") HOKKAIDO UNIVERSITY
Y X7
Title Mathematical and experimental studies on the temperature rise of electric rotating machines
Author(s) Mori, Motokiti
Citation Memoirs of the Faculty of Engineering, Hokkaido Imperial University, 5(2), 77-220
Issue Date 1939-03
Doc URL http://hdl.handle.net/2115/37726
Type bulletin (article)
File Information 5(2)_77-220.pdf

°

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Mathematical and Experimental Studies on the
Temperature Rise of Electric
Rotating Machines.

By

Motokiti Morr.

CHAPTER I
INTRODUCTION.

The present essay reports mathematical and exprimental investiga-
tions on the heat problem of electric rotating machines.

The flow of heat in the armature of electric machines is classified
into two sorts, the radial heat flow and the axial heat flow, according
to the path of the heat which is developed in the armature and dis-
sipated from the cooling surfaces. The inner temperature of each
part of the armature is calculated from the thermal relations existing
among the slot, teeth and iron core. Considering the effect of the
radial ventilating ducts, the radial heat flow of the section perper-
dicular to the axis of the armature at the middle point of the axial
length .is discussed, since the temperature in this plane is surely
higher than in any other cross section. In this plane the temperature
of the periphery of the armature is distributed regularly with the
pulsation which corresponds to the slot pitch. Therefore the peripheral
temperature can be expressed by Fourier’s series. The temperature
of the teeth can be decided from the temperature of their circumference
and the cooling conditions at the boundary. Temperature distribution
in the teeth depends upon their form. The sufficient conditions
favourable to cool the teeth are obtained generally.

The calculation of the temperature in the radial direction in the
armature may be applied to the generators coupled to the water
turbine and some small motors, because in such machines the diameter
of the armature is comparatively large compared with its axial length.
For the numerical example a large synchronous alternator 31,000 KVA,
11,000 V, recently designed and constructed by the Hitachi Electric
Works and used at a hydro-electric power slation for Railway service,
was taken. The results of calculation were compared with the experi-
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mental results obtained by using the alternator, and it was found
that the calculation coincides approximately with the experiment.

The heat developments due to hysteresis and eddy current have
not yet been treated by the function of the magnetic induction in the
core, In this article, however, the heat sources are treated as the
function of magnetic induction which varies with the position in the
core,

For an ordinary electric machine, it may be necessary to calculate
the axial distribution of the temperature. The axial temperatures are
solved mathematically in connection with the slot, teeth, iron core
and the end connector. The temperature distributions both at no-load
and at short-circuit are obtained. Moreover it is found that it is
possible to estimate the temperature in the case of any loading, if
the temperatures at no-load and short-circuit are obtained from practi-
cal tests.

The calculation of the axial temperature distribution may be
applied to the machine having a long axial length compared with its
diameter ; for example :—generators or motors having a high revolu-
tion as the turbo-generator. The cooling of the turbo-generator might
be the essential problem for the machinery maker. Since the
temperature of such a high speed machine is likely to rise consider-
ably because the size is generally small compared with the one having
a low speed, some special considerations should be required in the
design of the machine in order to cool its surface effectively. There-
fore it may be sure that this calculation about the axial direction is
useful for the design of the high speed machine.

The most part of the heat is dissipated from the cooling surface,
but some part is dissipated through the rotating axle or the frame.
The heat amount is calculated and estimated by using the equivalent
emissibility.

Four differential equations are established among the winding
embedded in the slot, iron core, teeth and the end connectors and
these differential equations are transformed into integral equations
and solved by successive approximation. Therefore the essential terms
are not missed.

The temperature of each part of the machine in the loading is
separated into the mno-load and the short-circuit. As the numerical
example, a large turbo-generator is taken, of a capacity of 50,000 KV A,
11,000 V recently designed and constructed in the Hitachi Electric
Works and used at a stream power plant. This calculation was applied
to this design.
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To solve the problem of the temperature about the slot conductor
Green’s potential function is used and the temperature distribution
about some kind of arrangement of slot conductor is calculated. From
the calculated results, it is discussed (1) how the temperature distribu-
tion varies according to the boundary conditions and (2) where the
spot of the highest temperature occurs in the slot and (3) how the
spot of the highest temperature transfers according to the thermal
conditions. These discussions are divided into two sections; one is
no-loading and the other is loading, and the case of loading is again
classified into D.C. loading in the D.C. machine and A.C. loading in
the A.C. machine. For A.C, loading, the current distribution in the
slot conductor is discussed and the temperature distribution is obtained
by using the ‘“ Alternating current resistance.”’

Damage to an electric machine occurs generally in the slot winding
at over load and it is sure that this damage occurs at the spot of the
highest temperature. However, it is difficult to detect the spot of
the highest temperature experimentally. If this temperature can be
estimated from the results of the calculation, this calculation is in-
dispensable for the design of the slot:—especially for the form of
slot, the arrangement of the slot conductor and its insulation. As
the numerical example, the synchronous generator 31,000 KVA above
mentioned is taken, inner temperature is calculated and results found
to coincide approximately with the data experimentally tested.

Next, the heat dissipation from the surface is investigated when
the thermal conditions reach a steady state. For this purpose, it is
necessary to determine the coefficient of heat dissipation from the
cooling surface, i.e. Newton’s constant of Newton’s cooling law. By
this law it is meant that the heat dissipation from the surface is
proportional to the temperature difference between the surface and
the cooling medium. From this experiment, if the cooling condition
varies with the temperature rise of the heated surface, this coefficient
can not be taken as constant. I'rom the experimental measurements
of the coefficient of the heat diffusion of several kinds of heating
surface, it is found that the coefficient of heat diffusion varies with
the surface temperature within a wide range and the relation between
the coefficient of heat diffusion and the surface temperature is re-
presented approximately by the exponential curve having the saturated
character. .

The variation of this coefficient depends on the heat conduction
and convection in the cooling medium at the near part of the heating
surface. Therefore at first the characteristics of the heat conduction
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and convection at the surface are investigated by means of the Schlieren
method. In order to study the heat diffusion due mostly to the
conduction, experiments are made under the condition of forced
ventilation in the wind tunnel and in the evacuated vessel. From
this result, it is found that both characters are represented by the
saturating curves, referred to the surface temperature. The method
which is used for detecting the spot of the highest temperature on
the heated rotor-periphery is that of Schlieren. Next the coefficient
of the heat dissipation from the surface in the case of forced ventila-
tion is determined.

For the comparison of the coefficients of heat diffusion about two
surfaces ; painted and non-painted, it is found that the painted surfaces
is more efficient than the others to dissipate the heat from the surfaces.
Referring to the machine having a short hour rating, such as railway
motors, the curve of the temperature rise is especially necessary to
decide its rating. If the temperature of the machine carrying the
constant load is assumed to be followed by the pure exponential curve,
the temperature may deviate considerably from the real one, especially
-in the neighborhood of the saturated state, its deviation is more
prominent. Hence this deviation of the temperature rise from the
exponential curve is explained by Osborne and Jehle by considering
two kinds of time constants according to two groups of materials used
in constructing the electric machine. Though it explains the deviation
approximately, this theory may not be perfect since the fundamental
assumption is based on the pure exponential curves. Their explanation
is suitable for the real temperature rise of the electric machine to be
represented by the two groups of temperature rising curve having
each a particular time constant. However, the time constants of each
group of the materials must not be deduced from the exponential
curves, but they must be deduced from the temperature rising curve
obtained by the variation of Newton’s constant in reference to the
surface temperature.

Using the coefficient of the heat dissipation obtained from the
experiment, the new temperature rise curve is determined and the
method to obtain this curve graphically is described. If the curve
thus obtained is taken as the fundamental curve of the temperature
rise and used to estimate the temperature rise of the practical machine
instead of the calculation of the two groups of time constants, a more
exact result may be expected.
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CHAPTER IL

TEMPERATURE DISTRIBUTION IN THE
RADIAL DIRECTION.

The heat developed in the armature of a generator or motor is
carried away by the heat flow in the slot, teeth and armature core;
one part of the heat developed in the slot winding and in the teeth
will flow into the outer cooling medium passing through the surface
which is facing the air gap, and another part will be carried away
passing through the armature core into the cooling medium.

Thereupon to investigate the heat flow in the armature core only,
the temperature of the slot and the teeth must be assumed to be
constant and the temperature is calculated from the heat equilibrium
between the armature core and the cooling medium by means of the
fundamental equations containing the power losses in the armature
core.

Next to investigate the heat flow in the teeth only, the heat
equilibrium which holds between the teeth and the outer cooling
medium, must be studied by assuming the temperature of the slot
and the iron core and power losses in the core.

(1) TEMPERATURE OF IRON CORE.

For the sake of simplicity, the problem is discussed only in the
plane perpendicular to the axis of the armature, passing at the middle
point of the axial length.

Temperature 7}, of the periphery of the armature core is considered
to be periodically distributed on account of the existence of the slot
and the teeth, its periods being based on the slot pitch. Therefore
the fundamental period is the same as the slot pitch and the higher
harmonics may also appear. Therefore the temperature distribution
at the bottom of the slot and the teeth, with respect to the armature
periphery can be described naturally as follows.

2
1
% Y

g sin(2n+1)
(1) Ty = Tyt Ty 0= )|

(2n+1)
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The coordinates (z, ¥ ) are taken as in
Fig. 1, where . heme

T,.»=the mean temperature of slot
and teeth in °C.

2T, ¢ = the temperature difference be-
tween slot and teeth in °C.

As = the slot pitch in cm.

The fundamental equation of the heat

conduction Fig. 1.

azT(! 82Te — Qn
(2) ot S

is established in the iron core, where

T, = the temperature of iron core in °C.

Q, = the heat quantity developed in the iron core in watt/cms3.

o, = the thermal conductivity in the radial direction in the
iron core in watt/cm, °C.

However, this equation must be solved so as to be satisfied by
the next three boundary conditions.

(i) at =0, and between ¥ = ni, and (n-l—%)/ls,
(n=01,2,....)

BT" — As o1 __qu
[ X ]m=0 - O¢ [[’c Tp]m:() .

I
the difference between the temperature 77, of the slot and 7T, of the

iron core, the proportional constant or Newton’s constant being 2,,, .

In the bottom of the slot, the heat flow o-c[ijji] is proportional to
=0

T,; = qyﬁ,m'*‘ Tp. d -
(ii) at x=0, and between y = (n—i—%)]s and (n+1)4,
{Tc]m=0 = Tz/)/ s
where 7% is the temperature of the bottom of the teeth.

mi _.m
179 - lp.m_ p,d
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(i) at w="h,, and y=19.

3T ] Ac,o
Ery = A0 _py
[ ar “RUR Oc [ 0 c]w—h"

This is Newton’s cooling law at the surface bounded by the cooling
medium, 2.0 being Newton’s constant at this part of the surface and
Ty being the temperature in the cooling medium.

The solution of equation (2) may be given in the form,

(8) T, =f1(@) + EfZ.m(fv)f&m(y) .

Substituting equation (3) into fundamental equation (2), one obtains

P N enle). o)+ Y o Lol — e

But as .

da? o’

the above equation will be satisfied

dszm(/L) . 1 . dzf&m(,l/) . 1 —
(5) da?  fam(®) vt fawml(y) 0

The first term of equation (5) is the function of & only, and the
second is that of ¥ only, and the sum of these two terms must be
always zero. Therefore each term must be constant. If

dz,f&m(:l/) . 1 = — K. then dz_fz,m(’v) . 1 = K
diz  fam(y) ’ dat [ m(®) '

Put

then it follows

d*f, 2, m(’b) . 1 — [_gﬁ]zmz ,

daz  fomx) Lo
Pfom(y) 1 _ _[_QE]Zmz
dy? S, m(¥) As
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Therefore
2 an
(6) f&m(x):Ame *s x'*'-Bme)‘s xy
Sam(y) = Crsin 2;‘— my + D, cos 2;7 my

where 4,,, B, , C, and D,, are the arbitrary constants of integration.
Thus the solution of (3) is written as follows;

2n 1 27
UMY mex
b7 4+ Bae ]

T, = filx) + 2 [4, 0

X [O’m sin 2; my + Dy, cos 2: my] .
Since the fluctuated temperature distribution at x = 0 is represented
by the rectangular form in the direction of y-axis as shown in (1),
the function f3 must be given as follows,

4T, sin (2n+1) 2;:

a A, (2n41)

Y
( 7) ./3 m(:l/) =

Thereupon D,, = 0, and m = 2n+1.
Insert expression (3) into the boundary condition (iii), then

d | . ! Aco
( 8) _d_’lj 1(]%).‘*‘ s, m(y) ) 7;7./‘2 m(hc) = o, [TO"fl(hc)

— 31 s mle mihe) | -
Now put

l I{c <
T hihe) +12 fi(he) = 22T

[}

(9)

B = = f (R
dz

O¢

then equation (8) is satisfied.
Therefore inserting expression (6) into this equation, one obtains

1 - ZCO . 23 4
B, _ 9 2u(2n+1) 6——)—:<2n+ e
A 1 +f'°_-£ A
T 27T(27’L + 1)
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~ As this amount is very small compared with 1, we can neglect B,
against A4,,. Therefore B, = 0. Ience

?ﬂ(2n +1z
s

(10) j 2, m(/L) 'm

may be obtained.
Inserting expression (3) into the boundary condition (i), it follows

2 [%;’fz, w(0)— 'Zj.ccfz, ka)] Fom(y) = [*m (0)—-- fl(O) zs e ]

or

4, A
e 2 1 sc 4 Al 8
E[ (2t 1)+ ]’n‘ ¢ (2n+1)

= [ 20— 50— ?ﬂ}

Multiplying both sides of the above equation by

integrating its results from zero to then it follows

ER

2 s ) s, d s.e
) =L Freme e o] = | Seno—Gao-gemy].

Again, insert expression (3) into the boundary condition (ii)

4 sin (2n+1) 27 2
12 ¥} EH oL ),
(12) _—_ (2n+1) » —A0)

integrating

from 4,/2 to 4.
(13) —Ta=1T)—f0).
From (11) and (13),

*v@-mwuﬁ”

(14) - = f(0)~T7 .
e
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The iron loss in the core @, depends upon the induction in the
core B, and if the magnetic induction in the core indicates the drop-
ping character in the radial direction and also if it can be assumed
as follows

B, = Lhm_ [he—a]

where h, is the radial length of the core, then the core losses Wi .
and W,,, due to the hysteresis and the.eddy current respectively can
be written?

_ f :I[Bamax:ll.(i 1 [l_i]ls 3
Wha ""[100 10600 | oo |1, | wastem?,

2 B 2 1 r I 2
Vw o= 0y Uy f ] [ amax] 1—‘“*—] tt 8 3
Waa=ow tagge| | 7000 | Toosl '] Wettiem

where
o, = hysteresis constant
o = constant depending on the eddy current
J = frequency per sec.
t, = thickness of the sheet iron in mm.

Then Q.= Wi at+Wiy a and
(15) = Q1= [ +a. |- el
where ‘ 7 B .
[ 1.6
Q= on] 100][ 1000 ] 1000
=\? — i f 2 [ Ba. max ]2 1
(15) Qo = u| fa 100] 1000 1 1000 °

Put this expression of @, into equation (4) and integrate it, then

Qn h2 [ x ]3-6 Q. hz[ x ]4 )
16 x) = —_—tr _  {1— fw e | 1— +Cx+0, .
(16) /i) o, 2.6%3.6 he oo 12 e e

If f1 (x) is inserted into equations (8) and (14), in order to find
the values of the unknown constants C; and Cp contained in the
function f (), then their values may be determined as follows

1) Arnold :—Wechselstrom Technik Bd. IV, S. 480-486.
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a y
4 = [224. Qiu] [1_|_ ﬂv.ohv]~l~ Ae, 0
As T O %

o o oe L o, 2.6 o, 3 ge O¢

Al Rc 0 T [22'77' 21.@, c] Xc 0[ Qh hc 4w Qw hr] _20_,0 Rs,c 771;

Ao [_2[__2 e, c] [ Qu  h2 o Qy 12 ]_ﬁ_ﬂ [ 2 _@] T
e L el o 26x36 o 124 o Lz e d?
) Ac 0 271" ' A Qh ]7.2 Qw hZ
dy= 142 7][ +2i£][ - —-]
? [ + o ' As O o, 26x3.6 o, 12

—(1+i”—-°l )[ Qu Do | Qu Qw I ]+[1+33—°hr] Leee Y

o, 2.6 3
+(1+ '?“-"h,,>[ o ] T + e, OTo
o8 As [

T'rom equation (13)

Al — o __ _Q’L hf e Qw c mn
1D Lea=AO=1 = 5556 o 12+O e

If the cooling area of the iron core is considered to be small
(compared with %,) and if also the cooling device in the iron core is
not effective to make the power loss flow away, then the coetlicient
Je.o of Newton’s law can be considered to be small, i.e. 1 /o, is small
to be compared with the terms;

[2” 427 ] [1+-@-h0] ,
As O¢ [

so the term A ¢/, can be neglected. Thus one obtains

C. :':-—__];__._[<0h 77(' 4 X w ]’ >+ ncT/]
’ 7T+2£§',£ e 26 Te

O¢

8

Qh h2 _an h ] //
[trc 26><3()+tr.: 12 +1y
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From this result, it can be ascertained that the temperature of the
iron core is nearly independent of the temperature of the cooling
medium and that when the larger @, @, and %, become, the less
the temperature difference between the slot and the teeth influences

the iron core.

On the contrary, if —% °. 1s comparatively large against

[2;" +2-3ch][1 +~——%f°—~hc] (as the cooling at the surface of iron core

is very good)

0, = 1*[ godue] [ Qo te Gole | teey
Qn

T¢ 2 6 3 T
2 52 ][ A Q 71,2] [277 A ]
2 8, ¢ tle w te §__ As ¢ / 4
+|: As Oc 2 2 6x3.6 + o; 12 As * o Tp

may be obtained. From this result, the larger Q,, @, and /%, become,
the larger the temperature gradient in X-direction becomes.

The temperature in the iron core is given by the following
equation ;

sin(2n+1) 2 Y
x A

4 1 —2" 2011y, )
1 Toq)ye — b
(18) T, fl(’o)-i- 2 @nt1)

The first term fi(z) indicates the mean temperature and the latter
term indicates the tempelatule fluctuation of Y-direction. Therefore
the mean temperature is

=QJ"_ 773 <1___ fl:. 3.6 Qm h /1__‘_~L>
19) T m T ExEE h AT +Cp+Cy,

and the temperature fluctuation is described as follows ;

sin (2n+ 1)

@+l p
20 1 T,, z - e
(20) s ¢ S

As both the formulae (19) and (20) contain the temperatures of
the slot and the teeth 77, T respectively, the temperatures 77 and
T% might be obtained inversely from the two formulae, if the mean
temperature 7T, ,(h.) and the fluctuated temperature 7, ,(h,) at the
surface =75, are obtained from the experiment. However, the
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fluctuated temperature at the surface » =5, is very small, because
Sfez) is very rapidly converged into zero with increasing z, since the
thermal conductivity of the iron core is fairly large in the direction
of the radius. Therefore only the mean temperature of the slot and
the teeth at x = N, 1s obtained. '

(2) TEMPERATURE OF TEETH.

If the temperature T and the power loss @; in the teeth are ex-
pressed with the subindex ¢, the fundamental equation in the teeth
may be described in a similar manner as that of the iron core.

0T | 9Ty _ Qe
3% - 99? o

(21)

The temperature 7% is solved so as to be satisfied
by the following boundary conditions (i), (ii) and
(iii); the temperature must be continuous at the
boundary between the iron core and the hottom of
the teeth, and also the boundary condition (iv) is
satisfied from the relation shown in Fig. 2. The
boundary conditions to be satisfied are;

b
2 b

877,5] ____gs,t T
[ okt O L2 'ltjy=i%
2 2

(1) at y=

By the boundary condition (i) it is meant that the heat flow exists
at the boundary surface between the slot and the teeth. 7%, is the
temperature of the slot and A,; is the constant in reference to the
heat delivery between them.

(i1)  at y=0,

5]
Y dy-o

(i) at 2=0,

[ 8Ty ] = O[T Ty,
5=0

o ot

ondition (il1) expresses the hes nsmission due ewton’s coolin
Condition (111 esses the heat transmission due to Newtion’ 1
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law at the boundary surface facing the air gap. 7 is the temperature

and 2, ¢ the cooling coefficient in the cooling medium.

@iv) at o, =nh; or z,=0,

B
(GO PRy v dy,=0

and
[T ]m:ht =[T. ]xc=0

he is the height of the teeth in cm.
By putting

(22) o= T—T,,

the fundamental equation is written again

(23) 0%re , %1y _ Qs
'a.”C% '6(1/,% gt

and the form of solution may be assumed as follows

(24) v = Bya)+ Ule, 9)
where Fiz) = ‘i& a2,
2 oy

Let us consider the function +(y) to be satisfied by the condition

+’%bt
S . Yi(y)dy =1,

—<b
9 3

and the equation

i, o
’L+ i = O .
day? .

If Ulz, y) is expanded by the functions fr(y), then

+—1—bt

(5) Ut ) = W) |7 Uta, byt

1
___Z_bt

Therefore expanding

2 -
a—rg(fziﬂ the same as the above mentioned,
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Ll
—be
'BZU(’L 7/) V‘If (1) j‘ 2 SZU(Q; ) \lfi(z)d/{
94

(26)
(L Z. _;b
— U(m, %bt>?3i%/ﬁ+ U(n:, ——%btfi\lf_(_g}‘z_t)
bt
L, vt ]
+3b
and amz z\hmj jb ’aUm,{ \lrz(/l)d/l
—bi

These functions are considered as even functions with respect to ¥.

Therefore

s —}-b Yy ‘“lbt
W)ty )

60(@-%@) aU( ) i)
= 3 U( — > U )_—"b>
A b (q“ ‘
Concluding from the above results,

32U 2l sz(q [X 3 82U(7J ﬂ\h (DA

:cz a2
1

————bt

1
U(:, “b>
¢} T 5 4

(27) 49

91

i MO,
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However as the particular function ; must satisfy the equation

APrfr;
g V2 T = 0 ’
dy? Y
hence
+7§‘bt P +%bt
j Ule, a>_d§’gz' 7 = —pﬂ U, DA da .
—%—bt A —--;—-bt

Substitute both the equation and the equation deduced from the
boundary condition (i),

_
?U(m, Qb>=_ as,t[U(@, %bt>+F1(x)]

94 ot

into the above equation (27), and one obtains

d2¢>1(@)_ A7) — Zs.t A AW _1_ —
28) g =28t By 2h) =0,
where
1 1
+—‘bt d\l/‘z(———Abt>
AT} = ? 3 ; ——2——A = —éﬁ K i
() = j_ibt U, D)z, —— et be).
2

If Fy(x) =0, one obtains from the equation
d? qst(@) 24)2( ) — O
the solution
¢ =Aypr1+By s .

However, if Fy(z) exist, the general solution in this case can be
written

$1(%) dal)

$1(8) a(€)
$1(8) $4(8)

$1(6) Ppe(€)

¢ = A, 1+ B, ¢.2+2” ( b)f 6] de .
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where
& KA
¢)1==g VLL( ILL), (152:@ phtkt .
Therefore
x x
—vhe|l —— —yht—~—
(29) ¢ = Aye “( ht) +B,e e

At ig* e i(%bt> [m2+ 2 12 (e +e- ”'”)] .

or Vo s
Therefore from (25)
(30) Ule, y) = Z39(y) ile) -
Next the particular function +; is determined from

i ay
_dy_2+ Vv \P‘;, _— 0
where
2

p = p—
bs

and by the boundary condition (ii),

Y = A cos p«_z.biy = A cosvy .
¢

From
‘Jr'%bt
[ vy =1,
——ébz
one obtains
0
A= g
eV q . sin 2
2ur
and from
1
ck i(;b)
4 ot

93
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it follows

A5t Dy
or 2

(301 pr tan por =

If the roots s of (307) are written by s, #a, M3, ..., Y(y) can be
written as follows;

(31) Prily) = A; cos ,uzzb"iz/ .
t

From this it is clear that the temperature difference between the
sides and center of the teeth becomes smaller with an increase of the
width of teeth 4; as all 4 is nearly equal to T
t
In order to determine the constants 4, and B, from the boundary
condition (iii)

(32) [?lz] = Auop1 g Ao g
R TR o

the equation

>_| vy [(Z(b i(0) 20 ¢’(U)J 7;_;1 [F,(0)+ Tva’o]—-i%é—Q)

dx

is obtained. 1\[u]tiplying both sides of this equation by +, and inte-

grating from w»%—bt to —l—%bt, from the orthogonal condition, the

expression
+—b¢
HD) Z(l)(O) i 0 ) 2 A Y m m dlﬂl(o)
33) 90 Aoy :j i[iﬂ Fy(0)+ T M#_] o
(83) dx ot $d0) L k4 (Tt} O+ 1, 0} dx e
b

1s obtained.

From the boundary condition (iv)

[y gy + 1o = [, »
the expression

1
S ey
G 4= [(eo= LT || g

- 'z‘bt

P>

is obtained.
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From these equations constants 4, and B, are obtained

(27 ay

Ay =

Kye™ e iy [+ 22 | A

95

Kl:“bL it*o—[Ts ]SmMrN/

- 3 Bv =
lu”ﬂ] 6*2W1"+[u+2fﬁ'0] [u*ﬂ] 6—2Uh‘+ [v-l-
ot ot ot

21‘,0

at

]

At 0

.J’
ot

J— sm 2,wrr !
35
(35) Srom
K= [L—t ig %"‘ {h§+—2§— T]é (™ + e_vh‘)} cos prr
ay v i Y
2
I[1 y o To— Qt li }smmw VS
14 sin 2uar
Qe
Put
(36) { Ay = A To + Ao [To]y o + Aav
Bv = Blv Ts -+ BZV[Tc]x():O + B3v ]
where
Ay = N/_‘T__Zi sin pr [g—t’ie—’)ht—'u—)lt—’o
I ,UJ7T'[ /?t.O]e—?Vht*_[ +M] ot oy
[oF o
Ay = Zg[p+m] sin prr
3
by paar ot [V—M]e_mjht’i‘[))—l‘@]
ot ag
By, = 2 b sin prr [ itﬁ_u>e—b‘ht_
L=
by prr [ Ao | —2vh At gt
p——=1€ +liv+
o] ot
By, = i?&[vrM]e—vm _sin pr ,
’ bt ot - O [V—M] “'2Vht;_|_[ +M]
gt (o)

|
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If 2, is small and also 0, is small, equation (30’) may be written

as
M tan por = 0,
or
sin par = 0,
Hence

Alv = O, Blv‘ "-—‘O, Agv =O, Bgv =,

From this assumption, if the width of the teeth is narrow and
the materials of the electric insulation at the circumference of the
slot have small thermal conductivity, then the temperature of the
teeth should not depend upon the temperature of the iron core and
the slot, i.e.:—the heat developed in the teeth themselves due to the
power loss might be diffused into the air gap by Newton’s cooling
law.

In such a case, it follows

Ki=0, K= A/ 2 Aaad Qt[l += -Jz—(e”ht%- e’”’”)] oS prr
Y

bt gt 112 ot

-]
gt

A, =Ky, B, =1IGe M- 2t=

and the temperature at * =0, ¥ = 0 is given as follows;

f)
Ty0 = ~2— % R 2 L2 [(71; 2) —vhe ]cos,wzr .

_|_t0

The temperature will become higher at the surface of the teeth facing
the air gap, if @ and A,, become larger and o, becomes smaller.
However its temperature is independent of the temperature in the
iron core. .

If h, and A, are large, then A;, and B;, are large, so the temper-
ature of the teeth is higher than the others due to the fact that the
heat developed in the slot is flowing into the teeth. In other words,
the fact that h, is larger, is favourable to cool the slot winding.
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(3) HEAT FLOW CONDUCTED THROUGH
THE ROTATING AXLE.

Referring to the rotating armature of the electric machine, the
rotor is connected directly or indirectly:to the rotating axle of the
machine. In such a case, if the armature has several air ducts
penetrating through the iron core, the large amount of the heat
developed in the armature might be carried away through the air
ducts, however even in such a case the heat which escapes from the
surface of the axle, bearing and other parts can not be neglected.

Fig. 3.

The heat carried away through the rotating axle is considered to
flow into the axle, to bend in the direction of the axle and to diffuse
from the surface facing the outer cooling medium as shown in Fig. 3.
In this case, the temperature of the rotating axle surrounded by the
iron core may be assumed to be constant.

The coordinate axis of z from the end of the iron core being
taken as shown in Fig. 4, the funda-

xx'lental equation of the heat conduc- | ‘ I
tion Sheet iron pile ’
S S TR T
' 7 - Shafs 01 7 4, |0
can be written. I
Neglecting the power loss in the !' )

rotating axle and putting
Fig. 4.
(38) Tw = Tw"-,WO )

the equation is transformed by making use of the cylindrical coordinate
r, 8, z into
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% 1 9+ 2,
39 wy = w o W o ()
(39) arz ¢ 9r 922

where r,, is independent of 6.
Substituting =, = R(r) Z(z) into equation (39), one obtains

(40) [d2]~3+1 CZR]L+2_O’ L%

d® ¢ dr IR = z dz

From the two expressions R and Z, the solutions

[ Br)=33[CoJo(pr)+Dy Yo(pr)]

41
. | 26) = S\ e v+ B, o)

are obtained.

As Yo becomes infinitely great at the limit of » = 0, D, must be
Zero

(42) Tw = Z ApJO(pT) [e_pz+B73 e+pz] .
Y4

Newton’s cooling law is established at the peripheral surface of
the rotating axle # = s,

'()Tw + le . O

Tw —
ar T

where 2, is Newton’s constant at the peripheral surface s = r, and
o is the thermal conductivity in the axle.

If the Newton’s cooling equation at the surface » = 7, is established
with respect to +,, the expression

(43) (pro)J1(pro) = ji?’ﬂ Jo(pro)

may be obtained. Roots of this equation are found as follows :—

P=DP1, P2, P38y euvevenn s Pas cneeenen
Next, at Z= 1k,

dr A
44 LTw 4 Aw =0,
( ) dz +0'w’r
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I'rom this

p, — Ao

n

(45) Bn = - ""’?‘i’ e‘-QJ)nZk .
Doy, + -
Pn Ty

4,, is obtained from the condition that the temperature distribution

is uniform at the section z = 0, and therefore ,, = =, . If the constant
7, is expanded by the Bessel function Jy(p,x) in the range
r=0—-7r=r1, then v, = > K,Jo(p,x).
c n-1

= 202 "oy : (i

e I e e

[(i) +?7i] Ty (pure) ™0 " o

(46) 7
2 1

A, = =

,)_2 Th(: A '
(2 Ve | B

Then the solution (42) is written
(47) o = SN A Jo(ppr) [¢ P + B, e TP

As the value of B, is small compared with the other terms, it can
be neglected. The temperature of the axle has a decreasing character
in reference to z direction according to the exponential curve and
the larger I; becomes, the smaller the mean temperature becomes.
This fact is easily understood by the fact that the larger I, becomes,
the larger the cooling surface is.

Putting p,» = €, , the formula

(48) Eudr(E) = 0o Jo ()

Cw

is obtained, where 4, has complicated value in the practical case
because the shaft is surrounded by the cooling medium directly and
sometimes not. But ¢, might be nearly constant referring to the
machine already constructed. The radius of the axle 7y is determined
from the consideration of the mechanical strength, and alse of the
radial heat flow,

Denote the temperature at the surface vy by mu7. The mean
value of the temperature in the direction z is
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~ 1 le
(49) Twrg mean — TJO Twrg dz .

Therefore the heat quantity 2'7r7"ahc2w’rw,-0mean flows away from the
surface of the rotating axle and in the case where the iron core is
not connected to the axle, but surrounded by the cooling medium
directly, the flowing heat quantity is Zarrolodrs, .

If the heat quantities described above are equal to each other
referring to two cases where one is conducted through the rotating
axle and the other is directly diffused into the cooling medium, the
formula can be written as follows;

(50) g= eromean g,
’Thc lO

The temperature of the armature with Newton’s constant A above
mentioned could be calculated as if the armature were not connected
to the shaft, even in the case where the armature is connected to the
shaft directly or indirectly.

| (4) EFFECT OF VENTILATING DUCTS.

Up to present, the heat flow to be conducted radially to the
armature core only is considered, though there is the heat flow axially
conducted. Therefore the effect of the axial heat flow exerted upon
the radial heat flow must be calculated. .

The axial temperature gradient causes the axial heat flow which
is conducted perpendicularly to the sheet iron pile and is diffused
from the ventilating ducts. At the middle part in the sheet A in
Fig. 5 of the machine core the

. . T T
temperature is the highest. mex y Dmax

The radial and axial heat fl i
e il end i vt B [TTITTT (TN
shown in Fig. 6(a) and (b). . ; - ‘u -~
oq
i B
¢ s et e B el 3,
Ty Lo
® )

Fig. 6. , Fig. 6.
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4= Newton’s constant,
o = thermal conductivity of the sheet iron.

oq = thermal conductivity in the direction forward the sheet iron
piles.

T = temperature in the sheet iron pile.
Referring to the heat flow shown in Fig. 6 (a), the equation becomes

*T 0
oa?

The boundary conditions are such that
at =0, T = Tax
and

x=h, AT _
ox

A1)
ag
Therefore the temperature distribution in the radial direction

i 1 7]
’(’; (70 - mnx)
T 0t Ty -
1+4
a

Referring to the heat flow shown in Fig. 6 (b), the equation hecomes

2 2m
T, 8% =0,
ot oyP

and boundary conditions are

(1) at ==, y=:!:%b,
9T A
=Ly,

3?/ Tq
(ii) at v=0, y=1v,
T= -,lvmax)

where 7 =1-1T)
From the above boundary conditions, the equation is solved as
follows

h x

—Zn\«? " 9
T = (Tax—To) € ' cosn, Ty+ Ts
)
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2D
ny, tann, = -
ag 2
Ny = M1, Na, N3y cuesenn

This formula represents the radial temperature distribution where the
axial heat flow exists only in the sheet iron pile.
The temperature gradient

Trax= [T at  y=0,

h

is deduced from the formula for the radial or axial heat flow only.
Referring to the radial heat flow, the formula is obtained

m 1

(T To) 2 —L (2)

L+-2h

a
and to the axial heat flow,

h

~2’)7,\;"
(jvmax'_ {ZWO) ‘]1‘6 b i eesaen easesessesasen (b)

b

The temperature gradient (a) is larger than (b) because the formula
(a) represents the radial heat flow and the formula (b) represents the
axial heat flow, therefore, if both heat flows exist, the temperature
gradient may be described as follows :—

A h

._va_..

b
(»,pmax_— TO)[ g -+ ¢ ] © eeasasresane (C)
1"‘&][ h
a

Formula (c¢) represents the temperature gradient where the radial
and axial heat flows exist in the sheet iron pile. The ratio of the
formulae (a) and () is

Ji=

J1 is the factor of the ventilating ducts.
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Example

A1 = 0.004 watt/em?, °C
o = 0.466 watt/cm, °C
g == 0.0245
=4.5cm = 0.006 watt/em?, °C.
1, tan n, = 0.368
n, =0.61
f1<+=09

} for M-sheet

(5) NUMERICAL EXAMPLE.

Synchronous alternator at the hydro-electric power station for
railway service.

phase 3

capacity 31,000 kVA
voltage : 11,000 V
revolution 150 r.p.m.
frequency 50 cycle/sec.
rotor peripheral speed 54.5 m/sec.

Loss at each part of the machine.

iron loss of stator 200 kW
copper loss of stator 155 kW
copper loss of rotor 133 kW
stray load loss 50 kW

Stator dimenson.

Fig. 7. Fig. 8.
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[A] TEMPERATURE OF CORE.

slot pitch A = 4.7 cm
core height he =16 cm

Temperatures at each part:—
To=20°C T,=75°C  T4=68C

Although the base temperature adopted by the International
Committee is 40°C, one takes for the base temperature 7y = 20°C at
which the measurement is carried out practically. The temperature
rise of slot at the spot marked with ® in Tig. 7 measured 50°C by
means of the search coil resistance method which is considered to
give the temperature 5°C lower than the real one. Therefore the
temperature of slot 7%, was estimated at 75°C. Also, the temperature
rise of core at the spot marked with @ in Fig. 7 measured 27~28°C
by means of mercury thermometer through which correction of +10°C
is wanted. Therefore one estimates the temperature of core marked
@D at 57~58°C. These experimental results being compared with the
calculated results, one finds a quite good coincidence.

Newton’s constant at the slot ingulation is deduced from the curve
as shown in Fig. 9 which represents the relation between the thermal

1.8 ?
1| Thermal conductivity
of slot insulation. /
1.7 v
L pd
L]
S =
8ls
1.6 I+
=g
[
1.5 ]
p—
14 Temp. in °C.
“ 80 40 50 60 70 30 90 100

Fig. 9.
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conductivity of the slot insulating material and the temperature of
the slot conductors. ITrom the curve, Newton’s constant at the slot
insulation is taken as follows:—

(thickness of slot insulation = 10 mm)

As, o = 1.57 x 1073 watt/em?2, °C.

s

Referring to the circumference of the slot, the Newton’s constant is
1.57x 1073 x (12.5 x 2+ 2.2) = 4,832 x 102 watt/em?, °C.

The thermal conductivity of the core-sheet (class M-sheet) is taken
as
o, = 0.466 watt/cm, °C.

which is the value taken in the radial direction, and the sheet iron
is painted twice with insulating varnish (class A-varnish). The
back surface of the stator core directly faces the air and the end
surface of the sheet iron packet is in contact with the air through
the varnish layer which is coated on the sheet iron. Therefore the
heat development in the core is considered to diffuse radially in the
core and dissipate in the air from the core back surface.

Newton’s constant is taken at the core back surface

Ze.o = 0.006 watt/ecm?, °C.
The magnetic lux density is designed as

Begre = 12,000 lines/ems?,
Bieew, = 16,000 lines/cm?,

Therefore, the ratio of the iron loss is approximately expressed by
1.216: 1,616 = 1.34:2.12
The volume ratio of the slot and teeth is
22:25.9

Now it is assumed approximately that the density of the iron loss in
the teeth is twice larger than that of the iron core, hecause the
volumes of the teeth and the slot arve nearly equal to each other, and
the no-load losses are considered to be uniformly distributed in the
total volume of the armature containing the teeth and slot.
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The net volume of armature
A 7552 —T008)4.5 % 18 % 0.8 = 4 x 108 s
a
The total iron loss in the stator is measured at the rotating machine
factory after the machine is fully constructed and its value is
200 kW
so the loss density in the core is
0.05 watt/cm?

Si(x) = 2(1——£— 3'6—0.5.1:-’;-6.5 .

15

The mean temperature distribution in the radial direction is deseribed
in Fig. 10.

8
\ Mean Temp.
a6 \ of core
S e \\
A
2 62
5
=] NG
60 B
H8 ——
ae 3 6 9 iz 15
2 in em.
Fig. 10.

Next, the term of the temperature fluctuation 7', , which cor-

responds to the temperatures of slot and teeth can be calculated from
the formula (20).

From the formula (17)

T, ¢ = 2+65—68 = —1°C.
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Then,
a1 S0 1.34 (20 1)y

2l 4
Lo, f = — (2 =
S > (2n-+1)

I'rom the above formula, the fluctuated temperature is obtained as
shown in IFig. 11 which represent the percentage temperature.

VAR

IE==N

£|8

1 \

é & w0 / a = b, mn%\\

< / x = 7.51mm \\\\
20

e A\l
& )
[\ —/AD

\\ x=2.5m@//

80
\\ w=0 \I/
100

Fig. 11.

o
o

¥ — in em,

[B] THE TEMPERATURE OF TEETH.
Iy =125 em by = 2.6 cm ,
oy = 0.466 . watt/cm, C°.
A, s = 1.57Tx 107* watt/em?, °C.
Newton’s constant 4, ¢, facing the air gap is taken to be
Ao = 0.007 watt/em?, °C.

which is taken in the case where the peripheral speed of the rator
is 54.5 m/sec.
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[T ]g-0 = 67°C. , T) =175°.,
Q: = 0.1 watt/cm?,

1.67x107% 26
X

ST x =486 x 1073,
0.466 x 0.9 2

Mar tan par =

pr == 0,07,
= 0.0223 v = 0.0538 ,
A=0545,
K; and K, are calculated from the above constants;
K =133, K,=058.
Hence, the constants 4, and B, are
A4, =93 B, = —16.7

From the above numerical values, the functions Fi(%), ¢(z) and y(y)
may be calculated as shown in Fig. 12 the temperature distribution
in the teeth is described in Fig. 12 with a curve which is increasing
with z.

/
/AR
/I
72 “\W

ke

70

Temp. in °C.

A\

68
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CHAPTER III.

TEMPERATURE DISTRIBUTION IN THE
AXIAL DIRECTION.

In the preceding chapter the radial heat flow in the armature
alone has been treated. As the end of the armature faces directly or
indirectly toward the cooling medium, the inner temperature of the
armature must be estimated taking into consideration both the radial
and the axial heat flows.

Since the laminated sheet irons by means of which the iron core
of the armature is constructed, are piled up in the direction of the
axle, the thermal conductivity of the iron core in the axial direction
is lower than that of the radial direction. However, referring to the
copper conductors inserted into the slot, the thermal conductivity of
the slot conductors in the axial direction is higher than that in the
radial direction, because the insulating materials by which the slot
conductors are surrounded, disturb the radial heat flow. Therefore if
the two kinds of radial and axial heat flows are compared with each
other, the slot temperature estimated only from the radial flow may
be too much higher; on the contrary the temperature of the teeth
and the iron core similarly estimated may be too much lower than
that only from the axial flow.

(1) MATHEMATICAL TREATMENT.

In the calculation of the axial heat flow, the following notations
are used :—

g == sectional area in cm?

u = peripheral length in cm,

@) = power loss in watt/cm?,

o = temperature coefficient of the slot conductor in °C73,
" ¢ = thermal conductivity in watt/em, °C.

The slot conductor is expressed with the suffix s, the end connector
with e, the teeth with ¢, and the iron core with ¢. Thus the tem-
perature of the slot conductor is denoted by T, that of the teeth by
T;, that of the iron core by 7,, and the end connector by 7. Then
the relations about the heat flow between the four parts of the machine
ave expressed by the four equations (1), (2), (3) and (4).
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With reference to the slot conductor, it follows

27
d Fs = Xs,tus,t(Ts'— Tt)
d2?

+As, 0 Us, c( Ti— Tc) + A, 0Us, 0 ( Ts— To) .

(1) Qst(l+aTs)+USQS

The first and the second terms in the left hand of the equation indicate
the heat developed and the heat conducted in the slot respectively,
and the first, the second and the third terms of the right hand of the
equation indicate the heat flow over the boundaries between the slot
and the teeth, the slot and the core, and also the slot and the outer
cooling medium respectively.

Similarly equations (2), (8) and (4) are written in the similar
manner as shown in expression (1),

2
( 2) Qi G+ As, s, o (T — Ts) o G Cflg’t = btzt,c(Tt_ T,)
+).t'0/u/t'()<Tt““ To)
d?T,
( 3 ) Qc (Jc""'%s.cus,c(Tc_ Ts)-*'o_qqc”’glz—z
+ Zt, cu’t, U(Tc_ jvt) = '{c.OU/c,O(To_ TO)
2
(4) Quao(L+aT) 0,0 22 = dootteo(To— T
where

o, = thermal conductivity of iron core in the direction per-
pendicular to the plane of sheet iron,
us, ¢ = boundary surface between the slot and the teeth,
g, o = boundary surface between the slot and the iron core,
g, o = boundary surface between the slot and the cooling air.

These notations are shown in the section of armature axis shown
in Fig. 13.

In order to simplify the equation, put
Us = Uy == Ug, ¢ Ug, o+ Us 0 5
(5) Tssz"TO’ Tt=Tt_TO:

Te = Tc_' To ’ Te = Te’— TO 3
and
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@ = Astts— Qs Qs b = As g ¢ .= Ao, o
s ’ L ) 5 = =
0s{s ass 055
d, = -2 (14aTy)
Og
@2 = _—’?sus.t+'2t,cbt+zt,0ut_.0 b, = _Zs’ll's,t
t ] [ H
(6) oq s aq s
Ap U
Ct=Mg~’ dt=§£’,
oe: Tq
q = AsUs o= At oUs o Ao 0,0 b = Aslse
c ) c J
TqYe 99
— A, .U
C, = _ Melld e s dc — QC .
0q9c oyq

Then equations (1), (2), (3) and (4) reduce to the following,

2
(7) (572’;&_—@273 = _fs(z) s fs(z) = byt oot ds ’
dZ’Tt 2 _ =
(8) ——d—:z—-—dt’rt = "‘ft(z) 3 ft(z) - bt73+ctT“+Clt ’
(ZZ’T'c 2 —_— =
(9) dz2 QT = —fc(z) ) fc(z) = bco'3+cCTt+Clc °

To solve equations (7), (8) and (9), take as the first approximation
the following equation;

APy

d?

I
—GSTS—-O,
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dZ

_(i_.z_—atTt = O
&,
3 2 —
d2  eTe T 0,

then the solution 1s
= A, e"*+Bye”
(10) e = A e+ By "
1o = A e"*+ B¢ %"

The differential equations (7), (8) and (9) can be transformed into
Volterra’s integral equations by making use of the first approximations.?

- QAs2

— ds ds 8%
(1]) TS—TE’I-(AS—TGE ea +< s

j bs [as(z —%) e—as(z—i)]ﬂ(&.)d&_

j 9 aS(z_Z)"e—aS(z—E)J'Tc(g)dg ,

dy d d -

19 — @ < (A, —Ge e ( Oy age
( ) Tt % t 2 2 + Bg Qag e
j e [ O] () e
j e e at(z—8) e—at(z—i)}q_ (€)de

Q — dc _ dc acZ ___ d —cZ
(13) TeT g +<A° a2 <B 2ag>6

“‘r 2; l—ac(z —&) — ac(z—Z)JTS(E)dé.

IR G (OTE

1) Yosird IkEpa: Memoirs of Faculty of Engineering, Hokkaidd I'mperial Univer-
sity, Vol. 1. (1928) pp. 193-209.
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Put
(14) (z) = d; + A’ cosh a,z A = A.— ds_
q)s (l,‘?; 8 5 ) ] +8 2((2 b
(15) Py (2’) = iL+A£ cosh a;z A} = At_ﬂ ,
) a2 ’ 2a?
(16) P, (2) = i-l—A' cosha,z Al = A _de
’ ag ° o ¢ ° 2a?
As A and B are symmetrical to each other, 4 = B.
Putting :
K, i(z, &) = —-é}“: [e%¢ -9 —e_“S(z"E)] ,
Koolz,8) = ——2% [0 __gmasle=0
K s(2,6) = -21; [e@ (8 _gmaz =01 |
(17)
Kool €)= =5 [?t =9 —gale=9y
_ b 1oace—9__ —adz—b)
K, (2, &) = —2< — ,
ey €) = g D)
K. . (z = . Ce_ ac(z—8)__ — ac(z—%)
c,t.('d; 5) 2&6 [6 4 ] ’
the following integral equations will be written
(18) s = P5(2) +S K, (2, & (&)de “f'j K, (2, &)r.(6)dE,
0 0
(19) e = P4(2) +§ Ky (2, 6)7s(6)dE +s K, . (z, &) (€)dE,
0 0
(20) Te = 7)0(2) +S I(c.s(z; E)Ts(g)df"Fs I{c,t(za S)Tt(f)d{: .
0 0
Tf the resolvents Sy ¢, Ss ¢, Secs cvvnns of the kernels, K, ., K, :,

...... are known respectively, the solutions will be

@) o= ¢s<z>~r Sea(z, &) 9 (6)de -—j” Soa(2, €)@ () de
0 0

~Sz Ss.s(z, &)@, (£)dE
0



114 M. Mori.

z
0

(22) Tt=¢t(z)—SzSt,t<z, £)py(£) de *S S, ez, €)@ (&) de

—jz S,z £)pu(E)de

0

23) 7= ¢c(z>~—j: Sio(2, E)e(€)de —j S,olz, &), (6)de
—j Suo(z, £)ps(E)dE .

Though the solutions are very complicated, terms necessary for the
practical application can be easily obtained.

For example, if the first order is taken as

St,tzo) Sc,czoy Ss,é‘:O)

Sp o = —2 ginh a,(z—£) S, ;= -% sinha,(2—€),
s : a,

x

e b sinh a;(2—&), Sp.= e ginh a;(z—€) ,
a.

s t

S, = b ginh ao(z—E),  8,.=-"sinha,(z—€),
a a

¢ 'S

the solutions will be

(24) Ty = —i +T¢?T§ (1—cosh ¢;z)

——%;; —2; (1—cosh a,2)+ A, cosh a,z
— A} —2@5— zsinh a;z— 4, 21)“ zsinha,z ,
g e
— dt ds bs
(25) = + o a (1—cosh a,z)
Clc Ce 1 1 AI 1

ot (1—cosh a,z)+ A} cosh a;z

b . C .
—Al =2 zginha,z— A4, - zsinha,z,
s ‘e
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(26) T = % —I—%%—Z—E (1—cosh a,z)
dt C¢

+ - o (1—cosh a;z)+ A4, cosh e,z
13 13

¢ . C o
— Al = zsinh az— A, zsinh a;z .
20/3 26‘%

(2) BOUNDARY CONDITIONS.

Integration constants A., A, and 4/, are determined from the
boundary conditions, 7, = and 7, consist of six terms, in which the
first three terms do not depend on the boundary conditions, but on
three kinds of heat source, in the slot, the teeth and the iron core
respectively, while the latter three terms depend on the boundary
conditions i.e.:— their values are determined from the cooling condi-
tions at the boundaries,

The temperature of the end connector =, can be solved as it
depends on the slot temperature =, alone at the boundary. Therefore
from (4), the equation is obtained:—

dPre _
(27) dz? = aﬁ 'Te—de s

and the solution of (27) is

(28) Te = Zg +4,cosha,z+ B,sinh a,z ,
where
(29) a2 = U= QoGear 5 Qe (-+aTy) .
dgele [

Since the temperature of the end connector should be minimum
at the middle part of the end connector, the condition

dr, ]
e = ()
[ dZ z2=1¢

is established. Therefore

B, = —A4,tanh a,l, .
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Substitute B, in (28), then

(30) Te = d; + 4, [cosh a.z—tanh a,l, sinh a,z]
a

€

Constants A%, A}, A, and A4, are determined from the following
boundary conditions.

(i) at 2= %l (Z;t:l:)” . =0,

where [, means half axial length of the armature.

d'To P
ﬂ: 0
dz Tq

(11) at 2= *lg =O.

By these conditions it means that Newton’s cooling law holds at the
side surface of the armature.

eee dTﬁ'] = [_dl‘i]
(i) [ dz Lyy=1p L dzdy=0"

(iV) [TS]Zs=lo = [T"']ze=0

Boundary conditions (iii) and (iv) hold at the boundary surface between
the slot conductor and the end connector.

Four unknown constants are determined from the four boundary
conditions above described.

For expressing the values of the constants 4., A,, 4, and 4, in
simple forms, the following notations are used

D = ﬁt__z[ilt_,*_ d l)s (1—cosh aslo)—i- ”2 (L—cosh aclo)]
a o

2 2
g as ayg /s o ”

_ds b d, ¢ .
S ds sinh a,lp— R sinh a,l, ,
a?

(] s c ¢

D, = )Lf[jc__i__ls_ {(1--cosh aslo)+ ctz (1—cosh atlo)]
t

2 2
ayq ay (45 s t
d. ¢ . d; ¢ :
——2 = q,sinh a;lo——2—t-a; sinh a1
az a? a; O
Dy = —-—"* a,sinh a;ly +- o aesinh a.ly ,
a

t t c c
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D, = —(li—i—»d—ti(l*cosh aglo)+ de £(l—cosh e lo)—~ de R
a? o af o, a2 a?

B = A,z cosh a;lo+ag sinh aglp ,

Oq

By, = 2 e 1 ginh a,lo+-2e (sinh a,lo+a,lo cosh a,lo) ,
aq O 2a,
Rt z bs 3 bs 3

By, s = 22— [y sinh a,lo+ 5% (sinh a,lo+a,lo cosh a, 1) ,
Gq QCLS s

B, ;= Aoz Ct Iy sinh a, lo+-2t (sinh a;lo+a;ly cosh a;ly) ,
Oq 2at 2(1,;

P .
B, ,= 222 cosh a,ly+a, sinh a,lp ,

Tq
B, = Aoz Ca. lo sinh agly+ Cs (sinh a4 lo+a,ly cosh a,ly) ,
) Tq 2@3 a/s

B, = gbf— (sinh a;lo-+ a;lo cosh agly) , B, . = a,sinh a,ly ,
Ay

be

Qe

B, .= (sinh a,ly+ a,lo cosh a,lo) , B, . = a.,tanh a.ly,

[}

By:= Lt lysinhady, B, =22 lpsinh a,lo
2a, 2a,

B, s = cosha,l, .
Further put

4 = (BycB,,t— Bt B, o)(Bs s+ Bo s Bs,)
+(BouBy et Bt o) (Boot Bro B
+(By, e Be,ot By o Be, o) (Bs,s+ Be 1 Byyo)

de = Di[ By, o(By,s+ By, 0 Be,o)—Bi,o(Bs,o+ By, o Br,o)]
+ D[ By, o(Bs, s+ By, 0 Bo,s) + B, o( By, o+ Be, o By, )]
+Ds[Bt, o B, s+ Be,o By, ] + Dal By, o B, s By, s Be, o] Bs o 5

de = D1[B, ¢(Bs,e+ By, o Be,s)+ B, o (Be, s+ Bs, ¢ Be, 1)]
+Da[ By, o(Boo+By,e Bo,o) =By, o(By, 14 By B, )]
+Ds(By, ¢ Be,st Be,s Bo,) + Di(Bt,s Be, ot By, e Be,) B, »
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As = Dl[Bc,c(Bs,t+Bs,eBa,t)+Bc,t(Bs,c+Bs,eBe,c)]
+D2[Bt,c(Bs,t+Bs,eBe,t)+Bt,t(Bs,c+Bs,eBe,c)]
_DS[Bt,ch,t+Bf,th,c] '*‘D‘i[Bt,th,c*‘Bt,ch,t]Bs,e 3

do= Di[B,, (B s Be,s—Bs s Be,)+ Be,o(Bs o Be,i— By, 4 B, )
+ Be,i(Bs,e Be,s—Bs,s B, )]
+ Do[ By, o(Bs,t Be,s—Bo, s Be, 1) + Bt o (Be,o—Ba, e Be,t)
+ By, t(Bs, e Be,s— By, s Be, )]
+ Dy By, o(Be,s Be, e+ Bo,o Be, 1)+ Bty o(Bo,e Be,s+ Be,o B.,1)
+ B, t(Be,s Be,e—Be, o Be, s)]
+ D[ Bt o(Be, s By, ¢+ Be, o B, 1) + By, o( By, o Bs, e+ Be, . B, )
+ By o(—Be, o Bo o+ By o Be,s)] -

Lastly from the four boundary conditions:— (i), (ii), (iii) and (iv),
by making use of these constants, it follows

[A’——— s Agz_f!t_

o4’ d

(31)

[A,.__Ae A e
¢ 3 e J

(3) NO-LOAD AND SHORT CIRCUIT.

Four unknown constants have been found from the calculation
above described. In the process of this calculation, constants Dy, Dg,
D3 and Dy contain four kinds of heat source @;, @,, Qs and Q,. Again
constants B, ..... contain the thermal constant and the dimension of
the armature.

In the case where the electric machine is running at no-load,
the condition
d, =0

may be established, because the copper loss in the slot conductor is
approximately zero and the iron loss only exists in the teeth and the
iron core. Thus it follows
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(32) 7. = oy1042(1—cosh a;2)+ o, 100, 2(1+ cosh a,.2)
T¢, 2 :
+[Ai] 4, —gcosh a,z—[ A4l — o # ayz sinh a,z

—[4d4,-0 o:;’ 20,2 sinh @,z ,

(83) 7= os1t00100,3(1—cosh a.z)

+ [Aé]dszo cosh a; Z—[Aé]ds=0%2 as2 sinh a,2
-[Aé]dszo% a.zsinh a.z ,
(34) 7. = op1+ 011043 (1—cosh a;2)

+[47]

go=0 cosh a,z—[ 471, =05"—§'3 asz sinh @,z

_[Aé]ds=o%’3 a2 sinh a,2

where
d dy d
0,1 == 28 3 G‘t,]_:—ﬂz , Cp,1 = ; s
a/s [4) a,
I b b )
B5) o=, wa=of,  cw=-t,
oy e a2
& C C¢
Te 38 =5 Ts8 =0 of8 = o
a Ay ag

05,1, 0,1, and o, 1 are the functions referring to the heat sources
Qs, @; and @, respectively, which are also expressed by the terms
ds, dy and d,. ou2, ous, 0oz, 0os, 02 a0d o3 are constants referring
to the thermal constants and the dimensions of the electric machine.

/ ’ / . T - "
[44,—0> [Aidg—o and [A], ., are determined from the boundary
conditions and might also contain the four kinds of heat source @,
Qt} Qa and Qe .

" In case of the short circuit where the iron losses are minimum
in the iron core and the teeth, then

de==0, d.==0, ce oop1=0 and o, 1==0.
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Therefore

%20,z sinh a2

(36) Ts= o 1+[A§]dt:0 cosh asz—[A;]dt=0 22
0

dc=0 dc:

—[4cdg,—0 0—23 0.z sinh a7
dc=0

(837) 7= 0y 1042(1—cosh a52)+[4{]4, =0 cosh ¢,z
dc=0
— [Ag]dtzo%ﬂ sz sinh asz——[A;]dFOo;’ 8
dz:=0 dc=0

a,zsinh a,z ,

(38) 7

Il

0,1 05,3 (1—cosh a,2)+[4[];,— cosh a,z
de=0
_[Aé]d¢=00§’ a2 sinh a,z—[4]]4,—¢ %’i’ a;z sinh a,z .
de=0 de=0 “

Temperatures in the plane perpendicular to the axis and passing
through the center of the axis are found by putting z =0 into the
equations r,, = and =,. Thus

. d ds d
(39) Ts = 05,1 = ; ’ TE= 011 = T, Te = O¢, 1= g .
[¢5 az a

8

@

Temperatures in this plane have already been investigated in chapter
II where the radial heat flow in the armature is treated. Therefore
the temperatures in the parts of the armature are corresponding to
o515, o1 and o, 1 respectively.

The axial temperature distributions are expressed in formulae (32),
(33) and (34) in the case where the machine runs at no-load. Again
the axial temperature distributions in the short circuit case are ex-
pressed in formulae (36), (37) and (38).

Expressing the formulae of the axial distribution with [r]; _,
[Tt]dszo and [Tc]ds=0 with reference to the temperatures of the slot,
the teeth and the iron core in the case of no-load and expressing
them with [7g];, o, [rdg,—0 and o]z With reference to the tem-

de=0 de=0 de=0 J
peratures of the slot, the teeth and the iron core in the case of the

short circuit, then the expressions =, =, and =, at an arbitary load
can be given in the following form;
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Ts = [Ts—.'ds=0 +['Ts]d,t=0 s
de=0

(40) e = [relge=o + [7edg,=0 5
dc=0

Te = ['Tc_lds__:o +[Tc]dt=0 .
dt::O

If the temperature distribution is found from the experiment or
the mathematical calculation at no-load under the rated voltage and
the temperature distribution is found from the experiment or the
mathematical calculation at short circuit referring to any value of
current passing through the armature winding, then the temperature
distribution at any load may be easily obtained by means of the
summation of two cases where one is no-load and the other is short
circuit by taking the values @,, @; and Q., i.e., d,, d; and d, to be
suitable.

Temperature gradient in the axial direction depends upon a,, o,
a, and @, at every part of the machine where «, means to refer to
the slot conductor only existing in the problem and also ¢, a, or a.
means to refer to the teeth, the iron core or the end connector
respectively, similar as in the slot conductor.

It can be concluded that the larger the thermal conductivity is,
the less a, becomes. Therefore the temperature gradient in the slot
is very small compared with the other parts, because the thermal
conductivity is larger in the slot than in the other parts.

On the contrary, a; and «, are very large and then the temperature
gradients are large in the iron core and the teeth, because the lami-
nated sheet iron pile has a small thermal conductivity in the direction
of its pile compared with that in its plane.

In general, @,> @, must be kept in ordinary running, therefore
a; > a, may be held at all times. «, is nearly equal to s, however,
a. 1s slightly greater than a,. :

(4) THE EFFECT OF THE VENTILATING DUCTS.

The cooling effects of the radial and axial ventilating ducts are
not directly treated in this chapter, but these effects of the existence
of the radial and axial ventilating ducts may be indirectly calculated
by using the equivalent constant that is the increment of the cooling
arvea in the core back and the air gap.
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Fig. 14 shows the half part of the machine core whith piling up
the sheet iron in the axial direction.

If the iron core has no
loss and the heat developed in
the other part of the machine
passes through the core and
diffuses in and from the surface
of the core back alone, then
the core temperature will be
linearly distributed in the axial
direction.

However, in the case where
! 7, the core loss € is uniformly

distributed, the temperature of
Core back side the core can be obtained by
superposing it on the above
linear distribution :

y, (1—i>2+ L, (1——i)+c
Oq o Tqg lo

as shown by curve A in IMig. 15.

Air gap side

> Z Ty

! To Core end

A

Fig. 14.

Curve A in Fig. 15 indicates the temperature when the core loss @
is distributed uniformly and the cooling surface exists only at the core
end. However, the heat developed in the core diffuses not only from
the core end, but also it flows in a radial direction and dissipates from
the core back and the air gap. Curve B indicates the temperature in
the case where the heat dissipates at the core back, air gap and the
core end.

In the calculation of the axial temperature of the machine treated
in chapter III, the heat dissipation is considered to occur through
the three kinds of cooling surfaces above described. The temperature
of the machine curve C in Fig. 15 in practical cases is lower than the
above ones, because it has ventilating ducts radially and axially as
shown in Fig. 16. The difference of the curves B and C corresponds
to the heat amount diffused from these ventilating ducts.

The axial ventilating ducts may be considered to be equivalent
with the increment of the core back-surface and also the radial venti-
lating ducts may be considered to be the same as the axial ventilating
ducts; because the sheet iron pack has a small thickness and the heat
conduction is very small in the direction of the sheet-piling. There-
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N

.
! —TDS

s

D
Fig. 15. Tig. 16.

fore the difference of the curves B and A is the same as the difference
of C and B. The effect of the ventilating ducts may be equal to that
of the increase of the radial cooling surface.

The effect of the ventilating ducts will be as follows:—

The cooling area of the radial ventilating ducts:—
™ (5D} 20,

where  no, = total number of the radial ventilating ducts.
D, = outer diameter of core in cm.
D, = inner diameter of core in cm.

The cooling area of the axial ventilating ducts:—
Dy, (2—vne, )

where Dy = diameter of axial ventilating ducts
ny, = total number of the axial ventilating ducts
21, = axial length of armature core
v = air gap of radial ventilating ducts. -

Therefore, the equivalent area of the core back may be described
as follows:~

T (D2— DZ) nw, Aoy aq Dyar e, (20— 1w, ) vy
2 Gy RB

iB
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where s, = Newton’s constant at the surface of the radial ventilating
ducts
v, = Newton’s constant at the surface of the axial ventilating
ducts
o, = thermal conductivity of the core in the direction of
sheet-piling
o, = thermal conductivity of the core in the radial direction.

By using the above value of the cooling area, the temperature of the
core with the radial and axial ventilating ducts can be calculated.
These constants may be taken about

Av; = 0,002 watt/em?2, °C
Av, = 0.004 watt/cm2, °C
o = 0.466 watt/cm, °C

oy = 00245 watt/em, °C | Tor Mesheet

(5) EXAMPLE.

Turbo-generator for steam power plant service,

Capacity 50,000 kVA
Voltage 11,000 V
Losses at each part of machine.
Iron loss in the stator 310 kW.
Copper loss in the stator 75 kW.
Stray load loss in the stator 200 kW.
Total number of the radial ventilating ducts
Ny == 69 .

Cooling surface of the radial ventilating ducts

%(2452—145.62) x 2x69 = 4,21 x 10° cm? .

Total number of the axial ventilating ducts
N, == 18,

Axial length of the armature
20, =390 cm .

Net value of the axial length of the sheet iron-pile of the armature

390—1.83 x 69 =300 em .
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145.68 |
4.765 cm.
3900
Fig. 17 (a). Fig. 17 (b).
42
13 Radial ventilating ducts.
Fig. 17 (c).
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2,
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Fig. 17 (d).
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Total area of the axial ventilating ducts
3ar x 18 (390—1.3 x 69) = 5.1 x 10% cm? .

Newton’s constants at the surface of the radial and the axial
ventilating ducts

Ay = 0.003 watt/em?, °C
v, = 0,004 watt/cm?, °C

and thermal conductivities in the direction of the radial and the axial
direction in the iron core

or = 0.466 watt/cm, °C

oq = 0.024 watt/cm, °C .
Newton’s constant at the core back

g = 0.006 watt/cm?, °C .

The area of the core back equivalent to the radial and the axial venti-
lating ducts

0.003 0.024 0.004
1 x 10¢x 0004
0006 0406 2L >0 x40

= 1.08x105+3.4x 104 = 1.42 x 10° cm? .

4.21 x108x

Area of the core back
945 (300—1.8 x 69) = 2.31 x 10° ¢m? .
Equivalent Newton’s constant

6 x 2.31+1.42

0.00 951

= 0.0097 watt/cm?, °C .

The radial and axial ventilating ducts have twice larger heat
dissipating capacity of the armature than in case of one without them.
Therefore if two times Newton’s constant at the core back, is not
taken the thermal conductivity in the copper conductor and sheet
iron would be twice larger than the true value.

o, = 3.8%x2 = 7.6 watt/cm, °C
o = 0.932 "
oq = 0,048 ’
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The slot insulation and the
conductor arrangement in the
slot are shown in Fig, 18.

Newton’s constant at the slot
insulation is taken

2 = 1.57x107% watt/cm?, °C .

Losses in the armature are
shown :—

Tron loss
in the stator == 310 kW

Copper loss
in the stator = 75 kW

Stray load loss
in the stator = 200 kW

Number of slots = 96.
Length of the coil = 600 c¢m.

Copper loss per unit length
of coil

75000

__75000 65 watt .
600 % 2 % 96 o we

Length of the coil inserting
into the slot = 400 cm.

Stray loss per unit length of
the stator coil inserting into
the slot;

200000

_ 200000 _ 96 watt .
400 % 2% 96 wa

Sectional area of the copper
strip
2.4x6.4 = 14.8 mm?,
Sectional area of one conductor

14.8%x2%x21 = 6.22 em? .

@
P— & —
C——" "1~ 0.8 Press boardx 1
[ T ¢} Slot insulation
[ =2
I~ 2.4x6.4 Copper strip
2x21.
| G| ] ey e | R
| et i 22,2 —H
lk—13.4—
n 2
pr—
.
Wi 1.6 Press board X 2
2 ! or Search coil
Ll
uwy
b
«
‘00
©
I
‘L i
~ NI |7
T
=
0 &
=
@ o
™~
A
£
&

Fig 18.
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Loss per unit volume in the slot conductor

_0.65+26

e = 0,622 w 8,
Qs 6.9 2 watt/cm
Loss per unit volume in the end connector
= .
Q. = 22“2) = 0.104 watt/cm3 .

Sectional area of the total slot conductor
gs =6.22x2 =12.44 cm? .
Peripheral length of the slot conductor
Uy = (2.45+18) x 2 == 41 cm .
Temperature coefficient of resistance of the copper strip
o= 0,004 .
Magnetic induction in the core
B = 12,000 lines/cm? .
Magnetic induction in the teeth
B = 16,000 lines/cm? .
Volume of the core
%[24‘52-1812] x 300—18 x 300 x 3 = 6.36 x 108 cm? .
Volume of the teeth .
2.3x18 x 300x 96 = 1.19 x 106 cm? .
Ratio of iron loss of the teeth and the core,
2.12:1.34.

Tron loss of the core per unit volume
310000

Q. = 519 = 0.0876 watt/cm? ,
6.36 x 106-+1.19 x 2125 106
Iron loss of the teeth per unit volume
Q, = 0.0376 x 212 — 0.0595 watt/oms

1.34
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o /\/TQT:QW _[/1.57x2x 41 x1078—0.522 x 12.44 x 0,004
s osls . 3.8%12.44
= 0.0466
dy _ Qu(l+aTo)g, _ 0.522 x (1+0.004 x 20) x 12.44 683

a2 Ae—Quqer 15T x2x41x1073—0,522 x 12.44 x 0.004

_ A/—/?sus‘t—{—it,cbt-}-lt,obs
ay =

oqq:

—1.57 % 2% 86 x 1073+ 0,056 x 2.4+0.008 x 2.3

T0.024 %41 .4 = 0.201

e _ 0.0591x414 _ oy

a? 0.04

/\/ _Rsus,c—xt,cbt + ’?c,O Ug
ac —_— 02V €

94

_ N/ —1.57x2x2.45 x1073—0.056 x 2.4+ 0,006 x 73,17
0.024 % 3.04 x 102

_ 0.2953 _
- “/ 0.024 x 3.04 x 162~ 0.203
o _ 53

2

a’c
" = N/aeue— Qoo _ [ 1.57x 2541 x 108—0.104 x 12.44 x 0.004

elle 3.8x12.41
= 0.0512
do = 2o (14 0Ty = 2% (14 0.004 x 20) = 0.0295
oo 3.8
de __
de 113
4, = —0.305 , Ay = —1.9%107%

A, = —467x1071% | 4,=31.2.

The calculated results are expressed in the curves of Fig. 19.
These calculated results coincide with the experimental data.:
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According to experimental results, the temperature of the spot
marked (@ in Fig. 17 (a) is

21°C (measured temperature rise)+10°C (correction for

the thermometer method) + 20°C (room temperature)

= ()100,
and the temperature of the spot marked @ in Fig. 17(a) is

40°C (measured temperature rise)+5°C (correction for

the search coil method) + 20°C (room temperature)

= 65°C.
Again, from calculated results, the temperature rise of spot (@, and
that of spot @ are 18°C and 42.5°C respectively. Thus these calcu-
lated results coincide rather well with the experimental results.

[ ]
| |
80| ; I LI -
Temp. distrib. of' axial direction.
70t ) |
T l
I - o _
60 - ) 4,="-0305
! o A, = —1.9x10"2
5 l T N | 2 A, = '—4.67x10712
’. F
i \\CJ'D\ A, =312 _Z_;_ = 68.3°C.
40— | : i g 00,
| N N o = 61.°C.
30 'r%) ~] e _ 98 og——|
: - ‘\,\\: \ e ai . 3
20 5 — } \ggillﬁ"S |
& | [
10 ] i
|
T — 7 |m cm] f ;
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Mathematical and Experimental Studies on the Temperature Rise 131

CHAPTER 1V.

CURRENT DISTRIBUTION IN THE SLOT AND
“ ALTERNATING CURRENT RESISTANCE ",

When the direct current passes through the conductor inserted
into the slot of the electric machine, the current density is uniform
in the section of the conductor. However, in the case of the alternat-
ing current, it is well known that the distribution of the current is
not uniform and this non-uniformity increases with the frequency,
for the current passing through the slot conductor produces a leakage
flux in the teeth and in the iron core and consequently the counter
electromotive force is induced in the slot conductor. The distribution
depends upon the dimensions of the slot and the conductors and the
arrangement of the conductor.

In this chapter, the problem of the distribution of the current is
treated as a two dimensional one and the current distributions are
calculated. T.astly ‘‘the alternating current resistance’’ is discussed
in order to calculate the problem of the temperature rise of the slot
conductor due to power losses.

(1) CURRENT AND LEAKAGE ,‘”F '
FIELD. ' '

A single conductor with section as i =, :
shown in Fig. 20 is inserted into the slot P g
and the rectangular path with width dz at e tiot
distance z from the bottom of the slot is ,-',»
investigated. % 7"0 ;

If the magnetic field is integrated along I B
the rectangular path, then the following ¢ -’hd“
equation from the fundamental equation of Y
Maxwell is obtained Fig. 20

p—l-—;—avo R —5 B
(1) A mdw& H, dy+-e g
T

-I-ibo
= 0.4 [S

z'dy] dz

1
_‘é‘bo
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and also if the magnetic field is integrated along the rectangular path
with the width dy and surrounding the =-axis, then one obtains
equation (2),

(2) [ aerom, o', der2 o gy
0 © I

“w=dy) (=) (y=dy)

= 0.8ar [rmdz] dy
dy

where H, and H, are the components of the field intensities referring
to the directions of z and y respectively. B, and B, are the com-
ponents of the magnetic induction in the sheet iron referring to the
directions = and ¥ respectively. 4 is the current density in the slot
conductor,

ap = width of the slot in cm,
Io = height of the slot in cm,
by = width of the conductor in cm,
ho = height of the conductor in cm.,

Now the rectangular path having the widths dz and dy in the
planes perpendicular to the #- and x-axes respectively is considered.
From consideration of the relation between the voltage drop along
the integrating path and total flux interlinkage, equations (3) and (4)
are written from the second equation of Maxwell,

(3) pligrai—1i.] = a—gl dz 1078,
(4) pliyray—is] = agm dy 1072

Equations (3) and (4) express the relation between the current density
and the magnetic field, where p is the specific resistivity of the copper
conductor. Since the permeability u of the sheet iron is very large,
the approximate equtions are obtained,

Putting
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into equations (1) and (2),

EE

1
- 0 (]
jz B gy = oA 10-8S2 Idy,
o 0a? P 0
Bg+ﬂ = jwﬁ 10781 .
9% 9yt p

Similarly from equations (3) and (4)
I{y E=] L 10‘L8_§_]_-_ an_d Hm —_ .L 10-%8 £ ,
Jo 9w Je Y
are obtained.
Assuming the current [ as

I=u@),
it follows;

1
I
) dy
(5) @ gy 04Ty gesdo ()
da? 570
SO wy)dy
a2 1 d?v 1 . 0.4
= jo——1078,
(6) da? u(w) * di? (y) Je
Put
i
_ oY) dy
(7) a%=2m109[°1 ]
P "y do
|y
0
equation (5) will be written
(8) leil; = 2ja?u(z) .
Again put

L0

10-2 [1 ~Sf_a0 Wy)dy ]

f: W(y)dy

(9) B =2me

133
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and substitute (8) and (9) in (6), then it follows

12 :
(10) gy = 280

If equations (7) and (9) are added, the relation is obtained.

2+ B = 27w 107% .

Therefore the solutions of u(z) and v(y) are
(11) u(e) = Ay 0 DT gD

(12) w(y) = Ag, 0TIV 4 B, o —BAFDY

From equation (7), by putting ay = by+e, the formula

1

10-07 (T +3 (b0 +9)
(13) <a32m )j oly)dy = —a3§ Sy
P 7Y +5bo

is obtained.

If the integral
+50ote)
j 1 v(y)dy

zbo

is expanded by the ascending power series with e, then

1
—(bote) 1
2 . 1 ' .

S wy)dy = Ay, eﬁ (495 bo ie[l—l-—l@‘,& (1 +.7)+i€25\2,(1 +])2+,_,,]
Do 2 4 12

2 .

e (1401
Dt Lol Lo, (i) Sessoegpe ]

+B2y (4 D)

is obtained.

Since the function w(y) is symmetrical with respect to the w-axis,
it follows that A4s, = B, . Hence this condition is inserted into the
above equation,
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1
~2-ao 1+ . —1_ _ . —1—-

j @(y)dy = Ay, i[eﬁv( P bo_*_6 Bv+9 5 bo]
by 2

2 o1 _ o1
-+ Ay, ‘68_6\4 1 +,7) [eﬁv(l +9)5 bo_e B(1+5)5 bo]

Bultigh  —Bull +j)%b0] s

3 .
+ g, S BE(1 )R o
If only the first term of this expanding formula is taken and it
is inserted into equation (13), then from the relation

10-°
p

ol + B = 270

the values of @, and B, can be obtained :

. . ~ )
(14) o? = {jizm W07, g @=hg, 1070

0 P Qo P

If this approximation is used, &, and B, are independent of the sub-
index p and therefore the subindex is given up here-after. Again

(15) @ = Q,M/f_ .11110—9 , 8= QW/\/L Ao—bo 13- .
P o P

The constants ¢ and 8 are the characteristic ones to determine
the distributions of current referring to the directions of x- and -
axes respectively. They have various values according to the ratio

Ao = —%0— , where b, is the width of the conductor and q; that of the
0

slot. @ may become smaller in accordance with 2 which tends from
1 to 1/2. On the contrary, constants 8 may become larger from the
same reason. At last both constants « and 8 may become equal to
each other when 4, attains to 1/2. If 2, =1, then 8 =0, and there
appears uniform distribution with reference to the direction of y-axis.

The variations of « and B referring to 4 are shown in Fig. 21(a)
where the specific resistivity of copper is calculated as

p=2x10"8 chm em .
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From Fig. 21a it is found that the rate of increase of g8 is larger
than that of the decrease of «, and that both o and 8 increase with
the frequency f. The variations of
o and B referring to the frequency f
are shown in Fig. 21(b) and from this
curve, it is found that o is larger
than g, and the curve in Fig. 21(b) is
obtained by putting 4o = 0.9. In this
case, constants are

a=0.13351"f
B8 =0.0445vF .

Let us carry on this calculation
taking only the first order with respect
to the function u(x) and »(y), so

(16) 4= [A{e(1+j)(ax+(31/)+e(1+g‘)(aw~py)>
1 01 02 03 04 05 + B{e -+ (es-0)

Flg. 21 (a). 4+ 6"(1+.j) (az+ By} )] ej‘“t R

@

the above equation is established. Now

(A7) Ad=a+jdb, B=c+jd, & =1+, & =1c+d?,

1—-4 1—C
(18) tan By = Z , tangy= ‘j
14+-% 145
A d

0400600~ B0 T000 1200 1400 1600 1800 2000
Fig. 21 (b).
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The equations may be written again as follows :—

4 = 8¢+ gin [wt-{-am—}—ﬂy—{-ﬂl-{-%]

+ 381%™ gin [wt+am~6y-+31+£~]
(19) '

-+ 8678 gin [wt--ax + By +32+l;_]

+ 857" gin [mt~—am—,8y+/32+%] .

(2) SHAPE OF SLOT.

The type of slot, especially the slot-opening, can be classified into
the open slot, semi-open slot, slightly opened slot and totally enclosed
slot which correspond to (A), (B), (C) and (D) respectively in Fig, 21(c).

oo 7 H H (i rrertrrriey
Bl e T |
11 s 4 2 v f s
7 Vi =15 — 1
4t e
4 T A 7% - 5
lx- (e vyt T ! TR g

(A) (B) © o)
Fig. 21 (c).

In the case of the open or semi-open slot, as the condition I7, = 0
is satisfied at the bottom of the slot, it is useful to choose the
bottom of the slot for the origin of x-axis. In the case of totally
enclosed slot, as the condition H, = 0 is satisfied at the middle height
of conductor, so the origin of 2z-axis is taken as at this point and in
the case of slightly opened slot, the condition I, = 0 may be satisfied
at some point between the middle point and the bottom of the slot.
This point can be found approximately by taking some distance from
the middle point of the slot downward, whose distance is determined
by the value obtained by dividing the electromotive force at the slot
opening by the permeability p of the sheet iron, but the magneto-
motive force is consumed considerably at the slot opening so the
origin is taken at the bottom, for the slot has a larger opening than
the semi-open slot.

If the origin is thus determined, then H, =0 and 2 =0 may be
established at this point. Irom these reasons, put I, =0 in the
following equation.
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A
(20) H,=p 10+8j

—M—dt,
0 0T

then the equation
B
oz
may be obtained.

From the two conditions above described,

51 = 52 and ,81 = Bg .
Put

(21) Si=8=208 and Bi=F=70.

In the next paragraph the constants § and B, are to be calculated.

(A) OPEN AND SEMI-OPEN SLOT.

In this case, the origin is taken at the bottom of slot. The total
current becomes

do+ho —l‘bo

2
j vdedy = lysin ot .
0

(22) 2 §

do
From equation (19) it follows

_dla—b)+c(a+D)

0B = a0 —e(h—a)

where

@ = sin %Bl)o cosh %—,Bbo , b = cos %Bbg sinh %—Bbo ,

¢ = sin ahg cosh ahy , d = cos ahg sinh ahy .

Since B is small, the next assumption may be fulfilled

sin »%——,81)0 cosh —12—,6’1)0 == €08 —;-ﬁbo sinh %Bbo ,
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Thus

IO aB
So = 2,
(28) 0 217/ (cosh 2ahy — cos 2ahy) (cosh @by — cos Bbo)

is obtained.
Again equation (19) is written as the following form
(24) i = —1"2 8 Asin (wt—+¢) ,

where Gy ==x—60, and

(25) A = 1"2 v (cosh 2ax+ cos 2ax)(cosh 28y + cos 28Y)

cos ax cosh ar +sin av sinh az
(26) tang = : +l : ,
cos av ¢osh ax—sin ax sinh ez

or

@7) i= T 61/ (cosh 2azx + cos 2ax){cosh 28y + cos 2BY)
- ey (cosh 2ahg—cos 2ahs)(cosh Bhg— cos Bby)

sin ahg cosh ahg
cos ahg sinh ahy

x sin [&;t—arctan

+arctan

cos ax cosh ax + sin ar sinh ax ]
cos at cosh av — sin ex sinh ez

139

The mean current density [; is indicated as fy = I3byhy and the
amplitude of the current 4 is constituted of the terms containing =z

and v respectively :—

, : 20
98 7 ~/ cosh 2az+ cos 2a
@3) o cosh 2ahy—cos 2ahg
and
(29) b A/ cosh 28y + cos 28y

cosh Bby—cos Bby

These two terms depend upon the temperature distribution referred
to x- or y-axis respectively and from the first term, assumning the
height of the conductor as hy = 10 em, the curve is obtained as shown
in Fig. 21(d) with respect to the frequency f. From this figure it is
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found that the current does not pass at the bottom but passes through
only at the upper part of the conductor and this phenomenon may
become intensive with the increase of the frequency.

g E g g
] g g 2
> =] =} ;
g ] =
=4 bt =4 &
§7 &7 B g7 1(©) 27
£ (A) EG (B) g =
25 gl 25 g/ | 88 . 35
il b
g3 s/ 54 & & &\ &
9 < EE o 23 & g
o S &g £ Eg & .:02
%”1} =g & g1
R ) VB . B - s 2
ZO T TR T 7801080 T 884567601080 1234567891020 123450678910
= B = =
£l X . B ., c Ed X !
= Distance in em = Distance in cm = Distance in em = Distance in cm

Fig. 21 (d).

Current densities at x = hy are expressed in Fig. 21 (e) referring to
the various dimensions of the conductor. IFrom this result, the distri-

4.0}

3.0r [/ cosh 2avz -+ cos 2ayy
oo ——

cosh 2xvhg—cos 20vhy

Multiplying factor to mean current

Distance in cm

Fig. 21 (e).

n current

Multiplying factor to mes:

; v "cosh 2avw+ Co8 2avT_
R osh 2ayhe—cos 2k,

=20

hy in cm
Fig. 21 (f).

bution is almost uniform when the height of the conductor attains
to hy=1cm and then the current density suddenly increases at the
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upper part of the conductor if its height increases over this limit
ho=1cm. On the other hand, current densities at = 0 are as ex-
pressed in Fig. 21(f) which shows extensive dropping characters in
accordance with the height /.

The distribution in the direction of y-axis is shown in Fig. 21(g)
agsuming the ratio 2o as 0.9 and observing on these curves, it is found
that the current densities are almost uniform so far as its frequency
attains to about 60 cycles/sec, but the variation of distribution appears
at the higher frequency more than 60 cycles : —especially at 500~1000
cycles as shown in Fig. 21(g).

55;,0: 4.2-
gﬁ_g 4.0r
3le 8 3.8¢
+il 2
X 3.6
qls b 8 3.4}
ol s 2
g 2 53.2
Qf
S o 8.0
2 828
= |
2.6+
Q
2.4
£

8 2.2
& 2.0}
an

u L
218
B L6t
=14
chcles (=l
6 1.2

1.0F cosh 23\; -{-cos 2(3‘/‘!/
_ a»bo[——¢———]bﬁu

cosh Byby—cos vy

| . - . . -
0 04 03121620 0 12 3 4
- g oy b in ¢m —»
Fig. 21 (). Tig. 21 (h).

The variation of distribution due to the change of the width of
the conductor is shown in Iigs. 21(h) and 22, corresponding to two

. b .
cases where one is taken at y = % and the other is taken at v = 0.

2
The shifting of phase due to the variation of %, is expressed in
Fig. 23 and that due to the variation along z-axis is expressed in
TFig. 24. Both shiftings of phase along become larger with the
enlargement of 7y and .
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1.50 8
25 cycles
140f T == 60 cycles
: 100 cycles 7
1.30
i1
1.20
500 cycles 5k
110} /cosh 25vy cos 2Bvy
[9vbo
cosh Byvbg—cos Buly Jdy=0
1.00 4
1000 cycles
0.90 3

0.80
9t
Q.70
1
0,60
0.50 , . , , . L
61 2 8 4 0 1 23456678910 O 23 ATE 6 7 8 g
by in cm — he in cm — x in em —»
Fig. 22. Fig., 23. . Fig. 24.

(B) TOTALLY ENCLOSED SLOT.

In this case, the current distribution is symmetrical with reference
to the center of the section of slot, so the current is symmetrical
with reference to z-axis and also y-axis, then the total current is

1 1

2o g )
(30) 4j j idudy = Ipsin ot .

0 0

From this equation, the constants § and 6, are determined.

—IyoB
31 8o = — 0
(1) Ty (cosh ahig—cos aliy)(cosh Bby—cos Bby)
and
tan —;—aho
(32) tanfp = ——" .

tanh %aho

Therefore, the current is expressed by the equation as follows

(33) i=—1"28 Asin (wt—0+@) .
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(C) SLIGHTLY OPENED SLOT.

The point at which H, = 0 is assumed at the distance s from the
bottom. If this distance s is estimated to be a suitable value from
the consideration of the magnetomotive force at the slot opening as
shown in Fig. 16(c), the total current is

ho" 8 'l‘bo

(34) zj »52 i dedy = Ipsin ot .
8

0

Similarly calculating as above

(35) &= Loaf
21/ { cosh Bbo— cos Bby} {cosh2a(hg—s)—c052a(ho—s) -+ cosh 2as

— 08 2us -+ 2 cos ahy cosh a(hy—2s)—2 cos a{lig—2s) cosh ahg}

and

(36)  tan gy — sin a{ho—s) cosh a(hy — §) — sin as cosh as
v cos a(hg—s) sinh a(lig — s} — cos as sinh as

The current distributions are expressed in Fig. 25 at the equal

time interval of % with the schedule of (a), (b), (¢) and (d), taking

the distance as abscissa, where the height of the conductor is taken
as Ny = 4 cm.

- 6} A
g 6 ] g 6 g O
£ g g
E o} E 4L g E
o 4t 3 R g 4
b 5 =i N
] & E 25 "= 3 § #lw
o 2 //b, 8 ] 2 g I
e &\.‘/ 8 1 ale ] Distance in em 2
| 0 ! 9 37 g 0 Di 2 SN g0 5 0 1 2 37 /4
~) > 8

&8 \"/\. ST g \ istance in cm e\ |2 2 \%
2 s . N e~ ) 0 -2 w2} %
=S PDigtance in cm 2 wl® A 8 ot >
& £ £
£ Si—g} o, ‘E’,
54 = g -4 51
& = . ] ]

-6 -0} -6

(3) ®) ) @)
Fig. 25.

Next, referring to formula (29) which expresses only the distribu-
tion of y-axis, if Bby is so small as to be calculated by the first order,
then the formula may be simplified as follows
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cosh 28y +cos28y .. o
Bbm/ cosh Bby—cos Bby '

which coincides with the calculation performed by Rogowski and
Field. Put 8= 0.345 and by = 2cm in formula (29), and compare the
values at two points, one is calculated at the center of the conductor,
and the other at the side of conductor, then the difference of them
for 60 cycles does not exceed 0.5% between two values, but the dif-
ference may attain to 26% in the case of f = 500 cycles and also the
latter may attain to 12 times the former in the case of f = 5000 cycles.
1 is the amplitude of .

Since the expression

o I cosh 28y + cos 28y N/ cosh 20z + cos 202
(37) Ao cosh Bby— cos Bby o cosh 2ahy—cos 2aliy

I,

is complicated, this formula is expanded with respect to cosh /b, and
cos By |

D,
38 Bl =]
(38) v cosh Bby—cosBby,

and similarly the above formula is expanded with respect to cos2ahy
and cos 2ahy ,

v cosh 2ahg—cos 2ahy ~ 2

Table I.
(p = 2x1076, % = 0.9)
!
;o 15 % 40 50 60 100 500 | 1000 | 5000
R
oy 0517 | 0.667 | 0.845 | 0.944 | 1.035 | 1.335 | 2.985 | 4.22 | 9.44
By 0.172 | 0.222 | 0282 | 0.314 | 0.345 | 0.445 | 0.995 | 1.408 | 38.14

This formula (38) may be used in practice, if Bb < 2, because
there exists error by 2.15% in the case, Bhy = 2. If the amount of
(89) is taken to be equal to 1/2, and if ol <1, then the error is
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about the same as 2.159% . Therefore, in the case of Bhy <2 and
ahy <1, the expression

(40) »—[I—— = 1/ cosh 2az + cos 2a1” cosh 28y + cos 28y
lg

may be always available. Table II expresses the range given by the
above simplifying formula, where the errors referred to = and % do
not exceed 2.15%.

Table II.
f 15 25 40 50 60 100 500 1000 5000
bylem) 11.6 9.0 7.1 6.37 5.8 4.5 2.0 1.40 0.637
To{em) 1.93 1.5 1.18 1.06 0.96 0.75

In the range ahy == 2, the next formula is available

77 Var-v —
41 el 2= Dahye~ 0,
(41) 1 cosh 2ahy—cos 2aly v Sale

In this case the error is about 1.19%.

(3) IN THE CASE WHERE MANY CONDUCTORS ARE
INSERTED INTO THE SLOT FORMING A
SINGLE LONGITUDINAL ROW.

If many conductors are inserted into the slot and are arranged
as a single longitudinal row in the direction of x-axis and if the total
current is the same in every conductor, then the equation may be
obtained on account of symmetry of the current to x-axis,

(42) i = 28,6% [cosh By cos By sin <w5+ at+ B +%>
-Fsinh By sin By cos (wt +ax+ 5 +%>]

+ 28, e“‘”[cosh By cos By sin (wt—an: +,82+~Z~

+sinh By sin By cos ((ot—-aﬁl*l-,@fi- %)] .
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The origin of coordinate (v, y) is taken at the bottom of every
conductor as shown in Fig. 26. Referring to the p-th conductor
counting from those placing at the bottom of
the slot, the relation between the field intensity
H, at =0 and the total current [, passing
through the whole section of the conductor is
described as follows:—

1
< Ao

43) 2 j “H, dy=(p—104nhsinael.
o -0

=

Fig. 26.

The relation between the magnetic field in
the direction of y-axis and the current is expressed as follows

80100 — OHy
o 14

Referring to the current passing through each conductor, the
equation is ‘

1
5bo ol

(44) 2[ j idvdy = I sin wf .
0

Put

0

1 . .1
[ @ = cosh —2—3a0 sin %Bao , a’ = cosh %Bbo sin 3,81)0 ,

o1 .. 1
b = sinh ~§Ba0 cos %Bao , b’ = sinh 5,81)0 cos %Bbo ,

¢ = ¢*M cos ahy—1, d = ¢~ cos ahy—1 ,
¢ =¢Mginaly , f=—e""hginghy ,

W) Y @y = (@419,

= b’—i'——)':l(af+bd) , ry = a/—PT—l(ad—bf) ,
0 0

Ty = b’—B:l(af+bc) ) - Ty = a’——p_l(ad—be) )
Xo ]0

ry=0'—P=1 (cb+ae) , Py = a’——p-—l(ac—be) .
Ao o
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The constants appeared in equation (42) are determined from the
conditions (43) and (44),

._71 _ —(e—=frs+(c—d)r
tan(ﬁ’l+ 4> (e—f)rs+(c—d)ry ’

) _ —(e—f)rs+(c—d)rs
(e—f)rs+(c—d)rg
_ ahoBbep  (e—d)ra+(e—f)rs (o=d)ri=(e=/)rs ]
81 2 Id(a.’2+b’2)((cl—c)2+(f—e)2)N/1+[(o~d)7’z+(e—f)7’3]’

= aho Bbo (C—(Z)"‘s"’(e—f)% QM ’
=y <a'2+b’2)<(d~c)2+(f—e>2>“/ H[(c—d)m(e—f)?"s] '

tan (Bg + %

(46)

Simplifying the above formulae,

p—1 e gin o,

tan (,81"}‘%) = 01 3
1— P2 (¢#M cos ahy—1)

Ao
—p—1 e~ %M sin gh,
tan (Bz + %) = %o ,
1— P (e Pocos ahy—1)
) P

—~1
1—L72 (0 o ho—1)
T} (.

1=
@+ p a Mo gin 2ah,

o 2 18 , Ilo_gasinah0+bcos(zho
RPN [ Gl e sin 2ahy

x 1Pt (¢*M cos a71,0—~1)} .
U a

Ay = v 2 e/ cosh 28y +cos 28y , Az =1 2 e/ cosh 28y +cos 28y,

cosh By cos By sin az -+ sinh By sin By cos ax:
cosh By cos By cos ax — sinh By sin By sinax

l

tan

cosh By cos By sin qx — sinh By sin By cos aw
cosh By cos By cos gx -+ sinh By sin By sinax

tan ’\lfg ==

the equation of current is obtained
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(4—8) 7 = 81 fll sin (wt+ﬂ1 +—Z~ +'\IJ‘1> +32A2 sin <wt+[92+% +'\P‘2> .
The values of & and §; are tabulated in Table ITI referring to the
frequency and number of the conductors.

Table I1I.

(h=2cm, a; = 4cm, py=1>5)

f a1 82 Bl 62 81 52 al 62
=2 | =2 | @G=8)| (p=3) | p=4 | =49 | @=56)| (p=2¥)

15 0.0398 | —0.00105 0.089 | —0.076 | —0.135 | —0.122 | —0.184 | —0.17

25 0.0483 | —0.025 0.085 | —0.053 0.186 0.025 0.2015 | —0.136
60 0.0628 | —0.0288 0.154 | —0.070 0.23 | —0.108 0.305 | —0.146
100 0.157 | +0.032 0.305 | +0.05636 0.464 0.077 0.602 | —0.099
500 | —0.282 | +0.47 —0.662 | —0.9456 | —0.85 142 | -1.13 —1.888

1000 0.2165 | +0.0499 0.434 | +0.099 0.65 0.148 0.864 0.197

Phase angles tan <31+%> and tan (,82+—Z—) are similarly tabulated

in Table IV and expressed graphically as shown in TFig. 27 (a) and

(b).
Table TV,

— 1 .
P2 ok sin ol

™
I. tan (8, —l—~——) =,
( 4 1P P L (e** cos ah—1)

h=2cm, A=09, p=1, tan ((31+—'Z—):0

— p_l —ah
—
A

1_13-1—1 (e™*" cos ah—1)

sin oA

M. tan (32 +—'Z—) =

h=2cm, A=09, p=1, tan ([?2—|-—})=0

I I

cycles
p=2| p=38 | p=4| p=5 p=2 p=3 p=4 p=195

15 5.21 173 —17.8 | —11.45) —0.1774 | —0.24 —0.2745 | —0.2925
25 3.665 6.59 0.901| 11.0 | ~0.1396| —0.185 |—0.2087 |-—0.2205
60 1.222°  1.327 1.368 | 1.385 —0.0565 | —0.07325 | —0.0813 | —0.0860
100 | 04457 0.6 0.464| 0.467 | —0.0171| —0.02267 | —0.0255 | —0.0270
500 0.326  0.3245| 0.324 0.324 || +0.0004 | +0.00045 +-0.0006 | 4-0.0064

1000 —1.64 | —1.642 | —1.6456| —1.647 | —0.0001 | —0.00013 | —0.00015 | —0.00016
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These curves rise together with the increase of hy, however curve (b)

reaches the saturated state.

8t 1~ 3 i)

7

6

5 2

4+

3

9 1

1

0 : ettt 0 Y .
_1133456789 1284561789
—2} Distance in cm Distance in cm

(a)
Fig. 27.

()

(4) IN THE CASE WHERE MANY CONDUCTORS
ARE ARRANGED IN THE DIRECTION

OF X-

AND Y-AXES.

In the case where many conductors are inserted into the slot, p,

conductors being laid in a row and
2¢o in a column as shown in Fig. 28,
it must be suitable to apply the
fundamental equation containing un-
known constants 8;, 8z, 6s, 81, B1, B2, Bs
and @,. However, if the origin of a-
axis is taken at the under part of every
lateral row of conductors and the origin
of y-axis is taken at the middle point
of the width of the slot, then it is
sufficient to determine four unknown
constants 8, 8, B; and B, because there
is symmetry to the x-axis in that case.
Referring to the p-th conductor count-
ing upward from those placed at the
bottom of the slot, the expression

1
T, Qo

l

C)

L

(49)

AN ES SO s

N

IS N

IR

I]y( .:0)‘@ = 2¢o(p—1) x 0.d7rL, sin et
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may be obtained from the relation between the field intensity H, at
x =0 and the total current flowing in each of 2¢, conductors, where
2q, is the total number of conductors in a lateral row and [, is the
current passing through a single conductor.

Before the ecalculation is performed for the current and the field
distribution at every conductor, one must give the number p-th and
g-th to every conductor. The number p is given to every one counted
from the bottom of the slot arranged in the lateral row. The number
g is given to every one counted lateraly from the middle point of the
width of slot.

In the case where the total nuinber of conductors in the lateral row
is even, the ¢-th conductor holds its position at the interval between
y=7r=(g—1)b and ¥ = r+0,, while in the case of an odd number,

it exists in the interval between y =1 = (q—l)bo—k-é'bo z= <q——%)b0
and y = r+b.

Therefore, referring to the p-th and ¢-th conductor, the next
conditional equation about the total current may be obtained.

s b() 710
(50) S j tdudy = Iy sin ot .
,

0

Four constants §;, 82, 81 and B may be determined similarly
formerly mentioned.

Putting
a’ = cosh B(r+by) sin B(r +by)—cosh Br sin Br ,

(51) b" = sinh B(r+by) cos B(r +by) — sinh Br cos Br

a'2402 )
y= b’ a?+ b2

1
[ —1)=,
qo(p—1) 2
it follows
wn(gr )= (e )= 100

and
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) atan (Bz—i-i)“b
5, = ; qobz p—L B 4r?f 1y 1079 !
@+ p o« tan (Bz+%>~t€m (/6’1"‘%)

s Lrtane (1 )

(52)

, : atan(,&-l—z)—-b
G _P=18B y,0p7 1070 4
a2+ p o« v T
. tan (Bg + ~4~>—— tan (51 + Z)

1 taz( +7.
x«/—l— n%{ Be 4)

82=

(5) SO-CALLED ‘“ ALTERNATING CURRENT
RESISTANCE ”’.

Joule’s loss developed in the slot conductor is expressed by

ar
(58) QL S 2 p d{wt) wabt [ unit volume
0

T

where 4 is the current across the section of unit area of the
slot conductor. If the amplitude of the current density 4 is
described by 1" 214s, then the power loss per unit volume may
be expressed by [5.p. It is sure that the power loss is the function
of » and y because the current is not uniform in the section of
conductor. The mean value of the A.C. intensity is defined as

= Liods
Tam = f AC
AC —HS s

where the integration with ds is performed all over the cross section.

Now the direct current density fpe is used instead of Tac. Then
the power loss per unit volume is expressed by I3.p. If the ratio
of power losses of A.C. against D.C. is denoted by £, one obtains

12op Tac\2
54: ]{,‘ = AC f— AC) .
(o) Ihep Ipe

It is sure that this ratio % is generally expressed by the function of
x, y in the case of non-uniform current distribution in the conductor
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and it may be called ‘‘ Alternating current resistance’’, because this
ratio can be substituted for the increment of unit power loss due to
non-uniform current distribution.

Now put
I

55 ’ 1 mean 1 = =20 »

( a) 40 bo 'l/ 2 ho b()

where I, is the amplitude of total current of A.C..
Therefore

. 2
k= 2(by hy)? <——[¢ﬁ£> .

+0

The expression

K =2ty

ho bo
S s Lidxdy ,
1y

0 Yo

denotes the increment of unit power loss referring to the whole sec-
tion of conductor.

When the single conductor is inserted into the slot, the effective
value of current is expressed by &4 from the equation already men-
tioned. In this case, k is:

2
b= 2ot (Lo,

56 b= (b b2 (cosh 22+ cos 20x) (cosh 28y -+ cos 28Y)
(56) (bo Bl) (cosh 2ahy—cos 2ahe) (cosh Bby—cos Bby) ’

““ Alternating current resistance” referred to the whole section

- > 1 {sinh 200+ sin 2ah,) (sinh Bhy + sin Bb,)
{ K = —ghypl 0 0 .
(57) * 27 to /80 (cosh 2ahy — cos 2ahg) (cosh Bby—cos Bbg)

Now, neglecting cos2az and cos 28y with reference to cosh 2ux
and cosh 28y respectively in formula (56), the reduced formula is
obtained

5 b <= (ohe Gho )2 C0SH 20 cosh 28y
(58) = (aho b0) cosh 2004 cosh Bby

At the curve where & =1, the current density of every point on this
curve is equal to the mean current density. Ilor the purpose of
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finding the locus k=1, the condition k=1 is inserted into formula
(58), then the equation can be obtained as follows;

cosh 2ahy cos Bb,

h 20 cosh 28y = ,
cosh 2gx cosh 28y I G0

and moreover, simplifying the equation, one obtains

at+ By = aho+ %,Bbo——log‘e (aho Bbo) .

From this formula, it can be ascertained that » and ¥ may keep the

linear relation if f, hy and b, are taken to be constant. Since the

gradient of this line is denoted by % and the term —"'8— contains no

frequency terms, therefore it can be ascertained that the gradient of
the line = = f(y) is independent of the frequency of the source.
From (15), one obtains

lo = Lo and l/JL }
o BY 1—4

Referred to the gradient of locus of mean current, it follows

Ao

—2

tanf = % | = arctan N/
Jéi 1

where 6 is the angle between the straight line and x-axis.
By the condition 2, =1, it is meant that there exists no side

clearance between the conductor and the slot. In this case, § =~

2
means that the line is a horizontal straight line. However, if the
side clearance between them is increased gradually, then 8 decreases
gradually till it attains to O in accordance with 2,— 0.

To find the value of x at the point where the locus of k=1
intersects with the wx-axis, ¥ =0 is inserted into the above formula,
then

(59) 2 = ho-t—Bog—L g, (uhy Bb)
2 (24 [22
may be obtained. The first and second terms of the right hand in

the equation are independent of the frequency, but only the third
term depends on the frequency. The second term depends on 4.
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In order to discuss the relation between the frequency and the
intersecting value to x-axis thus obtained, the following formula is used

- 1 85 /1—a 1 p
(30 o ] ;;;;; i —— M~ ‘,,,*109
( ) ¢ IO+ 2 ]Z() R() : 2'7T _]LZO

«log, [47727;1/10(1; 7o) 10—9]

where the sectional area of the slot conductor is taken as constant
such as:—

The first and second terms are the function of %y, and z increases
together with %, and also the third term contains the frequency f.
Putting S = 20 ecm?, 2, = 0.9, hy = 8 cm and p = 2x107%, the formula
is reduced :—

1
x = 8.416—~7.56—=-10g,0.118f .
x 01/], og, f

This formula is described graphically as shown in Fig. 29 where
the intersecting point falls with the
increase of the frequency f, but attains
to the minimum point and then rises

%0 together with the increase of f.

In order to obtain the minimum
point due to the variation of the

frequency, putting g _ 0, the formula

(o] dj‘
78} is obtained

l log, [471'2 I»-l/ Ao{L—29) S 10“9] =2
P

33 and from that,

f=— ¢
1 g e o
A/ AT 4] §10°°

11153 AT A S TS
012 345672839
~> loge f

The value of S corresponding to the
minimum point may be given as
Tig. 29. follows;
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w=hy+ LS l 1=k o3y T 1=01 .
2 }10

Inserting the numerical values
hg=28cm, 4 =09 S=20cm? and p=2x107%0ohm, cm,

then one obtains f = 62.3 and z = 7.837 cm.

If }(Zl—% = 0 is inserted in the formula, to find the minimum value
Lo

of x due to the variation of %, and if it is assumed that § = const.,
then the expression may be obtained.

' 1 a/1—2
ho = kgs‘/,w,,,,f_
VAT 2

In this case, from the formula

__2 / f
= hot 1=h ~/L1091 3[4 2/ 2 T=20)S10 9]
=y ~/ 20 I 08¢ | 47?217 Ao(1—4o)
the minimum value referred to x at hy = 1.825 cm. can be found.

Next, referring to ‘‘ Alternating current resistance’ K about the
whole section of conductor, the formula can be simplified as follows,

K ==tanh 2k, tanh ﬂbo aho Bbg .

K is determined from h, b, f and 4.
In the case where the area of the cross section of the conductor

S = 720 bo

is given, it is necessary for technical uses to find how one makes the
‘“ Alternating current resistance’ to be minimum by selecting of the
dimension of conductor hy and b,.

Therefore put ¢ = hoby—S. As K is expressed by the functions of
x and y individually, the conditional formula is given as follows;

I ’()C K
51(:[ J Y [ + —] be=0.
3ho aho Sltot Do A 3bo 800 =

From the above formula, two equations are obtained
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oK 9 _, oK . ac

+4
aho aho abo abo

=0,

where 4 is an arbitrary constant.

If the above two equations are inserted into K-formula and the
arbitrary constant 1 is eliminated, then

Qhg = Bby  and  hy = «/ 1_‘° bo .

If the area of the cross section of the conductor is given, the
relation between the dimensions %, and b, can be found under the
condition of the minimum value of K. The formula denoting this
relation, is applied to the ones having arbitrary frequency, because it
contains no frequency. It must depend on 2, alone. A, exists on the
interval 0 <4, <1 and if the sectional area of conductor S is constant,
ho may be smaller than b, with increasing of 4. If 2 = 0.9 is taken,
then /g = b/6. Hence it is ascertained that the height of the slot
must keep to one-sixth of its width for the sake of the minimum
“alternating current resistance ”’

The function K is expressed by the product of two functions
which contain Ay or b, respectively and therefore the limit of h, and
by is investigated in which K is considered to be constant.

Referring to the function containning hy, formula (57) is written
approximately,

sinh 2ah, -+ sin 20k,

' == ghy tanh 2ah, .
0 cosh 2uhy—c0s 2ahy ahg tanh 2qh,

The value of ahy keeping the condition ahgtanh 20k = 1, is found
as follows

tanh 2ah, == Qaho—g ShE4 oo eeen
O
and neglecting the higher order than the second, one obtains
20 ]1’0 = . and aho = ? = 0.707.

Therefore, until ahy = 0.707, the ‘“ Alternating current resistance’” K
is taken as a constant. Similarly, referring to 8b,,
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%Bbo tanh 8by = 1 and  Bby=1"2=1414.

Therefore K is taken as constant until gby = 1.414. Thus

hy = 0, 101——«~/ 109

b —14:14 9
‘ f(l 70)

If f = 60 cycles and Ay = 0.9, then 7y = 0.685 and by = 2.9x1.414 = 4.1,

In the case of arbitrary frequency,

1
— AL 9 J— ?_
ho = O.()Sov,ﬁf and b = 4.1 j

that is:— they are inversely proportional to the square root of the

frequency. 1If @ expresses the angle between these lines and the
horizontal line, the formulae are given

g, = arctan N/ Qm—l—,?o 1679,
0 p

6,, = arctan ‘- B == gretan = ,\/ J (1—2)10-°

Putting f = 50~60 cycles, then one obtains ¢, = 45°, 0b0=9.55°.
Referring to any arbitrary frequency f, it follows

6, = arctan V' F and 0y, = arctan%l/ f.

Yo

In the case where many conductors are ranged in the direction
of x-axis, formula (48) about the current distribution is found already.

From (53)

T g

27 *
= (Vird(at) = %8%A%+%8§A§+%8182A1A2 003 (81— Bat Va4 -
Hence the “Alternating current resistance’ may be given as

follows

2boho)? 1 SZ".
k= 07¢0 2 AW
= 17 9 . 2 d{wt)
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Putting
Ry (o—df+(e—fF,  Bi=(e—d)n—(e—f)re,
Ry = (c—d)ry—(e—f)rs,  Ry=(e—f)rs+(c—d)ra
Re= (o—f)re+(e—d)re ,
then

. (ahoBDy)? cosh 28y cos 28y . - o
b= (@21 b)) B2 [ (R3+ %) &+ (Rg+ RS e

+2(RsRy+ RyRy) cos 200 —2( Ry Ry— Ry Ry) sin 20 |

(ahgBbe)2 1 sinh28by+sin28b, 1 [/, 23,
K = 0Bby 0 0 2 e 01
2 %8 (a%+07?) R |2+ Eg)Ce )

+( B3+ B3 (1—e¢~210) 4 (RyRy+ Ry Ry) sin 2aho
—(RyRy— Ry R3) (1—cos QahO)] ;

In the case where many conductors are ranged in the direction
of x- and y-axes, put

b’ a? 402 Ao ahg 7
PV b g(p—1)

Vo a2 Ao

Ry=1+

Rp=1 —e7 M cos g |
2 :+ RN b a(p—1) e COS ally

Ry = ™ sin oy , A By= —e Mginghy,

then »
2 2 2,2
b= 2(ho o) <ﬁ> WIS
Uioti) (@®+022\ o/ p?
x cosh 28y -+ cos 2By

/ 2
{2 <p——1 + ?;;WM ;; b2 {;;) cosh ahy sin ahOI——(_p—l) sin Qaho}

x [(aR,; —bRR( R+ RE)( p; 1) ‘(CO_Sh 20z + sinh 2a2)
+(aRs—DbR 2 (R2+ R%)( p—1)* (cosh 2ax—sinh 2az)
+(aRi—bRp)(a Rs—bRy)(RyRe+ RsRy)(p—1)  cos 2ax
+(aRy—DRy) (¢ Rs~bRy)(ReRs— RyRy)(p—1)tsin an]
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and

e g0 1 B -
K o= 20% do - B 221018
2 A+ 0P p? a37r @
" sinh 28(r +by)—sinh 28r (v + by) sin 287

x
2
{2 <p— 1+ ﬁﬁz—bz ij?) cosh ahy sin ahoy— (p—1)sin Qaho}

x [(aR4—bR2)2(R§+ R2)(p—1)t (sinh 2ah -+ cosh 2afig—1)
+(aRy— bRy )2 (RE+ R%)(p—1)* (sinh 2ahy—cosh 2ahy+1)
+(aRy—DRy) (@ Rs—bRy) (ByRa+ RyRy)( p— 1) sin 2aig
+(aRi—bRy) (¢ Ry—bE1)( By Ry— RyRy)(p—1)s (cos 2aho—1) |

(6) NUMERICAL EXAMPLE.

As the numerical example of the distribution of current in the
slot conductor, the dimensions of the slot and slot conductors of a
51,000k VA, 11,000 V synchronous alternator at a hydro-electric power
station for railway service are shown in Fig. 30 and the numerical
constants and dimensioris are :—

ay = 2.2 cm, Do = 1.04 cm, he = 1.3 cm,
f =50 cycles, p=2x10"¢ cm.

From the above numerical values, the distribution coefficients may
be obtained as follows:=

ay = 0.683,
: : <1.04° |
By = 0.721. — Y
. . \ p=6| 1.3
a, is smaller and @, is larger than the 0.65

examples before described, because the
insulation ' thickness becomes thicker
than the ones before described.

The distribution of the current
density of each conductor (p =1, 2, 3,
.s.., 6) may be obtained by inserting
these values into the formulae above
described.. The' current distribution of
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the conductor from p =1 to p =6 are shown in Fig. 31 as the results
of the calculation.
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Fig. 31.

(7) EXPERIMENTAL INVESTIGATION.

It is difficult to measure the field and the current distribution in
the slot conductor of an electric machine already constructed. There-
fore the apparatus as shown in Tig. 32a is used, which forms one
part of the armature constituted of the sheet iron, and this apparatus
is made to resemble the armature as much as possible, having the
slot in its surface and copper winding in it. The copper conductor
has the dimensions 50 mmx2 mm and is arranged laterally in the
slot ag shown in Fig. 82 (b). As the disturbances due tothe end effect
in such a small apparatus, can not be eliminated, the experiment is
performed only about the slot at the middle part of this apparatus.

IPor studying the density of the current and the intensity of the
field along the =-axis continuously, a searching contactor or coil is
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made as shown in Fig. 33 (a) and (b), and it is drawn up gradually from
the bottom of the slot using a gear specially designed as shown in
Fig. 33 (c).

SN

NN

NN

i
g
/
v
%
é

Coil
or contact

Conductor

Fig. 32 (b),

Fig. 32 (a).

The contactor shown in Fig. 33 (a) is made of a thin bakelite plate
and contains two metal contact points. By this contactor, the voltage

\

drop along the two point contacts is observed or automatically recorded
by an electric meter or oscillograph. The reading of the meter thus
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obtained, is calibrated from several experiments by means of known
density of direct current.

The search coil shown in Fig. 55 (b) is similarly made of the same
materials as the above case, but it has a rectangular plane coil instead
of two point contactors. By using this coil, the field intensity along
the side surface of the slot conductor can be observed. Oscillograph
and string galvanometer are suitable to record the current density and
the field intensity automatically, if the search coil is made so as to be
suitable to get the moderate deflection by adjustment of the number
of turns in the coil.

Fig. 33 (c).

When the distribution of current is measured by using the con-
tactor, the voltage drop between the two contact points may be insuf-
ficient to drive the vibrating element of the oscillograph if the current
is small. In such a case the string galvanometer is used.

In order to make the lateral scale of photographic paper corre-
spond to the scale along the height of the slot conductor accurately,
the apparatus is nsed for the gear coupling as shown in Fig. 33(c).
The rotation of drum carrying the photographic paper is transmitted
to the linear motion drawing up the search contactor or coil by the
gear coupling. If the drum carrying the photographic paper is rotated
by a small motor and the deflection, i.e., the spot light of the oscillo-
graph or string galvanometer is projected on the rotating drum passing
through a cylindrical lens, then the current density corresponding to
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every point along the height of the slot conductor is expressed by the
deflection on the photographic paper.

(A) FIELD DISTRIBUTION IN THE CASE OF D.C.

Current density is uniform in the case of direct current and if
the field intensity is measured with a ballistic galvanometer, then the

= D 0O
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Operating current : D.C. 18 amps., Search coil: 350 turns
Fig. 34,

results may be obtained as shown in Fig. 34 where the number of
turns of the search coil is 350 and a direct current of 18 amperes
flows in each conductor.
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The field distributions as shown in Fig."85 are obtained from the
experiments with the conductor placed at the central position in the
case where the currents are 40, 60, 76 and 96 amperes respectively.
From these experimental results, it is ascertained that the field inten-
sity rises linearly with the height of the slot conductor.
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Fig. 35.

(B) CURRENT AND FIELLD‘DISTRIBUTION IN THE CASE

OF 60 CYCLES.

In this case the figures obtained are automatically recorded on
the oscillogram by using the reduction gear above described.

The results in which the

current of 200 amperes is used, are

shown in Iig. 36 and indicate that the current density increases with
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the height of slot conductor. Photographs in Fig. 36 are arranged in
the order of 1-3-5-7-9-11 numbering from the one which is placed at
the slot wall. Similarly the field distributions in the case of I'ig. 36

are shown in Kig. 37.

Fig. 36 (a).
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Fig. 36 (b).

(C) CURRENT AND FIELD DISTRIBUTION IN THE CASE
OF 500 CYCLES.

The current and field distributions are shown in Iig. 38 and 39
respectively at 500 cycles, denoting extremely increasing character at
the upper part of the conductor.

The field and current distributions in the slot conductor are

explained already by the mathematical calculation and now by the
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experimental investigation. The current distribution in the slot con-
ductor is considered to be the one corresponding to the distribution

of the heat sources developed in the slot conductor. Therefore by

Fig. 37.

using this calculation, the temperature distribution in the slot may
be easily calculated by finding these heat losses in the slot and the

thermal condition surrounded the slot conductor.
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Fig. 38.

Fig. 39.
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CHAPTER V.

TEMPERATURE DISTRIBUTION IN THE
SLOT WINDING.

It is very difficult to measure directly the inner temperature of
the slot by inserting a thermo-couple into the slot, because there exist
great technical difficulties to insert a thermo-couple and such a tech-
nical operation can not be applied to an electric machine already
constructed. Therefore the inner temperature of the slot is found
only by mathematical calculation upon some special construction of
the slot, when the power loss and the circumferential condition of
the slot are given. The temperature in the slot may be decided by
the power loss dissipated in the slot and the temperature at the outer
circumference of the slot-and also the thermal constants of material
at the inner and the outer parts of the slot.

At the beginning, if the power loss is assumed to be distributed
uniformly and also the heat to be diffused uniformly from the bound-
ary of the slot, then it can be found that the temperature will be
maximum at the centre of the slot. DBesides the temperature is
assumed to be gradually higher approaching to the centre of the
armature, i.e., approaching to the bottom of the teeth, and then the
highest temperature may be obtained at the bottom of the slot.
Indeed, such a statement has been justified, that the temperature is
the highest at the bottom of the teeth.

Next as for the power loss developed in the slot it may be distri-
buted uniformly in the section of the slot conductor in the case of
the direct current, but the power loss can not be considered to be
uniform in the case of the alternating current, because the current
density is not uniform in the section of the slot conductor and the
maximum value of the current density must exist on the upper side
of the slot conductor on account of the skin effect on the iron core
and the teeth surrounding the slot. - '

In this chapter, the problem of the temperature in the slot is
classified into the cases of no-loaded and loaded, and again the case
of loading is classified into that of D.C. and A.C. In every case, the
temperatures are found from the calculation varying the shape of the
slot and the arrangement of the conductor in it. Spéeially attention
is paid to the distribution of power loss due to the current distribu-
tion in the slot conductor.
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(1) FUNDAMENTAL EQUATION OF HEAT CON.
DUCTION AND THE TEMPERATURE IN
THE CASE OF NO-LOAD.

Fundamental equations of heat conduction known in general are

as follows :—
(1) = —ggrad T,
(2) divg+Q =cvy ’daz’ )
where

' q = density of heat current in watt/cm?.
o = thermal conductivity in wattfcm, °C.
@ = heat quantity in watt/cm?,
¢ = specific heat in watt, sec/gr, °C.

v = density of material in gr/ecmS®.
T = inner temperature of conductor in °C.

In the case where the stationary state is alone considered, funda-
mental equation (3) from (1) and (2) is obtained as follows:—

(3) AT =2
g
where the problem is considered to be two dimensional, and
. i i 32 32
4= div- grad —A@—I—BTJZ ,
(4) Q='@ Pk, p=rp(ld+aT).
2 (b()h())z

K is the ratio of resistance in the case of A.C. and D.C.. This ratio
is precisely discussed in chapter IV and it is expressed on the func-
tion (z, v) in general. The notations referred

to in Fig. 40 are as follows:—

by = width of slot in cm.

ho = depth. of slot in em.

po = specific resistivity of slot winding in
ohm, cm.

ag = temperature coefficient of resistance
about slot winding.

T, = mean temperature of teeth in °C.
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Putting We=1T-T,,

2
S — Imax Po 1+ Ts ,
S (YN AR

and

2
— Jmax _Poao

2 20 ([)0710)2 ’

and also combining (3) and (4), one obtains equation (5) as follows

(5) W +82H/

ot | e

(S1+Se W) k(z, )

where as &k denotes the distribution of current in the slot from
chapter IV, it depends on the distribution of heat source in the slot,
and the constants §) and S; contain the temperature coefficient of
resistance. If constant S; is put at zero, the solution of this equation
may be simplified, but the temperature coefficient ¢y should not be
neglected in the copper conductor compared with one of other mate-
rial, because copper has a large temperature coefficient of resistance.

The equation may be established in the case of no-load as follows

R#W | EW
e =
9% 9y?

(6) 0.
This equation must be solved before the equation of loading is solved.

Both solutions of equations (5) and (6) must satisfy the boundary
conditions (i), (i), (iii) and (iv) for the slot having the notations as
shown in Fig. 40. '

If the mean temperature of teeth is denoted by 7T, the tem-
perature of the core at the bottom of slot 7% and the temperature at
the air gap by 7%, then four boundary conditions may be obtained as
follows ;

(1) at v=10, Y=y,
W _ ig ,
L
(ii) at x=h, Y=y,
_aw _

= e[ we (1)
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(iii) at r=2, Y= +by/2,
AW _ Ay
(iv) at a=uz, Y= —by/2,
LW gy
Wy o

Boundary conditions (i), (ii), (iii) and (iv) are satisfied by the heat
delivery through the insulating materials at the boundaries between
the slot and the iron core, the slot and the air gap, and also the slot
and both sides of teeth respectively. Constants iz, 2 and 2, can not
keop the constant value at any temperature, however they are taken
as constants here, because only the case of stationary state is treated.-

The solution of equation (6): no-load solution may be replesented
as follows :—

hn v
: 2y 212 2ny 2 Z
V= [A\,e vbo( 7‘°>+Bve boho]cosm ? 2y

£ - 0

where the temperature is written with V' instead of W, and also A4,
and B, are arbitrary constants to be determined from boundary condi-
tions (i) and (ii). The value of =, is decided from boundary condi-
tions (iii) and (iv). The no-load solution 7 must be satisfied by
boundary conditions (iii) and (iv), hence
ny tann, = s by .
o 2
Let the roots of tlns equation be denoted by 7, ng, N3j eey Nyy oo
and if the following notatlons are used
hy v

my = 2n, -2 Py = 5 . = 3
0 1]

the solution in the case of no-load will he
(7) V=1[4,¢" A=pa) . p mv P+ cos my p,

Next, the arbitrary constants 4, and B, must be determined by
boundary conditions (i) and (ii) and also by the orthogonal condition.
The orthogonal condition is,
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+1 '
| cosnup, cosmup,dp, =0, e

-1

and in the cass p =y,

+1 :
S COS My Py, COS Ny Py dpy = 1+ 21 sin 2n, .

-1 My )
Puiting
) +1
COS 1ty Py APy 7, sin n,
7’(77/\4) = 1 = ?
+1 2 . 1 .
cos? 1y, P, dp, 1+- o sin 2n,

and inserting (7) into (i) and (ii), one obtains next formulae

_[ﬁ_]_ﬁl] ™A, + [ﬂ’i_lﬂ;] B, = B17, 7o),
] o o

]lo L2 20

[“ln}l ‘_“&)—] Av __‘[“7’)_),1 +‘*‘2—0*] emv Bv = “i?—[Ts'—‘ TO]CP (nv ) .

hy. o ho o

From these formulae the cohstants 4, and B, can be determined.

(2) THE CASE WHERE MANY CONDUCTORS
ARE INSERTED INTO THE SLOT.

Many conductors (p =1,2,3, ..., P, ..., po.) are inserted into the
slot as shown in Fig. 41. In such a case, it
might be suitable to take the origin of coordi-
nate at every conductor and accordingly to:
decide the constants Ay, By, ... 4,,, By,
whose subindex as 1, 2, 3, ..., py are the
number of conductors counting from those at
the bottom of the slot.

In such a case, the boundary conditions
may be as follows :— '
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_ Vel . Am _ ;
ab w=0, B Bmp;m=o B HJW[(V")““O (V”"l)“hoj
p=r r V] i
at T = hO 3 - Lgr().’b)'p_wﬂz,o: ,;n [(Vp)m-llo_(VZ)+l)w=o]
o 0Vl A B
at x=10 s _faj’ilyo_mﬁo = ‘0" "[(Vpo )ac=0 (Vpo—l ):v=h.0]
p=r [0V, | A
L 19" P — N0 A m . ___m
wooe=ho, SR = [V aan,—(To=10)] -

Constants 4, and B, are determined from the boundary conditions
above described and A, is the coefficient of the heat diffusion in
reference to the insulating material existing at the boundary of each
slot conducter.

In general, the temperature at p-th conductor

(8) V, =S\ [dp, ™ 7P L B, ™ P¥] cosm, p,

may be written.

Equation (7) is not only applied in the case where a single con-
ductor is inserted into the slot, but also in the case where many small
conductors are filled up uniformly in the slot. IHowever, in such a
case the heat quantity for some mean value must be chosen combined
with those of the copper winding and the insulating materials sur-
rounding them and in such a case, the heat sources developed in the
slot may be taken as to uniform at every point in the slot even in
the case of A.C.

It is found from the calculation that 4, and B, are negative, i.e.,
there is in the slot a lower temperature than the outer peripheral
temperature. Generally in the case of |B,|>>|A4,]|, the temperature
becomes higher toward the inner part of the slot and its temperature
depends upon the values of T,, T and T, moreover the temperature
gradient in the slot may become the larger if /o becomes larger or
if 2/by == 2p/o

(A) and (B) in Fig. 42 represent graphically the temperature
distribution in the slot from the calculation by taking the constants
as to be hy="7, by =2 in the case of (A) and hy=4, by, = 1.5 in the
case of (B), and in both cases

Ap == Ay == 0.006 watt/cm?, °C,
7o = 0.004 watt/cm?, °C,
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The conductivity in the slot is taken at about o = 1.52, assuming
that its value is decreased by the existence of the insulating material
in the slot, though the conductivity of copper conductor is 3.8 watt/cm,
°C.. In this case, the circumferential temperature is assumed to be

T, =85°C. Ty =25 °C. Ty ="70°C.

From both examples of numerical calculation, it can be concluded
that the maximum temperature exists at a point a small distance
upward from the bottom of the slot. As example (A) corresponds
to the case where the depth of the slot is larger than its width, the
mean temperature of case of (A) is higher than that of another case.

‘A
78.9
= 78.7 1 & 90
95’ B g 85 S
45 77.2 78.6 —— o =1 I
& ™~ \ 8 80
£ 711 786 g ]
5} k K & 75 i
10784 S 5
. . ‘ Ei() 70+
76.9 :
0 .2 Apu 6 8 10 p=1 2 38 4 6 6 7
Fig. 42. Fig. 43.

Fig. 43 represents the temperature distribution of every conductor
or group of winding in the case where 7 conductors or groups having
each dimension (by = 2 cm, hy = 1 em.) are arranged in the slot in the
direction of wz-axis only. In this case,

Am = 0.0C8 watt/cm?, °C.

and the other thermal constants are taken the same as those of Fig. 36.

To find the maximum temperature, put

.
P

)

then
4,

v

= ¢HT)
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and
1

] s
Pe= Tz%l—v‘qﬁ.(f) )
where p, is the position occupied by the maximum temperature.
p, = 0 means the position at the bottom and p,=1 means the posi-
tion at the upper side of the slot.

Since the condition 4,/ B, < 1 is held here, there must exist the
condition ¢ < 0. Therefore it is found that the maximum temperature
lies at some point on the way between the bottom and the middle
point of the slot. If the temperature of the boundary is the same at
the upper and the lower sides of slot, i.e., T5 = 7, and constants of
heat diffusion are kept 4, = Ap at the boundaries, then the maximum
temperature must exist midway of the height of the slot, because
4,= B, is deduced. However the condition 2, =1z is not kept in
the ordinary slot, but the condition iz > 2 may be kept in general
from the construction of the machine. '

In order to investigate the transference of the spot having the
h]ghest temperature along the central line of the slot, the expression
is used S

m“.zpr(e"?“ o+ 20)+ 228 (e 1)

Av . ]?0 )
By T (2o €™ + 2g) + 2048 (v 1)
]lo a

where T, = T3 .

From the fact’ that the condition 4,/B,>1 can be held, so long
as Ap becomes larger than 2y, it can be ascertained that the spot of
the highest temperature moves toward the upper side from the middle
point of the slof as shown in T‘]g 44.

Ts—Tp=0°C.
1 1 %
) 0.8 \ \
1
(s 9
0.5 0.6
0.4
0.2
O .
0 0.5 1.0
Yo 0
- 0 20 40 60 80 100
B Ts~—T, (°C.)

Fig, 44. Fig. 45.
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Fig. 45 represents the relation between the position of the highest
temperature and the circumferential temperature of the slot, and from
this figure, it is found that its position is displaced from the upper
side toward the bottom side of the slot according as the temperature
difference between 7% and 7 becomes larger and also its displacement
depends on the amount (7s— 7's). ‘

If Ty,= Tg is kept, there appears no maximum temperature in
the slot. The mean temperature is '

Vinean = ——— [¢™ —1][4, +B.].
my
The mean temperature falls so long as the values (T,—T) and (17— T'p)
both become larger. If the circumferential temperature is taken as

Tp=1T, and constants 2, = i1z = 4 for the practical application, the
mean value is

Vmean = _“ﬁ [Ts" TO] 1 .
e m2 + 2hg -&(2+7n\,)
o

The larger m, and Ay, become, the higher the mean temperature
becomes where m, is taken at some value which lies between zero
and 1. This fact may be explained by the same reason at that given
in the case where the height of slot &, and the ratio 7,/b, become
larger. : ‘
The mean temperature depends also upon Ao ; it is comparatively
large so long as /o is small. The value of ¢ may be large or small
according to the size of the conductor, even though the slot has the
same dimensions. TFig. 46 represents the mean temperature rise refer-
1'ipg to m, .

My,

eyl 1 2
_ Z &5
N

ETe—1

8 T

5 [

E { /

Er,—2f

g

g 4l

S T3

Fig. 46.
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(3) THE SOLUTION IN THE CASE OF LOADING
BY USING GREEN’S POTENTIAL FUNCTION.

If W and V are the potential functions of two dimensions, Green’s
formula of potential is

5 [V aal;lbf waV ] jj (VaW—Wwavidf,
p S

where the left side term of the equation denotes the line integral in
the definite domain and the right side term denotes the surface integral.
The normal of the integrating path is denoted by =.

Now, let us write the temperature with TV and the logauthmlc
potential function with V, then

Ve=logot, r=viE—ErE G-

It is certain that 7 is satisfied by the next equation

gz oyE

If the integrating surface contains the source at
the point P whose coordinates are » = &, ¢ = », then
the integrating path may be taken at the small circle
S’ around the point P and also at the large circle
Sy in which the small circle is contained as shown

Fig. 47. in Fig. 47.
Therefore,
) | [ 2w e [ 2w 27 Jas
gL on sl on an

- ng[m W—WaV1df

where f, represents the surface enclosed by the line integrating path
'Sy, If n is taken as inward normal, then the first term of the left
side of equation (9) may be written as follows,

~{ [1ogei%W wl ]
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It S’ converges into zero,.li.e., v —§&, y—n, then :da—T— may attain

to the finite value and slogl/r converges into zero, so the above
expression may be written 2w W(£, ») as the result.

(10) W, ) = _OLS [V Wy aV ]d +~2—”fVJWdf
Sp b=

27 . on n m

The first term at the right side of equation (10) is precisely deter-
mined in its form by boundary conditions (i), (ii), (iii) and (iv) or by
other boundary conditions in the case where many conductors or
groups of winding are inserted into the slot. The second term on
the same side of the equation must be vanished in the case of no-
loading that is,

AW =0,

Therefore it is sure that the first term certainly corresponds to
the solution at the no-loading. The first term is written by expression
(7) or (8) according to the cases where one or many conductors are
inserted into the slot.

(1) W= Y4 e™ @4 B, ™ cos m, p,

1 To +‘;‘b0 - . 1
+ Hf f [y + 82 W 1k(g, 7) log, - de do
0

2’71" _%bo

This is Fredholm’s integral equation.

(4) THE CASE OF UNIFORM CURRENT
DISTRIBUTED IN THE SLOT.

When many conductors are packed up in the slot uniformly, then
it is considered that the current density is uniformly distributed through
out in the section of the slot. However, in the case where a single
conductor is inserted into the slot, the fact that the current is uni-
formly distributed is confined to the case of direct current only.
Therefore k (z, y) =1 in this case, because the ratio of resistance in
the cases of A.C. against that of D.C. is equal to 1.

The second term on the right side of (11) is written again vmth
reference to r and @ as following,
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’511” P loge dr dg = Slj 7 logeidr .
2w Mg, 7 S r

Integrating path S; is taken along the out-line of the slot.
Put

dr = - (x—E€) d:v—iwl—(y—?))dy
r r

1. 1 1/ y—n\?
SIS B _<J ........
log ; og x——5+ 2\ o—e +
1 fc—E
== Jog, [T Y e e .
£ Y—n Y— ’l

The term at the right side is

Slj rlog, 1 dr
So r

+5by 1
S(m——s)derSlS L =n)loge T dn

—=bo

F
= Sl S o ]Oge 1
0 T—
where
at £>=w, (6—2) loge%—l—

at ”C> E 5 (77_5) 1Oge%_—_1_— b)

at 2>y, (ﬂ—?/)logenl

at  y>n, (4= 10gey}_
The solution is obtained in the first approximation,

Wy = Y[, Oy B

h2

+22

+ loge

o) Sl (1—p ]

770 SI[ loge +(1—pe)? loge ]
Px —Ps




- Mathematical and Experimental Studies on the Temperature Rise 181

+00(L ttog 2 ) S 1(4p, P (1—py)
8 \2 bo
%ol L !

+ OS[H— ?log, +(1—p,)?log,- ]
3 1 ( p"l) o8 1_’_2:)?] ( pﬂ) 8 l_p'p)

Putting
W1 = I’V]_

m

Wy = Wi+ ﬁ” W, log L dwdy
. 2 o
S ([ 10w L
Wass = Wat 22 ﬁWn log - dwdy

the exact solution is obtained as follows,

W= Wik D2 Wt (DE) Wat oo (22

Qar Qar 2

W is determined by means of successive approximations.

For the technical application, if only the first order of the solu-
tion is taken, solution W; is obtained, which can be again approxi-
mated by putting

1 1 . .
2 log, —+(1—p; 2 log, ——— == 0.347 sin 7p: ,
pilogs— —+(1—p: Jloge 3 - P

1 1.
(L4 paPlogey | (1=py P log - ;-—2.772(1%03321%).

P 1

Constants 4, and B, are determined from boundary conditions (i)
and (ii). Again, if the calculated result is inserted into the second
term at the right side of equation (11), the term containing the tem-
perature coefficient of resistance is obtained.

For an example, put
ho = 4 cm. Aolor = 0.00263
bo= 1.0 cm. AsJo = 2glo == 0.00295
Ty = 20°C. T, = 65°C. Tg = 60°C.
The constants are thus determined,

A, = —1.855+174.5 8, ,
B, = —2.47+174 8, .
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Tig. 48 represents graphically the tem-

perature distributions along the direc-
90— = - tion of z-axis by taking the current
3 '{A/ mm density as parameter where
P T o
o , e 4 = WX .
B (=16 V' 2 Doho
g Z = {"3 3y T ’
o, t=1,% 1 . .
g 70 ' ] From the calculation shown in
& @;i"\i\ Pigs. 44 and 45 in the case of no-load,
i=8 L, it is found that the point in which the
€0 ““i“_‘_ g — highest temperature exists, moves to
17 and fro along the central line of the

0.2 0'4px0'6 08 1.0  slot as the thermal constants and the
T=65°. h,=4, o,=15 Circumferential temperatures vary.

Fig. 48, In the case of loading, two problems

are investigated; 1) in what manner

does the point of the highest temperature displace in the section of
the slot ? and 2) why does it displace in the section? '

- The transition of the spot of the highest temperature occurring

in the case of loading is considered as follows: at the beginning, if

the condition

0<4,/B, <1

is held in the slot, then the value log, 4,/ B, may be negative. This
fact means that the highest temperature exists in some place apart
from the middle point toward the bottom of the slot and this case
corresponds to the one of no-loading, i.e., §;=0. Next, if the load
current of slot conductor increases gradually, then the term 4,/B,
may become smaller till its value reaches zero. Therefore the highest
temperature may displace its position toward the bottom of slot as Sy
increases.

Again with the increment of the load current, the term A4,/B,
changes its value as follows

(—o0) = (+o0)—(+1).

Corresponding to these values, (+ ) and (+1), log, 4,/ B, may take
the value (+ o) and (0) respectively. :

Therefore for the reasons above mentioned, the point at which
the highest temperature exists, may displace from the upper side to
the bottom of the slot. Fig. 49 represents the relation between the
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position of the highest temperature and the load current

‘ where
(T,—Tp) is taken as parameter.

N

4
Y

b
1 |
) )
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spot temperature
7
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i
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[=]
@]
I
]
&

8 1 12 14 1.6 1.8 2

Loading current in amp./mm,

semawanmons

Fig, 49,

From this figure it is concluded that initially the highest temperature
exists at the neighbourhood of the middle point of the slot. With
increasing the load, the point of the highest temperature displaces
toward the bottom of the slot and then it might be mathematically
explained that the highest temperature displaces from (—oo) to (- o)
and returns back from (+ o) to the middle point of the slot.

Although the temperatures 7 and 7'z are assumed to be constant
in this calculation, they might change their values with increasing of
the load, therefore the highest temperature would not. always be
confined to transifing its p051t10n on the locus as shown in Fig. 49
for a practical case.

Putting A,/ B, =0, one can obtain the next formula,

Ao (D) A | A g [ o [ o
(o2 o
My JB> my my Ao ]] 1
[( T +< ho 0108 - 1

If S has a value to be satisfied by the above formula or a value
smaller than it, then the position of the highest temperature may he
at a point lower than the middle point of the slot. In such a case,
the relation between (7\—7,) and the current is represented as in
Fig. 50. If the load current occupies its position at the point below

SI:—-_
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this curve as shown in Fig. 50, then
perature should be at lower position
the slot,

.}E’ 1.0 | 4]2000.0001._/'
BE osrpo i =0
RN el
@?‘s ().6/ /
848 o044
0 2 40 60 80 100
Ty T, (°C.)

Fig. 50.

On the other hand, Fig. 51 shows

M. Mori.

the spot of the highest tem-
far from the middle point of

[

Current densify in amp./mm.

20 40 60 80 100
Ts—T} (°C.)

Fig. 51.

the case where the spot of the

highest temperature is at the upper side of the slot.

Putting A4,/B, = o, one obtains

A(Ts-— Ty [ﬂv_ + X_B] ™
a

Ny
710

'

a

(1) [

|

Sy =

My

|5

+ 'zB) my +('mw

)] ho loge

ho

Therefore in the case where §; has the value which is satisfied by

this equation or has a larger one than

temperature may be above the middle point of the slot.

temperature of the slot is

that, the spot of the highest
The mean

“‘Slho ]-Ogg 1 —"ZL (TS—TO)
b1 -
mean = g (m 5 (M A
ho + o ) . g o
Sl Ly S 710[3 + log, 1 ]—I—S b"[ +. loge-%]
0

and the results of numerical calculation are shown in Fig. 52.

L3
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Fig. 52.

(5) THE CASE WHERE CURRENT DENSITY
IS NOT UNIFORM.

In the case where a single conductor or several conductors are
inserted into the slot, the current density in the conductor is not
uniform depending upon the frequency of the source and the form
of the slot. In such a case, rather the ratio of resistance k(z, %), i.e.,
““ Alternating current resistance’’ can be taken instead of the distribu-
tion of current in the slot.

For the case of a single conductor inserted into the slot, it follows

» [cosh 2az+ cos 2] [cosh 2By + cos 28y]
|cosh 2ahy— cos 2ahq] [cosh Bby—cos Bhy)

k(z, y) = (alio Bbo)

= (y[cosh 2az+ cos 2g2][cosh 28y +cos 28y] .
Form this equation,
AW = Gy (S1+ S W)[cosh 2az + cos 2ax][cosh 28y 4+ cos ‘2,6@/] .
Inserting this relation into the second term at the right side of

(11) and solving them, one obtains the solution in the case of non-
uniform current, '
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W= E[A =Py B, em“p]+00h36‘<1+210ge )[p2+(1 —py)]

+0.7 Cyli2S; sin mpy + Co (929)2&1 (1 +2log, [2) [(L+po )+ (L—p,)2]
J0

—5.5( Y [_ z] 4 [770( 1
5.5<2>OOS ~1 008 5 Pn atCy S 6+loge )

_-_7}0< + log, )p +—9 h“ logevl«pg 770 p‘é log, i ]
p..

5 ho
bo < 2 2(1)0>6(1 ‘2>

4 —_— L = e}
+ BO°S‘[ <2) o Hloge )=l (5 Hlogeg )

2 2 1
+—--h§ log, —— b, p‘; +r1-5—h3 log, ] )

15 n
i T
9 200 ]
| i=1.6A/mm? -
. L S ,
g 8 | | 150
S i
7= 1.4 5y /
&% 1 & 100 /
£ i=12 , 8 /
2 75 5 5o
5 '~ 10 ) //
3 2 = 1. T
2 70 =t + @
% 7,': _8' ’s .: 0-—*“*/
& 6 | — g
e t=0 S 0 1 2 3 4
60 1= 22 Loading current
in amp./mm,
0 2 4 6 .8 1.0 :
o Fig. 54.
Fig. 53.

Fig. b3 shows the temperature distribution in the slot conductor
having the same dimensions as shown in Fig. 48. Though the same
current density is applied in both cases, the mean temperature and
the temperature at the upper side of the slot indicated in I'ig. 53, are
higher than those in the case shown in Fig. 48, because current

density distribution is not uniform in the case of Fig. 53.

The variation of the mean temperature is Shown in Fig, 54 refer-

ring to the load current and in this case,
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A, = —1.835+242.5 8, ,
B, = —2.47+266 8, .

The calculation may be performed for the case where many con-
ductors are divided into several groups of winding in the slot like as
the former case. However, ‘‘ Alternating current -resistance’ should
be changed in each conductor or group, so they should be taken as
ky, ks, ks, ke, .... about every conductor or group.

For an example, three conductors or groups are inserted into the
slot and each conductor or group has the uniform current density at
whole section, whose conductor or group of winding has the dimension

he = 2 cm, by == 1 cm.
and the boundary temperatures are
T, = 65°C, Tp = 60°C and Ty = 20°C.
and the thermal constants are
o =3.8x10% = 0.38, Ag = 0.005, A = 0.096
and A = 0.0035.

The calculated result from these data is i=3 iA_/mm2

shown in Fig. 55 (a). " 7 el
In general, the highest temperature °’é

of the machine can be found by this -gz 70 = _

mathematical calculation. However, the 3 ﬁ 2 ,li=2 ”ﬂ&

spot of the highest temperature might % R ) -

also occur at some other point owing to  § 65_*;1—'4 il

some defects in the construction of the & =0 250 n|i=0 ,,

machine. Yet in such a case, it can not

be treated from the mathematical calcula-

R 60— = —
tion, except for such a case as that when p=1 p=2 p=3

the spot having the highest temperature Fig. 55 (a).

can be found from the mathematical

calculation, provided the thermal constants, the dimension of slot
and the circumferential temperature are known.

The circumferential temperature of the slot is treated as constant
in this calculation, but its temperature may rise together with the
load. Therefore, the actual temperature of the slot may become higher
than those obtained from this caleulation. The change of circum-
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ferential temperature caused by the load must be investigated. Iow-
ever, it becomes a very complicated problem to take the circumferential
temperature as the function of load at the beginning of the calculation.

(6) NUMERICAL EXAMPLE,

The dimensions of the slot and the slot conductor are shown in
Fig. 55 (b) taking the case of the synchronous alternator 31,000 kVA,
11,000 V at a certain hydro-electric power station for railway service.

6.
5]
<
134
5.6X2.6 _,_/L [~ 4.8X2.6 copper strip
capper strip layer insulati
' s — on
LS . .
slot insulation
© ‘/>
o
T [—] 5.6
1 —
4.8
S
Rl | <}~ 1.6 Press Boardx 2
or gearch coil,
I i
22
‘A

Fig. 65 (b).
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The slot and slot insulation are shown in Fig. 55(b); their main
dimensions and cooling constants are :—

fiw=13cm, bo=1.04cm,
As = 1.67x 103, o =3.8,

n, tan n, = As _272_0_ , o =‘0.01466,
a

m, = 0.03665
Ap ==l = 1.4 x 108 watt/cm?, °C,

The temperature at the boundary of the slot:—

T, = 80°C,
TB = 6500 )
To = 4000 .

The calculation constants A4;, 4z, ..., Bi, Bz, .... can be deter-
mined as follows:—

4,=9, By =38,

Ay = 3.85 By=34,

Ay =09, By =058,
A= —1.2, Bi=—15,
Ay = —3.4 By=—38,
Ag= —5.51, By= —5.97.

The temperature distribution of each conductor is shown in
Fig. 55(c) in the case of no-load.

The temperatures at full load are shown in Fig. 55(d) where

the copper loss of the stator = 155 kW,
the stray load loss = 50 kW,
total winding loss = 205 kW.
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100 : 110
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TFig. 55 (c). Fig. 55 (d).

From the above values, the copper loss per unit volume is found
then

8 = @l‘}ﬁf%‘ﬂ“me = 6.43x 102 ,

The temperatures are found for each conductor by inserting the
numerical values into the formula above described.
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CHAPTER VI

SURFACE COOLING AND TEMPERATURE RISE
OF ELECTRIC MACHINE.

The law of cooling, i.e., the so-called ‘‘ Newton’s cooling law’’ is
generally used for the heat dissipation at the surface in the range of
lower temperatures. This law is based upon the fact that the heat
quantity dissipated from the surface is proportional to the temperature
difference between the surface and the cooling medium. The propor-
tional constant in Newton’s cooling law is determined suitably according
to the circumferential conditions. For the surface such as that of an
electric machine, the great amount of heat dissipated from the surface
is not chiefly due to the heat radiation, but due to the heat conduction
and convection in the outer cooling medium. In order to make clear
the mechanism of the heat dissipation from the surface of electric
machine, the heat conduction and the heat convection in the cooling
medium must be investigated. Since the surfaces of the general electric
machine are cooled by natural ventilation as well as by forced ventila-
tion, the heat dissipation has been treated from this point of view in
this chapter. '

(1) NEWTON’S CONSTANT AT THE SURFACES.

Newton’s constant means, as is generally known, the heat emis-
sibility from the surfaces, denoted by the heat quantity from the unit
area per sec. and per unit temperature difference between the surface
and the cooling medium. For the general electric machine, it is favour-
able that the dimension of this unit is expressed as in watt/cm?, °C.

To measure the Newton’s constant of the vertical and horizontal
planes, a polished metal plane used as the lid of a wooden box is
taken as a test sample and heated from one side. The wooden box
is filled up with asbestos wool as the heat insulator and a nichrom
wire is inserted as a heat element in this box. The dimension of the
lid of the wooden box is 25 emx80 ecm, Newton’s constant of the
horizontal or vertical plane is obtained by keeping the metal plate
horizontally or vertically respectively. The surface temperature is
measured by a thermo-couple (copper and constantan). The surface
temperature is measured after it is heated for long time in a small
room.
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If the measurement is begun before the surface temperature suf-
ficiently attains the steady state, some other physical constants may
be contained in the experimental results, such as:— the thermal
conductivity and the specific heat of the material used in construction
of the apparatus. ,
' Experimental results are shown in

24 — Tig. 56 referring to the horizontal and
L‘7\‘\\ DA the vertical planes. The curves in

. 20 , . .
T H.P.\' Fig. 56 represent the relation between
= 16 o Newton’s constant and the surface tem-
=} 19 / perature, the room temperature being
o / / taken as zero. Newton’s constant rises
2 8 with the surface temperature in the
. 41 r lower range of the temperature and
l attains to the saturated value and in
O 5258 8 T the case of the vertical plane it seems

somewhat likely to fall after having

Temperature difference iﬁ °C.
P reached the saturated value. The ver-

;71- 2-: ;’lel"?ical pianle. tical plane is more favourable than the
- +++ horizontal plane. horizontal plane for the best dissipation
Fig. 56. ~ from the surface. It is sure that the

heat dissipation depends on the vertical
length of the surface, unless the surface is large enough.

Thus it is concluded that Newton’s constant varies with the direc-
tion of the place horizontally or vertically and the constant varies
with the temperature difference between the surface and the cooling
medium,

Newton’s constants referring to the polished metal cylinders keep-
ing their axes horizontal are shown in Tig.57. Judging from the
- experimental results, the value of Newton’s constant depends on the
diameter of the cylinder:— the larger the diameter of the cylinder,
the less Newton’s constant becomes. The experiments were performed
with a small polished brass cylinders up to 0.95 em in diameter and
from them it is concluded that very small wire has a large value of
Newton’s constant in comparison with larger ones.

When forced ventilation is applied to the heating surface, the
heat diffusion from the surface may well become large and accordingly
Newton’s constant may also be large, for the air flow carries away
the heat diffused from the surface.

Inserting the metal cylinder in the wind tunnel and keeping
the velocity of air flow constant, the results are shown in Fig. 58 and



Mathematical and Experimental Studies on the Temperature Rise 193

16 T [] i
Dia. 0.95 cm.
15 Vs
14 /
T
=)
ey
Q
o 12 Di
5] ia. 1.88 cm,
2 y
[+
? / o 3.8 cm.
g 10 e
Jg / 6.35 cin.
£ 7 ,/ ] 7.62
.62 em.,
2 /j /] et
8 [
4/ 10.25 cm.
7 ’/
6 /
0 20 40 60 80 100
Temperatare difference in °C.
Fig. 57,
=3
§ 20 { 2= 20
2 o 16 ] g 2 18
8 "". 3.?7!7\/5 3 H' - \\ 3 m/s
w, & 12 AN ' 2 & 12 o
B g ] g5~ >
B S g4l—1 L g 1o 11m/s
D }9)
>, 1,09 m/s < 1t

- S
0 10 20 30 40 50

Temperature
difference in °C.

Fig. 58.

0 10 20 30 40 50
Temperature
difference in °C.

Fig. 59

Fig. 59. TFig. 58 indicates the case when the axes of the cylinders are
parallel and IMig. 59 when perpendicular to the direction of air flow.
Newton’s constant is represented by the curve which decreases at the
beginning and then attains to the constant value.
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130 Next, by taking the wind velocity to be
110 variable and the supplied heat energy to be
2 / constant, it is found that the relative character
g 90 / between Newton’s constant and the wind velo-
% 70 A city are expressed by a linear ascending line
S ’ as shown in Fig. 60.
= 50

N5 4 5 e (2) OBSERVATION BY THE

Wi welonity SCHLIEREN METHOD.
in m./sec.
Fig. 60. For investigating the air motion due to the

heat conduction and convection, the Schlieren

method is used. By means of the Schlieren method the heat diffusion
from the surface can be made visible and photographs of the upward
air current can be taken. The apparatus of this method is shown in
Irig. 61.

A\

g

CL: condenser lens.
PL: photographic lens,
PIM : plane mirror.
PM: parabolic mirror.
ILS: light source.

S: slit.
K knife edge.
F: film or plate.
Fie. 62
Fig. 61. P

The photograph in Fig. 62 is taken in the case where the metal
plate is placed horizontally and its temperature kept at 40~50°C.
This photograph is reproduced as a negative figure for convenience;
the black part in the photograph is the bright part which is produced
by the flowing air. The horizontal line like the bow-string of a half
circle in this figure corresponds to the surface of the wetal plate and
the black band above it, corresponds to the conduction layer while
the air stream above this band shows the fairly turbulent air flow.
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Fig. 63. Fig. 64.

Figs. 63 and 64 are photographs taken in the case where the metal-
plate is placed vertically and the air flow along the hot surface seems
to be continuous, however, sometimes there appears a lump flowing
upward along the heated wall. Fig. 64 shows the air flow at the
upper end of the vertical surface due to convection.

The thickness of the conduction layer is observed by Schlieren
method. When the temperature of the heated wall is low, the air
flow due to the heat convection can not be observed. In the range
in which the heat convection is not observed by Schlieren method,
the variation of the thickness of the conduction layer can be found:—
the thickness of the conduction layer increases with the temperature
of the heated surface. By raising the temperature over this range,
the air stream due to the heat convection appears gradually in the
cooling medium and then the conduction layer becomes narrow with
the increase of the flowing speed of the heat convection.

Figs. 65 and 66 show the air flows due to the heat convection
with reference to the surface of the metal cylinder. The air flows
rise upward along both sides of the cylinder and then meet at the
vertex of the cylinder. If the cylinder rotates about its axis, the
convecting flow is disturbed as shown in Fig. 67; one part of the
flows goes in the direction of rotation while the other part is blown
off.
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Fig. 65. Fig. 66.

Fig. 67.

Air flows along the inner surface of the metal cylinder whose
axis is kept horizontal, are shown in Iig. 68.

Rising air is suspended at the lower part of the inner surface of
the ring for a moment and then rises upward forming a lump along
the side surfaces. Two air lumps rising along the left and right of
the circumferential surface, meet with each other at the vertex and
then a stationary eddy current motion appears in the vertex.
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(2 (3)

(4) (5) (6)

(8) (9)

Fig. 63.

Next the convections alout {he electric rotating machine and the
apparatus in practical use are observed. The photcgraphs of the
natural convection (Fig.7() at the vertex of the cuter periphery of
the small direct current machine which is shown in Fig. 69 were taken.
If the curvature of the outer shell is small or the surface is not
smooth, the photograph resembles the one shown in Fig. 62 where
the metal plate is placed horizontally, but if the curvature is large,



198 M. Mori.

the heat convection is like that from the cylinderical surface shown
in Fig. 65. Convection at the neighbourhood of the pole is shown
in Fig. 71 where a stagnation of uprising air flow appears at the upper
polar arc. ’

Fig. 69.

Fig, 71.
Fig. 70
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Next, the air flow motion is observed at the inner surface of the
stator of an alternating current machine as shown in Fig. 72. This

Fig. 72.

5

flow is similar to the one shown in Fig. 73 which illustrate the air
flow at the inner surface of the metal cylinder, although the inner
surface of machine is not perfectly
similar to that of the metal cylinder
at rest condition on account of the
existance of the slot and slot con-
ductors. From this figure the eddy
motion at the upper part of the
inner surface of a cylinder can be
observed.

In order to test whether the
heating of the periphery of the
rotor is uniform or not, the arma-

ture is drawn out as shown in
Fig. 74 from the stator and its
winding is heated by the alternat-
ing current, passing through two

Fig. 73.

carbon contactors placing at the
armature periphery. The cases of
uniform and the non-uniform heating are obtained by placing two

carbon contactors symmetrically or non-symmetrically to the armature
periphery.
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(a) (b)

Fig. 7

ot

The photographs (a) and (b) as shown in Fig. 75 are taken corre-
sponding to uniformly and non-uniformly heated cases. In the case
of (a) there appears one stream line at the vertex, but in the case of
(b) there appears a turbulent stream.

From these experimental results, the spot where the temperature
is the highest along the peripheral surface of the rotor can be detected.

For example;—if the slot winding marked with (x) in Fig. 76
is overheated, and the air flow at the periphery is inspected by means
of the Schlieren method, then the stream line at the vertex may
change with the rotating of the rotor. If the turbulent stream appears
as shown in Fig. 76 (a) at any position and the rotor is rotated until
the stream line appears as shown in Fig. 76 (b), then at the moment
the vertex is the spot overheated. Thus the spot where the tem-
perature is the highest can be detected easily.



Mathematical and Experimental Studies on the Temperature Rise 201

() (b)

Fig. 76.

(3) TEMPERATURE DISTRIBUTION IN THE
OUTER COOLING MEDIUM.

For seeking the temperatures in the cooling medium at evéry
distance from the heating surface, they are measured with the thermo-
couple which is wound several times as a spiral and with the micro-
displacing apparatus like that in the sliding microscope.

Horizontal metal plane. Vertical metal plane.
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Fig. 77. Fig. 78.
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The results of the measurement are shown in Figs. 77 and 78
referring to the horizontal and vertical planes respectively. Tempera-
ture distribution far from the horizontal plane is measured and shown
in Fig. 77 where the surface temperature is taken as a parameter in
this curve. The measurements are made as far from the surface as
the temperature is stable.

The conduction layer which exists in the range where the tem-
perature is stable and also the uprising turbulent flow where the
temperature is unstable in consequence of the replacement of hot air
by the new cooling air are observed. In general, with the rise of the
temperature, the disturbance due to the air flow from outer cooling
medium is more vigorously. In IFig. 78 where the heated metal plate
is placed vertically, the curves of temperature distribution indicate no
irregularity or discontinuity, and the temperature decreases smoothly
to the room temperature with the distance from the plate. In general,
the air motion due to heat convection is parallel without any disturb-
ances. In this point the flow is totally different from that of a hori-
zontal plane. If the temperature is measured at the end part, the
boundary condition may have considerable influences. Therefore the
measurements are only performed at the central part of the heating
surface. .

From the result of this experiment, it can be concluded that the
temperature distribution in the cooling medium is generally expressed
by a curve resembling the exponential curve and the thickness of the
conduction film is about 8~4 mm in maximum range from the ob-
servation by the Schlieren method.

If the temperature distribution due to the pure thermal conduc-
tion is expressed by the linear drooping curve, the difference between
the linear drooping curve and the curve obtained from the experi-
ments like the exponential one, should be due to the heat dissipated
by the heat convection. From this consideration, it may be found
that the difference of both curves is very little at the neighbourhood
of the heated surface and the heat is carried only away by the thermal
conduction at the neighbourhood of the heated wall. From these
results, the heat from the surface is carried away by the conduction
or convection in the range of distance 4~5 mm in both cases where
the heated metal plates are placed horizontally and vertically.
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(4) VELOCITY OF HEAT CONVECTION.

It is well known that air density is reduced by heating and the
air rises up yielding the convecting flow at parts adjacent part to the
heated wall. The velocity of the uprising air is very slow, so that
the flow may be disturbed by introducing the apparatus or instrument
with which the velocity of air is measured. Therefore, the Schlieren
method is suitable to measure the air velocity because this method
does not disturb the phenomena of the heat convection. The metallic
surfaces to be tested are electrically heated by inserting the nichrom
wire in the back part and the temperature is measured by the thermo-
couple (copper and constantan).

In the case where the heated surface is vertical, the uprising air
flow may be laminated along the surfaces.  If a shock is given at the
lower part of the vertical surface for the purpose of making the im-
pulse, and if the time is measured with which the impulse passes
through two points whose distance is already measured, the mean
velocity of the flow can be calculated from this measurement. The
shock given at the lower part of the vertical plane, rises upward riding
on the continuous heat tlow due to heat convection. The propagation
of the impulse is taken by kinematograph as shown in Fig. 79 and
the results of this experiment are shown in Fig. 50, The velocity due
to heat convection increases with the surface temperature and attains
to the saturated condition at about 60°C.

The experimental result with reference to the horizontal surface
is shown in Fig. 81 and the heat convection is started from the heated
surface perpendicularly in front of the turbulent stream due to the
disturbance from the outer cooling air.

(2) (3

Fig. 79,
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(6) (7)

(8) (10)
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The turbulent flow is unstable, because the supplied air replaces
the rising air flow from the outer circumference. The velocity in-
creases very slightly with the temperature and the saturated velocity
is about 20 ecm/sec. the same as in the case of the vertical surface.
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Fig. 82 represents the relation between the velocity of the uprising
air along the peripheral surface and the surface temperature of the
metal cylinder whose axis is

i i is simi Cylindrical surface
horizontal. This curve is similar v

to the one obtained by using the g 20 |t
horizontal or vertical plane. In §§u 16 N //"
this case, the vertical rising flow ' gﬁ 12 v
appears at the vertex of ‘the %’ ;’E 8 ///
. y . R
cylinder and the air flows along g o8 4
the surfaces from the left and 5 1020730 20 50 60 70 80 90

right sides of the cylinder come
across with each other at the
vertex. It is remarkable that the " Fie. 82.
saturated velocity is the same )
respectively in the three cases where the heated surfaces are placed
horizontally, vertically or where the surface form is cylinderical.
This can be explained from the existence of the two inverse
flows : —the fresh air is supplied to fill up the space which is occupied
by the uprising air of the heat convection, which is observed by the
Schlieren method. If the surface temperature becomes higher, the
speed of the uprising air becomes rapid and then the supplied air is
more accelerated. As both streams are
flowing in opposite directions in the vicinity
of the heated surface as shown in Fig. 83 (a)
. and (b), the velocities of the two inverse
flows may attain to equilibrium,.
From these experimental observations,
the heat diffusion depends not only upon
Fig. 83. the velocity of the heat convection along
the heated wall, but also upon the thickness
of the conduction layer in the cooling medium. Indeed it is observed
that the conduction layer along the heated wall becomes thinner as
the surface temperature becomes higher.

Suriace temperature in °C,

(5) CONDUCTION LAYER ABOUT HEATED SURFACE.

Next the variation of Newton’s constant is investigated and it is
found that Newton’s constant depends upon the surface temperature
of the heated wall:—the constant increases with the increase of the
surface temperature. Kspecially referring to the cylinderical surface
above described, the value of Newton’s constant depends on the dia-
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meter of the cylinder; the less the diameter of the cylinder becomes,
the larger the value of Newton’s constant becomes. Along with these
experimental measurements, the existence and the variation of the
pure conduction layer adhering to the heated wall is observed. With
reference to the pure thermal conduction layer, it is found that the
thickness of the layer is about 3~4 mm at the maximum condition
and the temperature distribution in this layer is like to the exponen-
tial drooping curve. ‘

From the experimental results, let us consider the heat diffusion
as follows.
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Fig. 84.

In the heated wall as shown in Fig. 84, denote the surface tem-
perature by 7,, the temperature in the cooling medium by 7 and

the thermal conductivity by o, then the product « %—f of the tempera-
, .
ture gradient %—f in the cooling medium and the thermal conductivity

o, expresses the quantity of the heat emission from the heated surface
per unit area,
Therefore Newton’s constant 2 is denoted by the formula

a7 1 .
ax 11() )

A= —0

Now, if the temperature distribution in the cooling medium is
assumed to be expressed by the linear drooping curve, then the mean
temperature gradient at the distance x from the heated wall may be
expressed as
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(1) =

where S shows the distance from the heated wall, at which the tem-
perature of the cooling medium falls to the room temperature. There-
fore, Newton’s constant can be described;

w1 _ o
(2) A=, TS
From the above formula, it can be ascertained that Newton’s constant
depends on the thickness of the conduction layer S.

In order to manifest the cause, by which Newton’s constant varies
with the surface temperature, the heat conduction layer is observed by
means of the Schlieren method.

As the results, it is concluded that the thickness of the conduc-
tion layer S decreases with the rise of the surface temperature 7, and
reaches to some final value. Therefore it can be expressed approxi-
mately.

. _ o —em
(3) S= K[1+e 1.

Inserting (3) into formula (2), one obtains Newton’s constant as
follows : —

Q= g = K[1—e %]

where K is the saturated or the maximum value of Newton’s constant
and « is the index referring to the degree of rise of the exponential
curve. Newton’s constant given in the above formula has the saturated
- character and coincides with the experimental results.

The thermal conductivity of air is taken to be

o = 0.681 x 10~¢ calorie/cm, °C, sec.
and its unit is transformed as
o = 4.2 x0.681 x 10-¢ watt/em, °C.

If the order of Newton’s constant about the plane is assumed to have
the following value

A= 10"% watt/em?, °C.
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then the thickness of the conduction layer may be gotten from the
numerical calculation as following :—

S— o _ 4.2x0.681 x1074

i 10-8 = (.3 cm.

The thickness S attains to about 8 mm and coincides with the actual
experimental result.

(6) HEAT DIFFUSION FROM CYLINDRICAL SURFACE.

Next the relation between Newton’s constant and the surface
temperature of the ecylindrical surface is investigated. Denote the
outer radius by # and assume the axis to be infini-
tely long and the surface temperature to be at 7
as shown in Fig. 85.

If the total heat emission from the surface
per unit axial length at any distance from the
heating surface is measured, then the total heat
emission which occurs through out the cylindrical
surface at radius » may be obtained as follows

arT
dr

Qarp

a

where o = thermal conductivity of the cooling medium,
r = radial distance of the point to be considered,
T = temperature at the point to be considered.

Therefore, the heat emission per unit temperature and unit area i.e.,
Newton’s constant can be written

= 2mr AT o
2'77"1"() dr T() )

If the temperature distribution in the cooling medium is assumed
to be represented by a straight line and 7, to be the radial distance
of the point at which the temperature falls to the room temperature,
then the mean temperature gradient

(TZT . ,170 Tn

dr Fe—Tq S

where S =r;—ry, Therefore Newton’s constant may be represented
as follows :—
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1 1
A=c [Tsf—i--/;)—] .

This formula denotes the heat diffusion, Newton’s constant being
referred to the cylindrical surface. From this formula, it can be
ascertained that Newton’s constant depends not only upon the thick-
ness of the conduction layer, but also upon the diameter of the heated
cylinder; Newton’s constant is inversely proportional to the diameter
of the heated cylinder. This calculated result coincides with the
experimental one already shown in Fig. 57. If the- thickness of the
conduction layer is represented by the following formula referred to
the variation of the surface temperature 7%,

- T —eTy
N Ve [14+e "]

then the thickness of the conduction layer is decreased with the rise
of the surface temperature. Newton’s constant i may be represented
by the approximate formula

1=-Z L K[1—e""].
To

This formula expresses the character of saturation with the surface
temperature.

Now to test whether the formula obtained from the consideration
about the conduction layer coincides with experimental result of the
heat diffusion from the cylindrical surface having various diameters,
the data of Newton’s constant at about 50°C in reference to the
cylindrical surface is taken as shown in Table V and the thermal
conductivity of the air in such values:—

o = 2.86 x 10~¢ watt/cm, °C,

and if, inserting the data in Table V into the for formula

Table V.
. . Newton’s const. at 50°C.
Diameter in cm. (w/em?, °C)
0.95 13.9 X104
1.88 10.4 %104
3.8 i 9.4 x10-*
6.85 8.6 X104
7.62 7.85%10-4

10.25 7.5 x10-4
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the thickness of the conduction layer is calculated, then Table VI can
be obtained. It may be remarked that the thickness of the conduction
layer is about 3.6 mm independent of the diameter of the cylinder.

Table VI.

7o (cm) /8 1/8 S (mm)
0.478 4.86 2.76 3.63
0.94 3.64 2.575 3.86
1.9 3.29 2.763 3.64
3.175 3.00 2.685 3.62
3.81 2.88 2.6175 3.81
5.175 2.70 2.63 3.78

(7) RELATION BETWEEN SURFACE TEMPERATURE
AND THICKNESS OF CONDUCTION LAYER.

Next it is investigated why the thickness of the conduction layer
varies with the surface temperature. When the apparatus for testing
the heat emission is inserted in the wind tunnel and Newton’s
constant with variation of the wind velocity is measured, the relation
between Newton’s constant and the wind velocity is obtained as shown
in the experimental result already described.

These experimental data represent the variation of Newton’s con-
stant obtained by using a forced air flow at a velocity within the
range of 1~5 meter/sec. and the relation between the current and
the velocity, represents approximately a straight line. This experi-
mental curve is exterpolated up to the range of 0~1 meter/sec. in
the velocity and if this exterpolation is possible, Newton’s constant
corresponding to the wind velocity of 20 cm/sec. can be found. The
wind velocity of 20 cm/sec. corresponds to the saturated speed due to
natural convection and Newton’s constant corresponds to its speed at
about 6~7x 104 watt/cm?, °C.

Therefore this value of Newton’s constant should correspond to
the case where the velocity of natural convection alone exists. How-
ever, the value of Newton’s constant obtained directly from the ex-
perimental measurement was about twice or thrice larger than those
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obtained by the above exterpolation. The differences of the two values
may be considered to be those corresponding to the effect due to the
heat conduction. From this it is concluded that the heat conduction
exerts great influence on the heat diffusion from the surface.

If the part adjacent to the heated wall is investigated by Schlieren
method in the case where the temperature at the surface is very low,
then the conduction layer can be observed to be thicker with increasing
of surface temperature when the heat convection does not appear in
the cooling medium. If the temperature of the heated wall rises
beyond this range, then vigorous natural convection can be observed.
In the range of surface temperature at which the heat convection
does mnot appear in the cooling medium, Newton’s constant must
decrease with the rising of the surface temperature of the heated wall,
because the conduction layer becomes thicker with the rise of tem-
perature.

If the heat convection is suppressed by means of evacuation or
forced ventilation, the Newton’s constant may show a decreasing
character with the rising of the surface temperature of the heated
wall. This decreasing character might escape our notice in the ex-
periment of the cooling medium of normal condition, because natural
convection appear with a slight rise of the surface temperature.

In the case where the natural convection appears in the cooling
medium, the thickness of the conduction layer must decrease together
with the temperature rise of the heated surface. Consequently the
heat conduction may attain to the saturated state. Therefore it is
explained that Newton’s constant follows the uprising curve similar
to the exponential curve.

(8) CHARACTERISTICS OF HEAT DIFFUSION BY
EVACUATION AND FORCED VENTILATION.

The variation of Newton’s constant due to the surface temperature
depends on the characteristics of the heat diffusion influenced by heat
convection and conduction from the surface to the cooling medium.

Next the characteristics of the pure heat conduction alone are
investigated. At the beginning an attempt is made to find the charac-
ter of the pure thermal conduction not influenced by heat convection.
The air in the cooling medium is evacuated in order to suppress the
air convection. The experimental results in the evacuated vessel are
graphed in Fig. 86. The curve in this figure shows that Newton’s
constants take large value at the beginning and then decrease with
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rising of surface temperature: this fact means that the thickness of
the conduction layer increases with rising of the surface temperature.
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to be constant.

If the heat convection appears
more or less in the evacuated
medium, the value of Newton’s
constant rises very slowly with
increase of the temperature.
The thermal conductivity of
gas may be independent of the
gas pressure and this law may
hold in the range of pressure
760~1 mm. Accordingly the
pressure of the cooling air is
kept within that range and the
heat diffusion from a metal
cylinder inserted into a large
glass vessel is measured.
Therefore the thermal conduc-
tivity of gas may be considered

The minimum point exists in the curve denoting the

relation between Newton’s constant and surface temperature as shown

in Fig. 86.

The higher the pressure of the evacuating cooling air

becomes, the higher hecomes the temperature at which the minimum
point appears and the higher becomes the rising of the characteristic

curve, as shown in the character-
istic curve of the heat diffusion.
This uprising character may be
considered as the effect of heat
convection.

On the other hand, the ap-
paratus is subjected to forced
ventilation of a constant velocity
by inserting it in the wind tunnel.
In the case where forced ventila-
tion is applied at a constant velo-
city the heat convection is con-
sidered to be constant. I'rom the
curves in Fig. 87, the character-
istic curve takes a large value at
the beginning and then decreases
to a constant value. This pheno-
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menon is explained by the fact that the thickness of the conduction
layer increases with the rise of the surface temperature.

(9) SURFACE CONDITION.

For testing the variation of Newton’s constant due to the surface
condition. The heated surface is painted with ‘ selvet”” from the
market as the simple cases and after making it dry, the experiment
is performed. The result of the measurements is shown in Figs. 88
and 89. The difference between the painted and the non-painted
surface is expressed in Fig. 88 with reference to brass cylinders with
diameters 0.95 cm and 1.88 cm respectively.
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Fig. 88. Tig. 89.

From the experimental result, it is concluded that the painted
surface is more favourable to diffuse the heat than the one non-painted.
To test whether the painted colour exerts influence on the surface
cooling or not experiments were made using various colours of ““selvet’’
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paint. From the results, it is found that the other colours: red, blue,
gray, yellow and etc., except white and black, take values between the
curves of the white and black.

(10) CURVE OF TEMPERATURE RISE.

It is a very essential problem to determine the curve of the tem-
perature rise of the electric machine, for the saturated temperature at
full load running is taken as the highest allowable temperature for
the materials constituting of the electric machine and a very long time
is needed to find the saturated temperature of a large electric machine.
Therefore the temperature rise curve at the range of under saturated
state or the equivalent saturated temperature from over-loading for a
short time is found from the experiment and the saturated temperature
can be found only by extending the curve thus obtained up to the
saturated part.

However, if the temperature of heated electric machine in the
stationary state is given, as the power supply and the heat diffusion
are constant, it is sufficient to determine the Newton’s constant suit-
able for the external condition. :

Newton’s constant varies with the temperature of the heated sur-
face and the surface condition. As Newton’s constant varies with the
surface temperature even if the surface condition is kept constant,
every point on the curve of temperature rise may be influenced by
the variation of Newton’s constant. If Newton’s constant is taken as
constant during the process of temperature rise at the surface, then
the curve of temperature rise may follow the exponential curve under
the assumption of the constancy of heat supply. However, in practice,
the curve obtained from the experiment is well known not to follow
the exponential curve. Therefore, Newton’s constant must be con-
sidered to be a function of the surface temperature.

Newton’s constant is expressed by the following formula,

(1) = fo[l—e*],
where 4y = maximum value of Newton’s constant.
0 = surface temperature.
For the temperature rise of the heated body, the following equation

i . A Q
9 a6 - Q
(2) st s
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is obtained where

W = weight of heated body.

A = surface area of heated body.

@) = consumed heat loss in watt assumed as constant.
S = specific heat of heating material.

Putting

SWo . Q
=1T,, = .
Ak 0 Az J

one can write (2) as

de 1 9
Yo 1—e=9? =Y
7t + [1—e=**18

T, T,

(3)

To gain the saturated temperature, put

49 _ g
dt
then
(4) g=[l—e*"]0,

If 6, is satisfied by the above formula, the solution of (8) is

5 a0 _ 1
(O) ngz?——(l—-e‘““)ﬁ 7’0 )

By series integration, it follows.

(6) L —log, [1—-(_1.‘—;;0)‘9]

To
(D)oL (O _
) 2\ ¢

The curve of temperature rise € = f({) may be obtained by the
graphical method. At the beginning the curve represented by the
term of the right hand of equation (6) is drawn as a function of the

variable 8, and also the curve represented by TL as a function of ¢
0

is drawn. If the two curves thus obtained are cut by any horizontal
line and the values of @ and ¢ are found at the points of the two
curves at intersections by this horizontal line, then from such values
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of # and t, one can obtain the curve of temperature rise as shown in
Fig. 90. In TFig. 90, two curves are represented; one corresponds to
the case where Newton’s constant is taken as A= const., the other
corresponds to A =F const.

60!\
%f R
VA =
S P o
// 409 | (A‘/P
. 7
o l 30§//
jgoq 20&'4//
/-v/ ‘é" /
/ {é’ 10
K
e T .
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Fig. 90.

As the electric machines in practical use are very complicated
and constructed of many kinds of materials, the temperature rise may
not follow the exponential curve. The curve A==const. is like the
one obtained by Jehle and Osborn. They treated the curve of tem-
perature rise as the summation of the two kinds of the exponential
curve and explained the complicated case of the practical machine to
be composed of two kinds of heat capacities. However, the tempera-
ture rise of the machine or apparatus may not follow the pure expo-
nential curve, even if the machine or apparatus is not composed of
complicated materials.
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CHAPTER VIL
SUMMARY.

The heat flow in the armature of electric machines has been
classified into the radial and axial flows. The inner temperature of
the armature is calculated about the above two fows independently.

In chapter II, the writer has calculated the inner temperature in
each part of the armature under the consideration that the heat flow
occurs in the radial direction alone and he has investigated the mean
temperature in the iron core and the fluctuation of temperature corre-
sponding to the temperatures of slot and teeth which exerts effects
on the iron core and the cooling surface. The temperatures of the
teeth and iron core have been found by this calculation and the
influences of construction of teeth and iron core on their temperature
have been discussed.

On the other hand, in chapter TII only the axial temperature in
reference to the slot, teeth and iron core is treated and the tempera-
tures of each part of the armature is obtained. From the calculation
in the axial direction, the temperatures of every point of the armature
is found in the cases of no-load and short-circuit as special cases.

Next in chapters IV and V are described the precise investigation
of the temperature in the slot winding. For his investigating the
temperature in the slot, the writer’s chapter IV may be consulted, in
which the current and field distribution using the calculated formula
and the experimental results is discussed precisely. I‘rom this calcula-
tion, the variation of current distribution due to the type of slot, the
arrangement of conductors and the frequency of the source is found.
As to the type of slot; open, semi-open and totally enclosed slots,
and as to the arrangement, the variation of the current distribution
due to the arrangement of the slot conductor have been investigated.
If there is a side clearance (contained in the slot insulation) between
the slot and conductor, great influence may be exerted upon the dis-
tribution of current. In the case where the side clearance was very
small, it is enough to treat the distribution of the direction of y-axis
as uniform, but in the case where the side clearance was not small
enough to be neglected, the distribution of current could not be treated
as uniform. Though the distribution of the heat loss in the slot could
be found as the extension of this calculation, it was not convenient
to treat the distribution of heat loss for the purpose of finding the
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temperature distribution in the slot. At the end of this chapter,
““ Alternating current resistance’ is calculated about the single con-
ductor and many conductors inserted into the slot. It is important
for the machine in practical use to find the over-heated point in the
slot winding at which the damage to the machine frequently occurs.
The temperature of the slot conductor has been treated in chapter V,
being discussed by using the calculated formula deduced from the
fundamental equation of heat conduction. The inner temperature
from the thermal equilibrium in the outside and inside of the slot is
found in the case of loading and the effects of the thermal constants
on the temperature distribution are discussed. The temperature dis-
tribution for loading is expressed by the formula deduced from the
fundamental equation by using Green’s potential function. From these
calculations, the maximum and the mean temperatures are obtained,
and the position to be occupied by the highest temperature is dis-
cussed, since it is the most essential problem in engineering. The
transference of the point of the highest temperature was discussed
mainly for various load. ’

In chapter VI, Newton’s constant was investigated and the mecha-
nism of heat diffusion from the cooling surface was discussed. The
problem of surface cooling was considered to be the final stage of the
heat flow from the inner part of the armature into the outer cooling
medium. The following conclusions are obtained from the experi-
mental results:— 1) that Newton’s constant becomes larger with the
increase of the surface temperature and then attains to the saturated
value, 2) that the vertical plane is more favourable to cool the surface
than the horizontal plane and 3) also that Newton’s constant of the
cylindrical surface depends on its diameter.

The heat disipation from the surface is carried out by heat con-
duction, convection and radiation, however the latter could be neglected
when the surface temperature is not too high. It is possible to make
the phenomena of heat conduction and convection visible by means of
the Schlieren method. From a rather large number of observations
and photographs by means of the Schlieren method, the conduction
layer and the convection flow are detected and thus the speed of the
heat convection is measured. The results of these experimental ob-
servations and photographs are compared with those of an actual
machine. The periphery of the rotor of an electric machine is heated
‘uniformly or non-uniformly and it is found by means of the Schlieren
method that there is an exceeding difference between the uniform and
non-uniform heating. From- these facts, the over-heating point is
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detected on the periphery of the rotor and the method to detect the
position of the over-heating point on the periphery of the rotor is
found.

The temperature distribution in the cooling medium was measured
and it was found that the temperature in the cooling medium is
denoted approximately by the exponential curve and there was more
or less difference about the temperature distribution between the
horizontal and vertical planes. From several experiments, it is ascer-
tained that the pure thermal conduction existed in the layer 3~4 mm
in thickness in the neighbourhood of the heating surface. Irom the
change of Newton’s constant in the wind tunnel and the evacuated
vessel, it is concluded that the change of Newton’s constant depends
on the change of the layer in the pure thermal conduction referring
to the surface temperature. The saturated character of Newton’s con-
stant was explained in this chapter.

Next, the curve of the temperature rise of an electric machine
was discussed by using the calculated formula obtained by the varia-
tions of Newton’s constant. Up to the present, the curve of tempera-
ture rise has been expressed by the pure exponential function, but it
was found not suitable to the practical application. The new curve
of temperature rise can be expressed by the formula obtained from
the author’s theory of the variation of Newton’s constant and this
curve may be most efficient for practical application.

At the end of this essay, the author wishes to express his thanks
to Prof. Y. Izxepa for his kind guidance and encouragement and also
to express his thanks to Prof. T. 86miva for his valuable advice in
regard to this essay. As the author’s information about electric
machines was received from the lectures of Prof. G. Smmizvu and
useful suggestions have been gained from his lecture, the author also
expresses thanks to Prof. G. Smimizu.
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