P=¢. And @F is not uniquely determined in general, however, ®* can be
defined uniquely with the initial condition Xm(0)=®* Xm(0).

Now we multiply @ to both sides of (1), then
O Xm(t+1) =0 Bm(I— Am~+ Bm) Xm(t)—¢® Bm™* H ,
Xm(t+1) = & B (I— Am~+ Bm) Xm(t)—® Bm~* H (5)
Substitute Xm(t)=®*Xm(t) to (5), then
Xm(t+1) = ® BmI— Am~+ Bm) & Xm(t)—® Bm= H (6)
Because of %UE Xm(t)=® (I— Am)~* H, ® Bmn~\(I— Am+ Bm) @+ is a stable matrix.

Accordingly when we set Cm=0 B Y(I— Am-+ Bm) @, the Lyapunov’s equation
mentioned below has a positive definite solution P. i.e. AP=P7>0 s.t.

Cm" PCm—Cm = —1 (7)

Then we can derive adaptation laws of A(Z) and B(f) which make the gap between
reference and adaptive models approach zero asymptotically in the below-stated
model reference adaptive I-O system.

reference model

Xm(t+1) =& Bm Y (I— Am+ Bm) O+ Xm(t)—@ Bm~' H

Xm@t) =0 Xm(t) (8)
adaptive model

Re+1)=0B(¢+1)(I—AQD+B@E) 0+ XO)— 0B ¢+1) H
X(t) = ot X (9)
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However, a problem arising from this context is the assumption that lim d(Xm(£))=0.

[-r00
When that assumption is represented in terms of eigen value, the following condi-
tion should be realized.

37 such that g,>1>p,l (F=1i) (10)
where, g, : eigen value of Bm Y[~ Am-+Bm) (i=1,2,---,n)

As written in the reference 14), the technological system in an actual dynamic
I-O system which satisfies (10} has been hardly observed. And this fact gives us
a strog constraint from an actually applicable point of view. Therefore it is very
necessary to generalize the main results in 5) so that the results can be applied in
the relatively unstable system.

3. Model Reference Adaptive Turnpike Theorem :

In this chapter we shall briefly explain model reference adaptive I-O system
which is an application of MRAS to dynamic I-O system, and then show some
theorems which were obtained related to the turnpike theorem.

Model reference adaptive I-O system is composed of two models, that is
reference model

Xm(t+1) = B \(I— Am~+ Bm) Xm(t)— Bm™" H(t) (11)
adaptive model

X(t+1)=B"t+1) <I— A+ B(z)) X))~ B1e+1) H{g) (12)

where, Xm: n-dim. reference output vector
Am: nxn reference input-output coefficient matrix
Bm: nxn reference capital coefficient matrix
H(z): n-dim. final demand vector (exogenously given but excluding private
investment)
X(t): n-dim. adaptive output vector
A(t): nxXn adaptive input-output coefficient matrix
B(#): nXn adaptive capital coefficient matrix

The reference model represents an autonomous growth model under a fixed
technology, and the adaptive model is a model which converges asymptotically and
stably to the reference output through technological changes whose initial condition
is given. (11) and (12) are transformed as

reference model
Xm(t+1) = ConXm(@)+Dm{e+1) H(®) (13)
adaptive model

X{+1)=Ce+1) XO)+D+1) H@) (14)
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where, Cm=Bm YI— Am-+ Bm)
Dm = — Bm™1
Cle+1) = Br+1) (I~ AW+ B()
D(t+1)=—BYt+1)

A problem arising from this context is how C() and D(¢) are determined to make
lim [|Xm (@) — X()||=0. This problem is equivalent to proving the asymptotical
£ro0

stability of the below-mentioned error equation obtained by (13)-(14).
st+1)=Cm (&) + (Cm—C(t+1)) X&)+ (Dm—D(t+1)) H{z) (15)
On the stability of (15) the next theorem holds.
Theorem 1.
reference model
Xm(t+1) = CmXm(t)+DmH () (16)
adaptive model
Xit+1)=Ct+1) X)+Dt+1) H () (a7
error equation
e(t+1) = Cm e())+ (Cm—Cle+1)) X))+ (Dm—D(t+1)) H(@) (16)
When k£(#) is defined as k{()=1+[|X(#{*+||H (8)|]* and assumed 3z>0 such that

Anax <A k() for all £>7, the below-stated adaptation laws of C(¢) and D(f) make
the error equation asymptotically stable. i e. lim || Xm(t) — X (®)]|=0
{-roo

Cle+1) = 0+ &0+ X7(0) (19)
D@+1)= D)+ "/e%})" ét+1) H"(t) (20)

‘Where A« stands for the eigen value of Cm which has a maximum absolute value
among the eigen values of Cm, and é(¢-+1) is a priori error defined by

E(t+1) = Xm(t-+1)—Ce) X (1) — D@ H ) (21)
And A(f) and B() are solved as follows; ‘

Alt) =T1+D+1) Ct+1)—D7\(z) (22)

B(t+1) = —D-1(t+1) (23)

Furthermore if there are sufficient linearly independent vectors in the sequence
{H )}, then lim ||Am— A(#)}|=0, and lim {|Bm— B(#)||=0 are realized.
[—rca [—rco

(sketch of the proof)

Because the exact proof of this theorem is a complicated one, only a sketch
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of the proof is presented here. Now the adaptation laws (19) and (20) are intro-
duced from the next formulae.

Clt+1) = Clt)+<(t+1) X'(2) (24)
D(t+1) = D) +e(t-+1) HT(2) (25)

These equations may be written as

Clt+1)=C(0 >+Z e(i+1) X"(0) (26)

D(t+1) = D(0)+ 20 c(i+1) HZ(3) (27)

Namely, the adaptation laws of C(¢) and D(f) are determined by the past trend
of &(z).

However, because (26) and (27) include e(¢+1), that is, X (#+1), these have no
practical significance. Therefore let ¢ (¢-+1) be transformed as follows;

(t+1) = Xm(t+1)— X (t-+1)
= Xm(t+1)— (Clt+1) X (1) +D(t+1) H(z))
= Xm(t+1)— (CO)+elt+1) X"(0) X (6)— (DO +¢(t +1) H'(2)) H(2)
= Xm(t+1)—C(t) X () — D(t) H<t>—<uX<t>[12+nH<t>H ) e(t+1)
e(t+1) = k%t} &(z+1) (28)

Substitute (28) into (24) and (25), then (19) and (20) are obtained. (19) and (20)
can be practically implemented only using the information of before the ¢ th period.

Next we transform (19) and (20) as follows;
Cle+1) =l + gy (Xmle+1) - Clo X 0Dy H ) X700
=Clt)+ kt‘) <Cme &) +DmH (@) —C() X (&) — D) H(z‘.)> X2
=C@H+ 751('15) (Cm e@®)+ot) X@)+¢@) H (zf)> X' (29)
where, ¢(t)=Cm—C(t), o{t)=Dm—D(f). Similarly

DU+1) = D)+ 4y (Cm el +000) X091 HU ) Hr() (30)

t+ 1) =Xmit+1)—-X{t+1)
=CmXm@)+DmH ()~ Ct+1) X(&)—D(t+1) H ()

= ’k‘b‘ <Cm SO+ OX W)+ H (”) .

Therefore a proof of the asymptotical stability of (18} results in (31) being asymptoti-
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cally stable. Setting a Lyapunov’s function of 3 J(t—i—l}-—*}“ Cmy(t) as y*'Py(P=

Pr>0: positive definite nXn matrix), we define a Lyapunov’s function candidate
for (31) by using P as

V(1) = €7(t) Pe(t) 17 (¢) Pg(e) + 1 () P (1) (32)

Where ‘47” stands for a trace operation of a matrix. V(f) represents some kind
of distance of outputs and parameters between the reference and the adaptive
models. With a little complicated calculation, the increment of V (#) is reduced as

Vit )— V)= <>(f,”{> Pf;;’{; —P)s<zr>

~ i (90 X900 HO) P (90 X0+900 HE)s0 (89

Consequently V (¢) is proved as a Lyapunov’s function and lim V (¢} is bounded.
Lroo

5 (v ve)|freo-vi

w{ “(ﬁ?) P f}?(};) “P>6(t>

< 00

5 (V(t+1}— V(t))l -

41y (60 X190 HOYP (00 X0+ 00 H0 | <oo
oy Cm” Cm 5
1,12{8” Tk Ly “1)5“)

4t (90 X0+ 000 HO P (40 X0-+90) HO =0

lim(f) =0 and lim (p() X +9() HE)) =0

t—roo

li_m NXm@)— X @) =0

If the sequence {H (#)}7., contains sufficient linearly independent vectors, then

1111} (p(t) X(t)+¢@) H()=0&
lim ¢(#) =0 and ¢(2) =

Lvon
ii{f.} [|Am—A@)]| =0 and [111301 [|Bm—B@)|| =0
(The exact proof of this theorem is shown in 7). Q.E. D.
By a similar proof mentioned above, we obtain
Theorem 2
reference model
Xm(t+1) = CmXm(t)+DmH (t) (34)

adaptive model
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Xet+D=Cet+10) XH+D@E+1) H@) (85)
error equation
e(t+1) = Cme (&) +(Cm—C (¢ 41)) X () +(Dm—D (¢ +1)) H () (36)

If k(2) is getting sufficiently large as t—oo, then the below-stated adaptation laws
of C(¢), D(r) make the error equation asymptotically stable.

Cle+1) = CO)+(I+ 1) Ke @&t +1) X*() 37)
Dit+1) = D)+ (I+1'()) " Kd@é(+1) H (¢) (38)

Where Kc and Kd are the matrices which have positive elements 1. e. Ke=(kc;y).
Kd=(kd,;), kec;; and kd;;>>0. &) stands for a matrix operation as follows;

a}l"'a_ln b}l"'b}n an. bn“'am. biy
. . ® : : - : : (39)
Apy*Aup bnl b bﬂn (421 bm e lup bmz
And I'(t) represents the next n xn diagonal matrix.

5 s i+ 1 )

j=1

I = 0 . 0 : (40)

3 {kcm 23(8) + ke, 13 )}

i=

Furthermore if the sequence {H(#)}7, include sufficient linearly independent vectors,
then

lim |[|[Am—A@@)]| =0 and lim ||Bm—B(#)|| =
{ o0

{00

When a tunpike is chosen as a reference model in Theorem 2, the following
theorem is obtained.

Theorem 3.

Let a dynamic I-O system with constant technology be set as
Xm(t+1) = B~ YI— Am~+ Bm) Xm(@t)— Bm ' H (41)

The turnpike from the stationary equilibrium point is represented as
t
Xm(t) = <1+ i) <Xm(0) —(I— Am)™t H) +(I—Am)™* H (42)

Where 2 stands for the Frobenius root of (I—Am)~* Bm, and Xm(0) is the initial
value of Xm{f) which is also an eigen vector corresponding to 2 Next let a
dynamic I-O system with variable technology be represented as,

X(t+1)=BYt-+1) <I AQ)+ B )> XO)—B'(t+1) H (43)
When the adaptation laws of A(f) and B() are adopted as
Cle+1) = CO)+ (I+1 (1) Ke® (ee+1) X7(0) (44)
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t
turnpike <1+~—}> (X (0)—(I— Ap)~1H )
(- Am)~lH\

\

stationary
equilibrium
point

(I~ A H

output levelof the second sector a3

\ adaptive output

output level of the first sector a

Figure 2. Adaptation process of the adaptive output to the turnpike.

D(t+1) = D)+ (I+1()) " Kd®(&(t+1) HY) (45)

then X (#) will converge to the turnpike. Where the notation is the same as that
one of Theorem 2.

We shall explain Theorems 1, 2, and 3 in the following context briefly. Fist
of all, the three theorems are realized even in the case that the reference model is
relatively unstable. This fact shows that Theorems 1, 2, and 3 are extensions of
the theorem which was proved in our previous paper 5). And also this result
denotes that Theorems 1, 2, and 3 can be practically implemented to any actual
dynamic I-O systems.

Secondly, the adaptation laws of C(#) and D() only use the reference outputs
and exogeneously derived final demand. Namely, these do not use the information
relating to the reference technology, despite the fact that the reference technology
is used in the proof. From the fact that the adaptation laws can identify unknown
technologies of a dynamic I-O system, the adaptation process in the theorems are
called ‘“‘adaptive observer” or “adaptive identifier” in the system theory. Fur-
thermore, the reference technology is not limited to be fixed. If the absolute values
of the eigen values of Cm are bounded when Cm is variable, the adaptation laws
will be effective.

Thirdly, a convergence speed of the adaptation process depends on the absolute

values of the eigen values of '/e%t) Cm or (I+1I'{t)"*Cm. When absolute values

of the eigen values are smaller, the convergence speed is faster. In Theorem 2 and
3, the convergence speed can be controled by K¢ and/or Kd, that is, the larger
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Kec and/or Kd, the slower the speed. However, if K¢ andjor Kd are set to be
too big, the adaptive technology seems to change sharply in its initial stages.
Therefore, it is difficult but important to select Ke and Kd so that the adaptation
process does not lose economic sense. In the dynamic I-O system there are some
constraints that are well known, e.g., non-negativity of A(¥) and B(), Solow’s
condition for the summuation of columns of A() and so on.

In our experience, some numerical simulations have shown that some K¢ and/or
Kd have made the above-mentioned constrained conditions of A(#) or B(f) not to
be satisfied. At present, Kc and Kd may be chosen by trial and error.

Fourthly, it is possible that K¢ and Kd are variables. Now let variable K¢
and Kd be noted as Kc(t) and Kd{(t). These can be substituted into (37) and (38},
then

Clt+1) = kzo (I+18) ™ (Ke(k+1) @& (k+1) X"(k) (46)
D(t+1) = kza (I+ 1) (Kd(k+1) @2(k-+1) HI(R) (47)

If Kc(k) and Kd(k) are denoted as small values in the initial stages and varied to
larger ones for the present period, the adaptation algorithms may mean an adjust-
ment process which neglects the past and stresses the present. Finally, it may
be impossible to convert Theorems 1, 2, and 3 into a continuous format.

4. Numerical Simulations:

In this chapter we present some numerical simulations of the model reference
adaptive I-O system.
4.1. Model reference adaptive I-O system with respect to the ordinary
turnpike

Let the first numerical simulation defined as follows ;

0.3 0.3 1.9 2.1 10
Am = Bm = Ht) =

0.2 0.2/, 2.6 3.4/, 10
46 5.4

Then (I— Am)‘le:< ) and its eigen values are 4, =10 and %=0.2, and % =

4.4 56
10 is the Frobenius root. Associated eigen vectors of 4 and 7, are (1, 1)* and (27,

. . 1
—22). Then the eigen values of Bm~'(I— Am- Bm) are 14— =11 and 1+—21~
AL 2
=6.0 with the eigen vectors (1, 1)" and (27, —22)”. We observe that the reference
system is relatively unstable because the eigen value 1~|_,;_ corresponding to the
1

Frobenius root does not have maximum radius between two eigen values. Setting
an initial condition Xm(0)=(10, 10)"+(22, 18)%, the turnpike from the stationary
equilibrium point (I— Am)~t H=(22, 18)" is represented as follows ;
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xmy (t) 10 22
= 1.1t< +
xmy(t) 10 18 (t=0,1, )
Let us simulate an adaptation process whose reference model is the above-
stated turnpike.
reference model
amy(t+1) 10 22 amy (0) 10 22
S B T s
axmy(t+1) 10 18/, \amy(0) 10 18
adaptive model
X@t+1)=B"t+1) <I-A(l)—l—B(t)> X{)— B @-+1) H@) (49)
0.3 0.3 1.9 2.1
where, A(—l)=< > B{(—1)=B(0)= )
0.2 0.2 2.6 34
X(0)=(31, 197, H{) =(10, 10)*
By Theorem 2 or 3 we adopt the next adaptation laws.
Cle+1) = C)+ (I+1 (0) ™ (Ke®é(+1) X" (1)) (50)
D(t+1) = D)+ (I+1'(0) " (Kd®&(t+1) H'(1)) (51)
where, C{t+1)=B"1¢+1)(I—A{)+B{®)
Di+1)=—-B"Yt+1)

0.1 0.1 0.1 0.1
Kc~_—< Kdz( )

0.1 0.1 0.1 0.1
L2
> fkasas@rhay i) 0
i
') = , (52)
0 > {k@j 1)+ hdy; 5 (0)

The results of the simulation is presented in tables 1~4. These simulations
show that the adaptive outputs almost converge to the turnpike prior to the tenth
period, and that the variation of A(z) is larger in its initial stages. We also observe
that A() and B(f) do not approach Am and Bm, respectively, because H (f) is
a constant vector, and that the adaptive model chooses another turnpike technology
which has the same turnpike as that of the reference model.

4. 2. Model reference adaptive I-O system with respect to the turnpike which
has a variable growth rate

In this section we consider the turnpike which has a variable growth rate,
however, a growth rate of a conventional turnpike is constant. Let the reference
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Table 1. Simulation results of output levels of the reference

and the adaptive models (section 4.1)

period ! amy{l) x1(8) \ xmy(t)
0. 32.000 31.000 28.000
1. 33.000 38.289 29.000
2. 34,100 35.012 30.100
3. 35.310 33.869 31.310
4. 36.641 36.046 32.641
5. 38.105 38.288 34.105
6. 39.716 39.878 35.716
7. 41.487 41.483 37.487
8. 43,436 43.403 39.436
9. 45.580 45,571 41.580
10. 47937 47.938 43,937
11. 50.531 50.529 46,531
12. 53.384 53.381 49,384
13. 56.523 56.520 52.523
14. 59.975 59.972 55.975
15. 63.773 63.770 59.773
16. 67.950 67.948 63.950
17. 72.545 72.543 68.545
18. 77.599 77.597 73.599
19. 83.1569 33.167 79.159
20. 89.275 89.274 85.275

3(t)

19.000
21.905
29.660
32.645
33.126
33.953
35.586
37.493
39.465
41.589
43.940
46.535
49.389
52.627
55.979
59.776
63.953
68.548
73.602
79.162
85.277

Table 2. Simulation results of the adaptive input-ou

tput coefficient matrix A(#) (section 4. 1)

period i ay(®) E ap(f) ag ) ag(f)
0. 0.30000 0.30000 0.20000 0.20000
1. 0.62715 0.56879 0.23612 0.15931
2. 0.39777 0.28106 0.52595 0.43130
3. 0.32726 0.20064 0.38482 0.24505
4, 0.37502 0.25782 0.31059 0.15719
5. 0.39009 0.27290 0.30446 0.15301
6. 0.38297 0.26358 0.31867 0.16989
7. 0.38042 0.26063 0.32585 0.17732
8. 0.38261 0.26311 0.32749 0.17846
9. 0.38472 0.26527 0.32927 0.18002
10. 0.38604 0.26651 0.33185 0.18264
11, ! 0.38724 0.26765 0.33469 0.18532
12, 0.38852 0.26889 0.33729 0.18782
13. 0.38978 0.27011 0.33979 0.19024
14. 0.39101 0.27130 0.34224 0.19261
15. 0.39219 0.27244 0.34462 0.19491
18. 0.39334 0.27355 0.34692 0.19714
17. ; 0.39444 0.27463 0.34913 0.19929
18. 0.39549 0.27565 0.35125 0.20135
19. 0.39651 0.27664 0.35328 0.20333
20. 0.39747 0.27757 0.35521 0.20520
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|

period by () | bi2 () 1 a1 (1) baa ()
0. 1.90000 2.10000 2.60000 3.40000
1 1.67496 1.85654 2.11880 2.87940
2. 1.43769 1.56034 1.89652 2.60191
3. 1.43415 1.55592 1.66675 2.31509
4, 1.46470 1.59405 1.62632 2.26462
5. 1.45709 1.58456 1.64126 2.28326
6. 1.44738 1.57243 1.65029 2.29453
7. 1.44629 1.57108 1.64811 2.29181
8. 1.44689 | 1.57183 1.64427 2.28702
9. 1.44626 1.57103 1.64209 2.28429
10. 1.44519 1.56970 1.64054 .2.28236
11. 1.44429 1.56858 1.63895 2.28037
12, 1.44352 1.56761 1.63736 2.27839
13. 1.44279 1.56671 1.63587 2.27654
14, 1.44211 | 1.56586 1.63451 2.27484
15. 1.44149 I 1.56508 1.63326 227327
16. 1.44092 I 1.56436 1.63211 2.27184
17. 1.44039 l 1.56371 1.63106 2.27053
18, 1.43992 1.56312 1.63012 2.26935
19. 1.43950 ‘ 1.56260 1.62927 2.26829
20, 1.43912 1.56212 1.62851 2.26735
Table 4. Simulation results of the eigen values of B-1{z+1)
{— AW+ B) (section 4.1.)
period (8 I10)

0. 6.00000 1.10000

1. 5.73652 1.29381

2. 5.58812 1.18921

3. 5.75979 1.12612

4. 5.80414 1.12497

5. 5.78705 1.12671

6. 5.76966 1.12592

7. 5.77029 1.12479

8. 5.77411 1.12373

9, 5.77527 1.12268

10. 5.77542 1.12162

11. 5.77581 1.12056

12, 5.77637 1.11951

13. 5.77692 1.11846

14, 577742 1.11743

15. 5.77790 1.11643

16. 5.77837 1.11544

17. 5.77882 1.11449

18. 5.77924 1.11356

19, 5.77965 1.11267

20. 5.78003 1.11181
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model be set as follows

xmy(t+1) ; 100 220\  [xm,(0) 100 220
= {1 (1.1+0.001-s)| - |+ = + >
Nemy{e+1))  *°° 100 180/, \xn,(0) 100 180
(53)
The growth rate of the reference model from the ¢ th period to the £+1 th period
is (104-0.1.£1%. Of course the technology of the reference model is not fixed.

Accordingly the technology is assumed to be unidentified because we can apply
Theorem 3 even in the case of unidentified technology.

Next we set the adaptive model as follows ;

adaptive model

X(t+1)=B7+1) (I- A0+ B@) X(0)— B ¢+1) H(» (54)
0.3 0.3 1.9 2.1
where, A(~1):( > B(“l):B(()):( )
0.2 0.2/, 2.6 34

100\ [z (0)\  /100\ 220
100/ . \x(0) 100 180
If A(t) and B() is fixed as the initial values, the adaptive model has the turnpike

with the same direction as the reference, however, the annual growth rate is
constant, that is 10%.

When the adaptation laws are chosen as,

Cle+1)=CO)+ (I+ re)” (Ke®e(t+1) X' (0)) (55)
D{t+1) = D)+ (I+7'0) " (Kd®e(t+1) H' (1)) (56)
0.1 0.1 0.1 0.1
where, K¢ = ( > Kd = ( >
0.1 0.1/, 0.1 0.1

The adaptation process is depicted in table 5~8. In table 5 it is shown that the
adaptive outputs almost coincide with the reference at every period. In table 6 and
7 A(t) and B(¢) are uniformly decreasing. These trends depict a technological
progress aimed at catching up with the variable growth rate turnpike.

4.3. Model reference adaptive I-O system associated stock adjustment activities
and temporary trade activities with respect to the ordinary turnpike

In this section we introduce two types of additional activities for the adaptation
to the turnpike. The first is the stock adjustment activities which transfer the
unused stock of goods in some period to the next period without any cost. The
second type is the temporary trade activities which involve the export of unused
stock of goods and the import action of urgently needed commodities. These
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Table 5. Simulation results of output levels of the reference and the
adaptive models (section 4.2.)

period [ xmy(f) (D) | xms(t) 29(8)
0. 320.000 320.000 280.000 280.000
1. 330.000 330.000 290.000 290.000
2. 341.110 341.110 301.110 301.110
3. 353.463 353.463 313.463 313.463
4. 367.210 367.210 327.210 327.210
5. 382.520 382.520 342.520 342.520
6. 399.584 399.585 359.584 359.584
7. 418.620 418.620 378.620 378.620
8. 439.873 439.873 399.873 399.873
9. 463.619 463.619 423.619 423.619
10. 490.174 490.174 450.174 450,174
11. 519.893 519.893 479.893 479.893
12. 553.181 553.181 513.181 513.181
13. 590.497 590.497 550.497 550.497
14. 632.363 632.363 592.363 592.363
15. 679.373 679.373 639.373 639.373
16. 732.201 732.200 692.201 692.201
17. 791.616 791.616 751.616 751.616
18. 858.495 858.495 818.495 818.495
19. ! 933.837 933.838 893.837 893.837
20. 1,018.780 1,018.780 978.784 978.784
Table 6. Simulation results of the adaptive input-output coefficient matrix A(£) (section 4.2)
period ay (f) ayz(l) i‘ ag (1) age(2)
0. ' 0.30000 0.30000 | 0.20000 0.20000
1. 0.29829 0.29816 0.19743 0.19724
2. 0.29730 0.29725 0.19596 0.19588
3. 0.29622 0.29625 0.19433 0.19437
4. 0.29502 0.29514 0.19254 0.19270
5. 0.29372 i 0.29393 0.19058 0.19089
6. 0.29230 l 0.29262 0.18846 0.18892
7. 0.29077 0.29120 0.18616 0.18680
8. 0.28914 0.28968 0.18371 0.18452
9. 0.28739 0.28806 0.18109 0.18209
10. 0.28555 0.28635 0.17833 0.17952
11. 0.28361 0.28453 0.17541 | 0.17680
12, 0.28157 0.28264 017236 | 0.17396
13. 0.27946 0.28066 0.16918 0.17099
14. 0.27726 0.27861 0.16590 0.16791
15. 0.27500 0.27648 0.16250 0.16472
16. 0.27268 0.27429 0.15902 0.16144
17. 0.27031 0.27205 0.15546 0.15808
18. 0.26789 0.26976 0.15184 0.15464
19. 0.26544 0.26743 0.14816 0.15116
20. 0.26296 0.26507 0.14445 0.14760
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Table 7. Simulation results of the adaptive capital coefficient matrix B(z) (section 4.2.)
period by (8) ’ b1a(2) b (9) : baa(2)
O; 1.90000 2.10000 2.60000 3.40000
1. 1.90000 2.10000 2.60000 3.40000
2. 1.90093 2.10113 2.60139 3.40170
3. 1.90195 2.10239 2.60293 3.40358
-4, 1.90306 2.10374 2.60459 3.40561
5. 1.90426 2.10521 2.60639 3.40781
6. 1.90554 2.10677 2.60830 3.41015
7. 1.90688 2.10841 2.61032 3.41262
8. 1.90829 2.11013 2.61244 3.41520
9. 1.90975 211192 2.61462 3.41787
10. 1.91125 211374 2.61687 3.42062
11. 1.91276 2.11560 2.61915 3.42340
12, 1.91429 211747 2.62144 3.42621
13. 1.91582 2.11933 2.62373 3.42900
14. . 1.91732 212117 2.62598 3.43176
15. 1.91879 2.12297 2.62819 3.43446
16. 1.92022 2.12472 2.63033 3.43708
17. 1.92160 2.12639 2.63239 3.43959
18. 1.92290 2.12799 2.63435 3.44199
19. 1.92414 2.12951 2.63621 3.44426
20. 1.92530 2.13093 2.63795 3.44639
Table 8. Simulation results of the eigen values of B-1(1+1)
(I—A{)+B(@) (section 4.2.)
period } r1(0) i 7458

0. 6.00000 1.10000

1. 6.00000 1.10000

2. 6.00000 1.10031

3. 6.00000 1.10068

4, 6.00000 1.10109

5. 6.00000 1.10155

6. 6.00000 1.10207

7. 6.00000 1.10263

8. 6.00000 1.10325

9. 6.00000 1.10392

10, 6.00000 1.10465

11. 6.00000 1.10543

12, 6.00000 1.10627

13. 6.00000 1.10716

14. 6.00000 1.10810

15. 6.00000 1.10908

16. 6.00000 1.11010

17. 6.00000 1.11116

18. 6.00000 1.11226

19. 6.00000 1.11338

20. 6.00000 1.11453




Model Reference Adaptive Turnpike Theorem (II) 161

activities are formulated as follows ;
K(g) =S X(#) C (57)
EM () =W () X() ' (58)

where, K(f): stock adjustment activity vector (72X 1)
S(#) : stock adjustment coefficient matrix (7 X 7)
EM(t): temporary trade activity vector (X 1)
W (t): temporary trade coefficient matrix (n X )

Then the balance equation of the adaptive model is transformed as,
X)) =A@ X0+ B+1) X¢+1)—B() X()
+SE+D) X@E+1D) =St XO)-+WE XO+H(@
X(+1)=(Be+1)+Se+10)" (I- A0+ BO)—W 0)+50) X (¢)
— (BE+1)+S+1)" H) (59)

When we adopt the reference model which is the same as in section 4.1. and
assume that A(f)= Am, B(t)=DBm then the system can be represented as follows :

reference model
amy(t+1) 10\ (22
( - 1.1”1( n (60)
xmy(t-+1) 10 18
adaptive model
X(t+1) = (Bm+St+1)" (I—Am+Bm+SO—W (1) X ()
— (Bm+S@+1)" HE (61)
0.3 0.3 1.9 2.1
where, Am = Bm =
0.2 0.2/, 2.6 3.4
X(0)=(31, 197, H{) =10, 10)*
Setting C{t+1) and D({+1) as,
Ct+1) = (Bm+Si+1))" (1— Am+ Bm—+S(t)— W(t)> (62)
Dit+1) =—(Bm+S(+1))" (63)

the same adaptation algorithm in Theorem 2 or 3 can be utilized for this problem
and S and W () are obtained. However, it should be noted here that K ()
must be positive, therefore some amount of caution is needed for setting up Kc
and Kd. Here K¢ and Kd are applied as,

0.0001 0.0001 11
Kec= Kd =
0.0001 0.0001/, 11
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and S(#)=0 is taken into account in the constrained condition of the adaptation.

The results of the simulations are presented in tables 9~13. In table 9 it is
shown that the adaptive outputs almost converge to the turnpike before the 5th
period, however, the behavior of the adaptive outputs fluctuate a little larger in the
initial stages. The reason may be that the stock adjustment activities do not work
because of the constrained condition S{#)=0. From the results depicted in table
10~13, we see that K(f) and EM () work effectively in only three periods after
the initial time and take on very little values after the third period. This result
shows that the adjustment of the adaptive model to the turnpike only works in the
pre-third period and the adaptive model takes on the turnpike technology after
the third period.

5. Conclusion

This study investigated Model Reference Adaptive Turnpike Theorem following
the results in our previous paper 5;. In this paper we have succeeded in removing the
assumption of the relative stability which was a major problem in 5), and developed
the theorems which could be applied to a more general dynamic I-O system.
Furthermore the usefulness of the theorems obtained in this article was proved by
some numerical simulations. And it is hoped that those theorems would play an

Table 9. Simulation results of output levels of the reference
and the adaptive models (section 4.3.)

period xmy (8 I x1 () xmy(t) 29(2)
0. 32.000 31.000 28.000 19.000
1. 33.000 53.500 29.000 1.500
2. 34.100 34.856 30.100 29.425
3. 35.310 35.360 31.310 31.270
4. 36.641 36.632 32.641 32.649
5. 38.105 38.104 34.105 34.106
6. 39.716 39.715 35.716 35.716
7. 41.487 41.486 37.487 37.488
8. 43.436 43.435 39.436 39.437
9. 45.580 45.579 41.580 41.580

10. 47.937 47.937 43.937 43.938
11. 50.531 50.530 46.531 46.532
12. 53.384 53.383 49.384 49.385
13. 56.523 | 56.522 52.523 52.524
14. 59.975 59.974 55.975 55.976
15. 63.773 63.771 59.773 59.774
16. 67.950 67.949 63.950 63.951
17. 72,545 72.543 68.545 68.546
18. 77.599 77.598 73.599 73.600
19. 83.159 ; 83.158 79.159 79.160
20. 89.275 89,274 85.275 85.276
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period ) su (8 s1(2) sz1{2) sg(2)
0. 0.00000 0.00000 0.00000 0.00000
1. 0.00000 0.00000 0.00000 0.00000
2. 0.40360 0.49329 0.00000 0.00000
3. 0.00000 0.00000 0.21650 0.26461
4. 0.00000 0.00000 0.00000 0.00000
5. 0.00329 0.00403 0.00000 0.00000
C. 0.00174 0.00212 0.00000 0.00000
7. 0.00168 0.00205 0.00000 0.00000
8. 0.00177 0.00217 0.00000 0.00000
9. 0.00186 0.00227 0.00000 0.00000
10. 0.00196 0.00240 0.00000 0.00000
11. 0.00206 0.00252 0.00000 0.00000
12, 0.00218 0.00266 0.00000 0.00000
13. 0.00229 0.00280 0.00000 0.00000
14. 0.00243 0.00297 0.00000 0.00000
15. 0.00257 0.00314 0.00000 0.00000
16. 0.00273 0.00334 0.00000 0.00000
17. 0.00292 0.00357 0.00000 0.00000
18. 0.00311 0.00380 0.00000 0.00000
19. 0.00330 0.00404 0.00000 0.00000
20. 0.00354 0.00433 0.00000 0.00000

Table 11. Simulation results of levels of the stock adjustment
activities K(¢) (section 4.3.)

period Ki(n) : Ky (9
0. 0.000 0.000
1. 0.000 0.000
2. 28.683 0.000
3. 0.000 15.930
4. 0.000 0.000
5. 0.263 0.000
6. 0.145 0.000
7. 0.147 0.000
8. 0.162 0.000
9, 0.179 0.000

10. 0.199 0.000
1L 0.221 0.000
12. 0.247 0.000
13. 0.277 0.000
14, 0.313 0.000
15. 0.352 0.000
16. 0.399 0.000
17. 0.457 0.000
18. 0.521 0.000
19. 0.594 0.000
20. 0.686 0.000
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Table 12. Simulation results of the temporary trade coefficient matrix W{z) (section 4.3.)

period 701y (8) w13 (f) wo1 (£) wa ()
0. 0.00000 0.00000 0.00000 0.00000
1. —0.44850 —0.53814 —0.00177 —0.00005
2. 0.40374 0.49333 —0.24241 —0.28873
3. 0.00014 0.00004 0.21473 0.26456
4. —0.00352 —0.00436 —.000177 -0.00005
5. 0.00150 0.00175 —0.00176 ~—0.00005
6. 0.00001 —0.00008 —0.00176 —0.00005
7. —0.00015 —0.00027 —0.00176 —0.00005
8. —0.00015 —0.00028 —0.00176 —0.00004
9. —0.00018 —0.00031 —0.00176 —0.00004
10. —0.00019 —0.00031 —0.00175 —0.00004
11. —0.00022 —0.00035 -0.00175 —0.00004
12, —0.00023 —0.00036 —0.00175 —0.00004
13. —0.00027 —0.00041 —0.00175 —0.00003
14, —0.00028 —0.00042 —0.00174 —0.00003
15. —0.00032 —0.00046 —0.00174 —0.00003
16. —0.00038 —0.00052 —0.00174 —0.00002
17. —0.00039 —0.00054 —0.00173 —0.00002
18. —0.00042 —0.00057 —0.00173 —0.00002
19. —0.00049 —0.00065 —0.00172 —0.00001
20. —0.00054 —0.00070 —0.00171 —0.00000

Table 13. Simulation results of levels of the temporary trade

activities EM(#) (section 4.3.)

period EM;(#) EM5 ()
0. 0.000 0.000
1. —24.802 —0.095
2. 28.589 —16.945
3. 0.006 15.866
4. —-0.271 —0.066
5. 0.117 —0.069
6. —0.003 —0.072
7. -0.016 —0.075
8. —0.018 -0.078
9. —0.021 —0.082
10. —0.022 -0.086
11. —0.027 —0.090
12. —0.030 ~0.095
13. —0.037 —0.100
14. —0.040 —0.106
15. —0.048 —0.113
16. —0.059 —0.120
17. —0.066 ~0.127
18. —0.074 —0.135
19. —0.093 —0.144
20. —0.107 —0.153
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important role in a stage of a corroborative study.

Areas worth examining for futrher research and analysis include introduction
of the adaptation process by a control of the private capital investment and/or
R & D investment to make the adaptation law endogeneously possible.
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