“§') HOKKAIDO UNIVERSITY
Y X7
Title Upon the limit of the elastic buckling : principally about the steel column
Author(s) Kon, Toshizo
Citation Memoirs of the Faculty of Engineering, Hokkaido University, 8(3-1), 67-103
Issue Date 1950-12-20
Doc URL http://hdl.handle.net/2115/37764
Type bulletin (article)
File Information 8(3-1)_67-103.pdf

°

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Upon the Limit of the Elastic Buckling
(Principally about the Steel Column)

Toshizo KON

(Received Dec. 23, 1949.)

Synepsis

The main and initiated object of the present research is to inquire about the
influence of the grade of elastic material upon the strength of elastic buckling of a
column, which existence was considered negative for a long time since Euler. Th-
rough the acquirement of the comparatively simple relation between the column load
and its flexure from the exact elliptic-functional - one in this study, the important
properties concerning with the unknown field of elastic buckling have been made
clear. Namely, pointing out some of the results, the elastic buckling is perfectly
possible to occur under the intense flexure of a- column if its slenderness ratio is
provided to be sufficiently great; the grade of material makes a remarkable influ-
ence upon the strength of elastic buckling of a column whose slenderness ratio
is sufficiently great, which the Euler's theory could never acknowledge hitherto;
even the column of an infinite slendeiness ratio is resistible to a certain-amount of -
the column load which is finite, and its amount is peculiar to the grade of material
and the type of cross-section; the type of cross-section effects the buckling stress
notably under the slenderness ratio mentioned above, and the column of composite
section where the radius of gyration is so efficient is more resistible elastically to
the intense flexure due to buckling than that of solid one; for the two modes of
buckling subject to the case of an unsymmetrical cross-section, both buckling stresses
due to the compressive extreme fibre stress and tensile one reaching the limit of
proportionality can be observed as nearly equal through the result of computation.
Finally, for the region of practice about the elastic buckling where the slenderness
ratio is not so great, the classical law of Euler and the author’s can he seen as
approximately coincident each other. Thus, the Euler’s theory shall be recognized
as the law of the lower limiting boundary of the demain where the elastic buckling
is possible, while the author’s one mwakes the urrer limiting toundary of the same
domain, concerning the buckling stress.

Through the comparative calculation akout St 37 and St 52 according to the

present new theory, the author has treated and discussed aktove problems and

conclusions in detail.
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1. Introduction

The Euler’s classical law of the elastic buckling defines the relation between
the stress and the slenderness ratio of a column which undergoes a concentric load,
at the moment when it starts to begin a flexure in the column; or, this expresses
the uppermost load in the state of stable equilibrium of an unflexured, straight
column, on the region of the elastic buckling. The magnitude of this flexure be-
comes greater, for the first time, according to the growth of the column load P
beyond the Euler’s critical one P,, but so far as the maximum fibre stress intro-
duced at the compressive or tensile side of the flexured column does not exceed the
limit of proportionality ¢, of the material, the co]umn‘shall be considered to Le still
under the state of the elastic buckling and of the stable equilibrium in flexure.
Therefore, satisfying such a critical condition, we can obtain the relation between
the load (or the stress intensity) and the slederness ratio of a column for the region
of the elastic buckling beyond the critical boundary which was founded by Euler,
and the load such a theory will give must be greater than that the Euler’s gives
for a definite slenderness ratio, as may be expected evidently. Through this process,
we can make clear the properties of the elastic buckling perfectly, in the more wi-
dened field of the.column problem than before, and it may offer us the fact that the
problem of the elastic buckling should have involved, not only the modulus of elas-
ticity as claimed classically, but also the limit of proportionality as the serious factor
relating materials; which result ought to be said as of a great significance techno-
logically. On the present treatise, the author has investiga‘ied the problem above
mentioned for steel columns with cross-sections which are common in the bridge
practice, discussing about the meaning of the Euler’s law in relation with the new
theory of this research.

2. Theory

The differential equation of the elastic buckling beyond the Euler's load is
written as (Fig. 1)
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: C P
where it denotes  EI : the flexural rigidity, and # = T

7, . the slope of the tangent to the end.of a. flexured column,
3, : the maximum deflection, -
40 : the mutual didplacement of both ends of column in dire-
‘ ction of the unflexured column axis.

Integratmg (1) by y, we obtain

—__¥1 If/m 2 ' (2)
N/T»W 2 T I R T e e R .

where ¢ means the unknown quantity cos 7,. As the equation (2) gives the relation

it results

At the point of the maximum deflection 3, it becomes 3y = 0. Hence, quan-
tities y, and ¢ will be related as follows :

9 — , ,
1 -— el 2 I T T T 4 .
=y 2 -y (4)
Now, substituting z = Y (z < 1), the right side of equation (3) can be ‘
1
written as
dy dz
/ 1-— (g’r ¥+ c)“ ]/ 1-¢ ]/(] — 21 =k
where L
1—¢
= (I ) IO 5);
k i +c1 (F < ) (‘) )
and, as it is Wi :;:r = / ¥)_‘, the equation (3) follows as
1-F dz »
ds = g T T T T T s e e s e ae s e ss et mraas s A (6) -
/ NI -0 =D

The integration of the equation (6) along the flexured half column-axis from

/

o to el corresponds to that from o to y, of the deflection, and so we obtain the
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equation

Lo /TR m-—;ﬁxmj .............................. 7).

or expressing symbohcally ‘
......... e (8);
o ]/ i | (8)

»n means the order of buckling, i. e. the number of deflected waves contained in
the flexured column, and K, the complete elliptic integral of first sort with the
negative modulus °. If the modulus %* is given, K can be computed by the relation

1
. g dz s 1 1.31
K = ,“mﬁ'ﬁ:—[yk(>k+( )k
50/~/(1 TAHA - KD 2 2 2.4
135\° | ,
) R A 9y,
+~(246) e ] (9)
From this, we get ‘

1,, 5 5 389
1— K) =1— k- 2p - 2p 2% (10
( “( ) I L L YT L G

and substituting (8) into (10), and through some transformation, the following can

i oL O ga 5 g 389 44
be attained =1 5 k 32k 64 k 8]92k ............
with notations  »? = '”ql“) - 7;11 =Y
, nw n Py n
(11)
where V = P ¢ > 1),
Pl;
P = 7f—l-E U (Euler’s critical load).

Now, expressing the modulus %* through v, reversely, we get an infinite series
in v, as follows

B= — 20— 1)[1 + %(uﬁ )+ ?%(uf — 1y

T e 1y
s O = W ] ................................. (12),

which series defines the modulus of the above elliptic integral in the case of elastic
buckling due to the concentric column load P. Besides, the quantity ¢ will be ex-
pressed through v, also : o

*;  Jahnke-Emde :. Funktionentafaln.



Upon the Limit of the Elastic Buckling 71

ol

5 S
2( -

(V1 - 1)+ 2(1“"‘1)Z

2(»1—- 1)[1 + - (ul = 1)+

OO

14 22— 1)‘[1 4 2

OOCJ‘I

+ 2_56 0 — 1P e ]

+ £
256
Thus, with the expression (13) for ¢ in hand, the maximum ordinate of flexure

w has become to be able to express through v from (4), as follows, considering,

however, the case of the first order (» = 1) merely,

w="Low | C
Ty

where

fee1f1 S - >+.§A<¥‘-’71>2 T ]

70 = 1/1+2(u—1)[ 5( 1)+ (u 1)+§;75_65(y2_1)3+...] |

“This mathematical result (14) for 3, which the:author has. successfully - intro-
duced in a very easy but generalized algebraic form of ‘v, enables us to obtain the
exact middle deflection of the column which is concentrically loaded with any load
P greater than P,, and offers the serious first step to pioneer the widened field for
the problem of the elastic buckling. |

From the equation (12), its infinite series on the right side can be transformed
as

E _ 1 1—¢
200 =1 200 -11+¢

=4 5 ‘
T 20— 1) + 22— 1P+ ... = -
B L i

whence we have

oW w]/za-a .......... e e e, (15),
or c=1- ) D ) e (13a).
Now; from the equation (13), the special values of ¢ are got, i. e. :
for  v=1 ¢=1 (v,=0) and for V=00, ¢=—1
1(41-0 = 77),

which correspond from (19), ‘ ‘
for V=1, @@ =0 and for v =.co, @) =2. .

Thus, since the function @ (v) conveges to a certain value between 0 and 2
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corresponding to the variation of »* between umty and infinity (Fig. 2), we know
that the equation (14) is apphcable for all posmve values of v greater than unity,
and can give a finite numerical Value for the deflectlon 9, specified with .

@( 1)

L e e e o e s o e e e

i T i, . i f;,g
7 2 3 § 5
' Fig. 2 e

The eql;atim (14) will give also, the following one approximately,

| ‘"l T8 =T 20 =10
=g 2T 0 L PP 14a),. .
;y‘ 142 - 1y wl gpC 17 ‘( -

Some authorltles, like Grashof, Schnelder, v. Mises, Domke,*> have recommended
approximate formulae also, but the above (14a) gives better values than theirs, .which
are to be written in the notations of the present treatise as follows ;

- Grashof, y1——l y—],m———/y—],
o ‘ 3

. 21/
Schneider, y, = —V 2,(1)“ — 1),
V. Mlses, N = ;“}]/2 (V" — 1))

21 o
Domke, 'y, = ;1;21/2 v — Iy

In the flexured column, the maximum
bending moment occurs at the middle cross-
section and its magnitude is Py, ; the com-
pressive extreme fibre stress o, due to bending
shall be obtained, considering that the Hooke’s
law is consistent still in:this case, Fig.3:

_ I (~): Compression side -
We= 7c  (+): Tension side 0y = EJL] _ Pll(i)

Fig. 3. W, mw W,

*y Grashof : Theorie der Elastizitit u, Festigkeit, 1878, S, 168,
Schneider: Zeits. d. Oester. Ing. u. Arch, Vereins, 1931, S. 637,
v. Mises: Differentialgieichungen der Physik, I. 1925, S, 376.
‘Domke : Die Bautechnik, 1926, S. 747.
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Ploy). . [/ EP
e e = Lw Y
- w1 , o ®)
or
@=1 ok e @) (16),
r
P 9 I
where G, =", 7=
AT T A
A : cross-sectional area,
7 . radius of gyration,
I : moment of 1nert1a about n-n axis.
Hence, the resultant stress o, in ‘the extreme compresswe fibre can be ertten
as : .
0=+ 0= 0,4 o, B O (17)
On the other hand
g, A2
T 18),
= (18)
.where
the slenderness rattio, A = L, )
: [ A

which becomes in the special case of the Euler’s buckling, as it is »* = 1,
Y )

Cpr = >

A%

As the tundamental criterion for the elastic buck]mg, we may put, with the
limit of proportionality o,, as

o, + ‘/G“E j” @ (V) Bt (19).

Or, Substltutmg the equation (18) in this one

7T:22E Vo ﬂ;’;u Y]

The equation which will be got putting equal both sides of the equation (19a),
gives that value of 1 at which slenderness ratio the resultant extreme fibre stress in
compression attains at,the limiting stress o, of the elastic buckling, with the given
value of v greater than unity. Denoting thls slenderness ratio with 4,,, its solution
results as L

2= 7;0L :/U@ (u)ll + /1 + lf(g( )(7‘ )l ..... e 20)

where v.> 1
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When the material and the crossssection of a column are given, the quantities
E, oy, 3./r becomes definite also, and hence, the critical slenderness ratio 4, , should
be obtained from the equation (20) with »* as the parameter. Consequently, through
the equation (18), the buckling column stress s, can be obtained corresponding to
this slenderness ratio 4, .

In the case of Euler’s buckling (* = 1), we specify the slenderness ratio with
4, instead of 4,, and the equation (20) gives

This slenderness ratio 4, defines the boundaty between the reglons of the elastic
buckling (including the Euler’s bucklmg) and the plastic one, and, also, at this point
of the slenderness ratio the Euler’s buckling and the laws of the elastic buckling
expressed by equation (19) and (20) coinside, and it does never except this point 2,
elsewhere. o

Taking steel St 37, as an example, with E = 2100 t/cm® and ¢, =2.1 t/cm* we
get '

g,
and for steel St 52, with ¢, =3.2 t/cm’ it becomes
A, = 80.479.. ... S AU SR el SRR (20c).
Combining both equation (18) and (20) through 1, the buckling column stress o,

for the uppermost limit of elastic buckling may be expressed directly by »

ey (\ D)
£ o /1+E4<Z”(>(“’”')T -

Since the second term under the radical sign in the denominator is of small
quantity against unity, the above formula (21) can be expressed, when the slender-

ness ratio is fairly great (1 = 400 ~ 500), with the sufficient precision approximately

as

= ) L e 212

Above formula (21) or (21a) talks the new law of the elastic buckling, and it
relates the fact:’” The classical law of the Euler’s-elastic buckling, i. e. the eq.
(18a), recognizes no superiority of the higher grade material to the lower grade one
in the strength of elastic buckling so far as the moduli of elasticity of both mate-
rials are same as it is usual in steel: in other words, at the instant when the
stable equilibrium in the straight state of the column begins to break, the critical
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column loads shall be same for both such materials and indifferent to their grades.
When the column  load grows beyond the Eulers critical one, the column starts.
into the state of flexure, but in this flexured state the elastic buckling still exist,
conditioned with load, material factors and cross-sectional ones satisfing the equation
(21) or (21a) at the uppermost limit; in this case the column should be considered
to be in the state of stable equilibrium in flexure. On such a buckling, the circum-
stance becomes quite different from the former buckling of Euler: the grades of
materials remarkably influence the strength of-elastic buckling, although their moduli
of elasticity are same. Furthermore, even if the moments of inertia were same for
columns, the difference in types of cross-section effects the buckling strength not-
ably, also.” Thus, through such a law, the theory of elastic buckling seems to be
provided with its reasonableness and perféctness.

On the other hand, as it becomes ¢@(v)— 2 for v* — oo, the buckling stress o,
for this case can be derived from the equation (21) as follows,

o (L) ’
E \7

Lim 0o = lim 0, = A = D 22)

G2 oo 1 () {7rY

V00 A ‘ [ +]/1+ 5 (Vc):l | .
or approximately »"’:

lim UzL‘: lim o, = i 7)) ....... R e, (22a), -

V?’~)OO 2——)00 4 E (\ 7]0 )

The equation (22) or (22a) states another new tact : “According to the classical
theory of Euler, the column of an infinite slenderness ratio can resist any load no
more, and so it is ¢, = 0. The present theory of the author approves that the
elastic buckling exists still in this case, and the column of the infinite slenderness
ratio is resistible to the load of a certain magnitude, defined by the equations (22)
or (22a) and being not zero. In the otheriwords, for the case 1 — oo, the quantity
g, has some asymptote of a particular ordinate whose value varies with the material
and the type of cross-section but is not zero.”

3. The theery for the case where the extreme fihre stress
reaches to the limit of proportionality sooner upon the
tensile fibre than the compressive one.

When the cross-section of a column is symmetrical about n-n axis (Fig. 3),
the absolute maximum normal stress shall never fail to be developed at the com-
pressive extreme fibre of the cross-section ; and so, in this case, the limitative stress

o, of the elastic buckling is to be attained always on the compression side of a
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column. Hence, the equations mentioned hitherto, i. e. (16), (17), (19), (19a), (20),
(21), (21a), (22), (22a), are all applicable for this case. The circumstance is quite
same, also, for the column of an unsymme-
trical cross-section, which should buckle so
as to satisfy the condition %, > », cf. Fig. 3.

But, when the column of an unsymme-
trical cross-section should buckle elastically

" 'so that the relation between both edge

< distances from n-n axis will be held as », >

7., the circumstance becomes quite different,
and the equations mentioned above shall
never be applied for. In such a state of

buckling, cf. Fig. 4, the absolute maximum
normal stress will be developed at the tensile

4 extreme fibr¢ of the cross-section, and, under

1 01 a great flexure of the column, this stress

will reach to the limit of proportionality

certainly. So, another theory is necessary

% 0;‘ to be derived accomodating to this mode of
buckling. |

TtV ‘ Since the maximum normal tensile stress
Fig. 4 may be written

o = — 0y = g,m—-‘/ R I - 23)

the fundamental criterion of the elastic‘ buckling for this case will be

Ous — 1 00, EHOW)S' 0y e, (24)
T

denoting with ¢, , the buckling stress o, for the mode of buckling in question.
Now, substituting the equation (18) in this, we have the following conditional
equation

n;(,E - ’ﬂRE’ v ‘vj (1) (V) § - 0‘)1 ................................. (243) .
2 ”

Putting both sides of the above equal and solving with 4, it gains the slender-
ness ratio 4, , where the extreme fibre stress in tension reaches the limiting stress a,,

Aup = =K 7, V{D(u)[] + ‘/] _ Ao <T) 2] ............... (29),

20, r Fo1e)
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and from equations (25) and (18), the buckling stress can be expressed as

49, (11)2:
E w (26).

Oy, = 70) [1 N ‘/li;—zip"i’(;) (,%’)2 ]“ ........................

The condition that the buckling stress o, . shall be real, is gained as

(17‘>z = AT @,

\ 7

which requires the quantity »* to be sufficiently great. Besides, in such a region
of v, the equation (26) may be approxmately written

Oq,, = ipi /‘7;>2 —1— ................................................ (263)
T E \9) o0

If the quantity »* grows infinite, the buckling stress shall converge to the value
to be definded by the following equatvion:‘

Lim o4, = lim 6, =" =\ e R IO (28),
V¥ > co A —> coj; {1+1/1_"1’(T) J ,
y E\7y,

or approximately

lim 6, = lim 05, = -2 | —) ... T (28a). ..
V?—) (<o) A — ,00 4E \ 7]// A i

When the quantity »* satisfies the relation

(%)(j ( Xu‘)() ............................................................ 29),

the buckling stresses ¢, and oa,+; defined respectively by the equations (21) and
(26), shall become equal, the suftices (—), (+) in the equation (29) expressing the
signs. of extreme fibre stresses which will grow to the limiting stress ¢, and deter-
mine the mode of buckling as refered in the preceding.
Upon the diagram »* — 2,,, it becomes simultaneously
Very = Veoyr Ao, (49 = Aeidy (m) oeemereeeees aeeee e e e (29a)

at the conditional point ¢, = o, ,, and the latter condition may never be satisfyed
at other points, as to be computed and explained in the succeeding diagram.

4. Approximate values for cross-section factors.

In order to start to the computations according to above theoretical equations,

it is necessary to know the cross-sectional factors 2 involved in them beforehand.
7
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If, by some ways, the appropriate value of this factor were presumed suitably for
the type of cross-section in problem, the primary computation of above formulae
become possible and the buckling stress o, becomes known also, as the consequence
of which we éan obtain the cross-sectional area and hence, through assembling the

elemental sections of rolled steels, the better value of the factor -7° may be got for
VA

the type of cross-section in problem. Again, starting from the latter value of the

factor, the more exact values for g, and, conseqently, also for the factor -7 itself
. r

may be obtained. Thus, through such a iteration p1‘ocess, we can improve the
design cross-section as best we wish, and the results should converge to its exact -
value very rapidly. In the present research, the author intends to presume the

approximate values for the factor -7 as follows, concerning with some types of cross-
r .

sections which are common in the bridge practice or the other steel structures.

"The factor -/* may be analysed as

where |
i : the depth of cross-section in the plane of buckling (Fig. 3),
7 : the radius of gyration in the plane of buckling.

In the bridge practice, the factor 7T— may be admitted, apporximetaly, as of
(A

the constant value which is peculiar to the type of cross-section. Highly efficient
values of this factor have been projected upon “Structural Tables, p. 257 "in“ Ket-
chum : Structural Engineer’s Handbook, 3rd edition, 1935, McGraw Hill ‘Book Co.,
New York”; and for a long While, the author has used those values in teaching the
design method of compression members, and also has applied in the practical design,
so effectively. Thus, the author wants to adopt those numerical values as the appro-

ximate ones of the factorf]r—, in this study.
{2

As for the other factor 7720, in the case of all cross-sections which are symmetrical
i

about n-n axis, it can be put evidently as half an unity. When the cross-section
is unsymmetrical about n-n axis, it is necessary to investigate about the approximate

values for the factor 7?—"‘ anew, and it is possible any way. With ;77 known, the fact-
1S . )

or ;7 may also be got readily. In the present treatise, these values are projected and
1
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estimated, for some cross-sections common in the bribge practice, as follows.
() Cross-sections symmetical about n-n axis.
Marks («-—) or («) represent the direction of flexure due to the buckling.

TABLE 1. Factors :7" of symmetrical cross-sections.

Section Type of

: I 7 Te Jt Remarks
No. Section h % r or r
_""] I _ Approximate value. Section with
1 e 0.23 12 ' 1/0.46 lacing bars or tie plates;

_“..J L_,. . longer legs horizontal,

I I ) : Approxjmaute value. Section with
2 I 0.36 1/2 10.72 lacing bars or tie plates.
| r“m o , oo Approximate value. Longer legs
3 N . 0.21 112 1/1.42 | horizontal.
. it " . T Approximate value. Section with
4 ' 0,38 ! 12 110.76 Jacing bars or tie. plates.
'""'l r“" k ’;’Approximate value. Longer legs

= 0.24 1 /2 ]/\) .48 horizontal.

iy
i

6 _ Ui/ 31 12 | /3 | Bxact value.

Exact value. The buckling in

7 « = 1/4 /2 2 every direction is possible,

(b) Cross-sections unsymmetrical about n-n axis.

TABLE II. Factors #efr, ,/r. of unsymmetrical cross-sections.
. Type of ‘ :
. Section No, . rih | efh | %efr 9 Remarks
: : . Section * . . SRE L :

8 I;AH [Aoum I 1 :
86 | a 0.39,0.4057, 1/0.961| 1/0.656, — ‘
= l Approximate value.
Q : Compressive chord
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o e
A ” 1 oy | section with lacing
d b 0.390.5943| 1/0.656' 1/0.961 s
g t ; bars or tie plates.

S

0.4 (0.4242) 1)0.943 1/0.695
Do.

S Longer legs

Direction
of
buckling
|

horizontal

0.4 |0.5758] 1/0.695] 1/0.943

L L LT
F ol

Values of -;7?" on TABLE II. for Section No. 8 and 9 are the averages obta-

ined from data for Section No. 55, 73, 91, 109 and No. 155, 208, 264, 319 of
“Structural Tables.” : .

5. Asymptotes of the buckling stresses for some cross-sections
' when the foad ratio »° will grow infinite.

Equation (22) and (28) enables us to get asymptotic values of the buckling
stresses g, and o, , respectively, when the Joad ratio »* becomes infinite. Taking
as the limit of proportionality o, = 2100 kg/cm* for St 37 and 3200 kg/cm? for St
52, those are computed and prepared in TABLE III.

TABLE III Asymptotic values of buckling stresses
for St 37 and St 52 (¥* — o), unit (kg/em?).

St 37 St 52 Cross-section
Section No. — © . about
g ’ Tq, 4 dq I, + n-n axis
2 0.272 | — | o3 — | symmetrical
| 2| (0.4667) 0.2536 (1.083) 0.5890
9 l unsymmetrical
! b 0.2535 0.4671) 0.5886 (1.085)
6 0.175 ~ | 0.6 | — | symmetrical
7 0.131 Lo l 0.305 } — symmetrical

~ For the cases of buckling, 9a and 9b, there exists the relations between their
section-factors ' E

(:7>: (f) <Z>: (}) e (31)

hence, remembering the equations (22a) and (28a), it results the following relations
between their asymptotic values of buckling stresses, as numerically can be noticed
on TABLE IIl: :

0, (9a) = o, , (98), u . (9a) == 04 (9B)............. e, (32).
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Such two sets of equations between two modes of buckling may generally be

applied for all types of cross-section from the same grade of material, which-
are unsymmetrical about n-n axis.

6. Calculations and diagrams.

Diagram 1 represents the two curves Jl) U — % the one computed by the exact

equation (14), the other by the approximate one (14a).

The exact maximum deflection -3; is got to be 0.4031 corresponding to »* = 1.749,

while the value A. Schleusner obtained is 0.4032 for »* = 1.7495" According to the
author’s calculation, it gives the same value y,/l = 0.4031 for »* =1.750 also, and
through the investigation of the effective lower decimal numericals, the author rec-

ommends y,/l = 0.4031 for +* = 1.749 as the numerals for the maximum deflect--
ion. The difference between the maxmum values due to exact and approximate

methods amounts to about 8¢,

TABLE 1V, ;,‘ — values (n = 1),

LT values A values
v2 I v2 ! . —
Exact Approximate Exact Approximate
1 0 0 6 " 0.258763 0.247
1.176 0.311655 0.299 7 0.239998 0.231
1.353 0.374921 0.352 8 0.224714 0.217
1.749 0.493108 |  0.373 9 0.211978 0.205
2 0.398428 0.367 10 0.201165 ©0.195
3 0.353544 0.328 iy 0,191244 0.187
4 0.313144 0.294 12 0.183771 0.179
5 | 0.281850 0.268 S
Diagram 2 represents the two curves% - —i , exact and approximate. Taking

the quanity le as the abscissa, the entire tendency of the relation between 2 and +*
v . ‘ : ; ,

becomes able to be seen throughout. Besides, by this method of representation,
the slope of the curve for.the region where »* is small becomes less steep.than

Diagram 1 remarkably, the benefit which brings us in studying the curve tendency
for this portion may never be accepted as so little.

*) A, Schleusner: Strenge Theorie der Knickung und Biegung, L Teil, S. 2),
B. G. Teubner in Leipzig. u. Berlin, 1937, =
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Diagram 3 represents the curves % - ;{" (4 = 99.346) for Sections No. 2, 9, 6,

7, of St 37. The relations »* — 4, are calculated for sections No. 2, 6, 7 by the
equation (20), and for Section No. 9 by both equations (20) and (25), the one curve
corresponding to the stress a, (9b) and- the-other 'to the stress o, , (9a). Through

the factm e or ‘, the type of cross-section influnces the ﬂexure of a co]umn
Y r

notably, but the magnitude of maximum deflection is constant and indifferent from
varieties of the crosssection. Columns of composite section, i. ¢. No. 2 and 9, can
resist the more: severe bending than those of solid sections, . ¢. No. 6 -and 7, very
efficiently. |

Dlaglam 4 represents the relation-2! l .,» for Sections No . 2 and .9 of St 37

'(a,, . 2100kg/cm-), and St 52 (0, = 3200kg/cm-) " Holding the condition that the
‘ qunnum fibre stress should not exceed the hrmt of 1";c1‘o1txon'111ty of matena] the
column of St 52, as it is shown in this dlagram, can resist the more intense flexure
than that of St37, with the same slenderness ratio given. For both materlals, two
curves corresponding to stresses o, (Yb) and a,,, (Ya) near to each other very closely.
Diagram 4a represents the same curves for the portion of the minor slenderness
ratio. For both grades of materials, the area enclosed by lines abc and ae or lines
ad and ae is the domain where the elastic flexure due to buckling will be rossible.
The area excluded from the above belongs to the domain of the plastic flexure due
to- buckling. ‘
In the next place, notwithstanding the high interest for us, it is difficult to
express distinctly the difference between the Fuler’s classical theory and the auth-

or’s theory by means of tracing their curves o, — 4. ,as usual. Such a purpose,

however, may be answered supremely through plotting the curve 2% — 4, instead
Ua,lz‘

of the above. Diagram 5 represents these curves for cross-sections, Tyre No. 2, 9,
6,7, of St:37. There, the difference of both theories becomes able to be expressed
in a magmfled scale. The ratio of stresses o,/0,,, (=») by the Euler’s and the
author’s theories increases very rapidly accordmg to the glowth of the slenderness
ratio ' 4, ,; ‘throughout all ‘types of ' cross-section. *This tendency of ‘increase is far

brisker for the composite sections than for the: solid: ones:

Diagram 6 represents the curve -2 — 2, for Sections No. 2 and 9, considering
. CO‘ﬂ},E A R T e Co . N
as the material both St 37 and St 52 for each cross-section. The positive deviation

of the author’s theory from the Euler’s is more active for the material of higher
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grade, St 52, than the lower one, St: 37, as shown in the. diagram;  namely, the
.grade of material influences. the critical stress of. elastic buckling of a steel column
remarkably, and its influence grows active increasingly -accompanied with the. growth
of. the slenderness ratio. . Two curves for ¢, (9b) and g, (9a) are coincident . appr-
.oximately. for the portion. of the major slenderness ratio for both grades of materials,
and the buckling stress, for the cross-section Type No, 9 is less than that for Type
No.: 2 for the portion of the major slenderness. ratio. \ Co »
~..Diagram 7 represents. the same curye with Diagram 6, for the minor- slendelness
mup,;r or; both, materials, 5t 37 and St 92, two curyes subject to.the buckling stress-
es g, (9a) and 0., (Ya), have; their intersection points, which - correspond to »* =
1.000534, 2, ,, = 257 for St 37, and v*=1.000807, 4. =207 for St 52, For the portion
10f 4. » major; to ithe intersection,point, :the buckling law o, , (9a)is. responsible, and
for. the minor, one, the:law o, (9a), each ;;expressing;ihe‘ lesser .value than the other.
Both bucklings subject, to, stresses g (93)5 with..4 , major to this intersection - point
and, ... (9a), with. 4, , minor;to the same point are impossible on the elastic region,
because, if these were possible, the extreme fibre stress on the tensile or on the
.compressive side should exceed the limit of proportionality of material respectively,
which will convert the buckling plastic. The curve subject to the buckling law o,
(9b) indicates itself as the minimum of the three sorts of curves, and consequently,
this law can be accepted as provided with a technical significance for a column of
E;ectlon No 9. The law s (‘Ja) bcwmm 1mag1na1y for the pomon 11111101 to the
pomt v = 1000242 Aop = 90 3’58 f01 ‘St o/ 'md u = 10000’705 ,1 » = 8() 494 f01 ot
52. , f
For the purpose of p10v1ng thcse Values, we substxtute thc relation

]/ ([) (u)~ 21; (Z’) into the equat10n (2o), and get

which: corresponds to the slenderness ratio of+the ‘terminal: point’ of .the real.region
“where the bucklingr:stress o, is possible; andthis ‘equation:gives the values men-
itioned’ above: with »* = 1,000242: or: 1.0003705 for. St-37 ori St 52 respectively. . 'This
value of ‘4, , mears 4, very closely, but- is slightly. greater than: 4. L
i'The :difference: between ‘o,/045 -values: subject ' to the:buckling stresses g, ; (9a)
and’ o, (Yb) is greater for the portion of ‘the minor and lesser for -the portion of
the major slenderness ratio 4,,, the relation o, , (Ya)»'e,; (Yb) being held always.
“Their values, -however, can be: seen nearly .coincident for the entire range of slen-
1derness~rétio -and: its difference which is. slight originally. hecomes lesser and lesser
when the slenderness ratio grows greater, to which a caution should be exercised.
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Comparing curves for Sections No. 2 and 9, the buckling stress for the former
section is always greater than the stress o, (9b) for the latter one; compared with
the stress o, ., (Ya), though it is greater than this stress for the portion of the major
slenderness ratio, Diagram 6, it becomes lesser than this for the portion of the
minor one, Diagram?7 ; it is, also, less than the buckling stress o, (9a) for the portion
where the slenderness’ ratio is minor to the intersection point b in Diagram. 7. Th-
rough above observations of diagrams, we may define as the domain of elastic buckling
taking Section 9 for an example, the area bounded between the lines abc and ae for
the mode of buckling 9a, and the area bounded between the lines ad and ae for the
mode of buckling Sb (Diagram?7), each having an infinite range of its scope accom-
panied with the growth of the slenderness ratio 4,,. There, the classical theory of
Euler makes the lower limiting boundary of the domain of elastic buckling, ae, and
the author’s one provides the upper limiting boundary of the same domain, abc or
ad. The area excluded from this ought to be no other than the domain of plastic
buckling. These circumstances and tendencies are all to be understood distinctly
upon Diagrams 6 and 7.

- If we denote the bending stress of a column with o,, the fundamental criterion
of elastic buckling gives the relation

A | (positive sign for L (34)

a, 011,

Which expression enables us to observe the relative variation of bending and direct
stresses, both being consitutents of the resuiltant fibre stress which should amount
to the stress o, at the limit of elastic buckling. Diagram 8 represents such curves,
9, — 2. for symmetrical and solid Sections 6 and 7 of St 37 and St 52. This ratio
g, .

increases actively with the growth of slenderness ratio at first, and as this slenderness

. : 3 ad, 3
ratio grows greater, however, braking this tendency, the curve-"? approaches his
ag

asymptote which is peculiar to the type of cross-section and the grade of material.
The. proportion responsible to the bending stress is heavier for Section 7 than for
Section 6, throughout the slenderness ratio and the grade of material. Related
about the grade of material, the above proportion is heavier for St 52 than for St 37
where a column is provided with the minor slenderness ratio, and, is heavier for
St 37 than for St 52 where the major slenderness ratio prevails, both indifferently
from the type of cross-section.

Diagram 9 represents the curves similar with Diagram 8, for Sectior}s 2and 9

of St 37 and 52. The tendency of increase is just the same with above mentioned

about Diagram 8.
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Namely, for the region of the slenderness ratio major to- 7800 for Section 2 and
8080 for Section 9, (cases of ¢, (9b) and o, , (92)), the ratio ¢,/0, forSt 37 are great-
er than: for St 52, and vice versa. For both grades of material, two curves for
o, (9b) and o, , (Ya) almost coincide each other throughout total range of the slender-
ness ratio, excepting the region of the minor one, cf. Diagram %a also. The proportion
responsible to the bending stress is heavier for Section 9 than for Section 2, through-
out the slederness ratio and the grade of material.

Diagram 9a represents the curve o,/0, for the region of the minor slenderness
ratio, concerning materials St 37 andSt 52. With the exception of the case o, , (9a),
the values of this ratio subject to the stresses o, (Sa), o, (b), and o, (2) are all
coincident almost perfectly in such a region of the slenderness ratio, while for stress-
es g, (Yb) and o, , (9a) are also coincident for the region of the major slenderness
ratio, as we have obseved on Diagram 9, these being, there, greatér than the ratio

for the stress o, (2). Indifferently from the types of cross-section, the stress. ratio
a,/0, is always greater for St 52 than for St 37 upon this diagram.

Diagram 10 represents the variation of the stress ratio o, (St 52)/0. (St 37)
due to the slenderness ratio 4,, for both cross-section Type 2 and 9. For the
region of the minor slenderness ratio, the effect of the grade of material is neglisi-
bly small, while it grows active for the region of the major one, indifferently from
types of the cross-section; when the slenderness ratio becomes greater and greater,
it approaches: gradually to its asymptote. This asymptotic value amounts to about
2.322 for both types of the cross-section, which shows the maximum value of the
effect due to the grade of material. For the region of the major slenderness ratio,
the stress ratios based upon ¢, (%b) and o, , (9a) coincides approximately, while
they are fairly less than the ratio for Section 2. The asymptotic values_ of the
stress ratio are provided with no differences approximately for the cases of buck-
ling stresses a, (2), o, (9b) and o, , (9a), which nearly amount to the square of the
ratio from the limit of proportionality for both grades of material, as can be under-
stood from formulae (22a) and (28a).

Diagram 10a represents the curves similar with Diagram 10 for the region of
the minor slenderness ratio. Though the grade of material has, as a whole, a very
siight effect upon the elastic buck]ing stress for the region of su¢h a slenderness’
ratio, we can still recognize fair differences of the grade effect, due to the mode
of buckling and the type of cross-section. Deviating from the tendency as observed
in Diagram 10 for the region of the major slenderness ratio, the stress ratio for
6, (2) becomes, in this case, notably lesser than for o, (9a), while it is still greater
than for ¢, (9b), though it nears the latter curve so closely. The stress ratio for
o, (9a) shall be effective for the range of the slenderness ratio from 99.346 to 207,
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which indicates greater values than for 0., (9a) corresponding ‘to- the region of the
slenderness ratio major-to aboiut 163, and -vice versa; “it is,- however, impossible
and ineffective for the region of the slenderness ratio ‘major to 207, which is ex:
pressed in a -dotted line in this diagram, cf. Diagram 7. also." 2

7. Gonclusions .
It may be mentioned some 1mp01tant concluqonal remarks nom ‘the p1ecedmg

results, as follows

1. For the region oi the slenderness rauo ma]01 to 4, =7 ‘/ E ,  certainly, -

there exists the domain of the elastic buck]mg, where we can apply more * column

load than the Euler’s, his buckling theory o, , = V”/;E making the lower ]imiting

g

boundary of this domain, while the author’s, the. upper one:of thesame, and due
to a concentric. load applied  beyond the .Euler’s: critical -onean arbitraiy elastic.
buckling ‘is possible -upon the domain bounded by and between:both theories. - This
upper: limting - boundary - is peculiar to the grade of steel material and  the type of
cross-section. - The stress ratio ¢./0,; to be obtained by both theories increases
actively ‘accompanied with the growth of the slenderness ratio, ‘and, at ‘the extremi-
ty, to an infinity. Hitherto it was considerd that, when the’column stress exceeds
the Eulers ‘critical one, immediately there follows a plastic buckling®,) but according
to the author’s theory the column can resist to the stress far greater than o, ). 'in ‘the
elastic buckling ‘when the slenderness ratio is major; ‘thoughthe former concepti-
on is true just at the critical:slenderness ratio 4y, and; also, apploxnnately true for
the slenderness ratio near by 1, (Diagrams 5, 6, 7). AR

2. All the curves of the upper limiting boundaries- peculiar ‘to ‘the types of
cross-section converge simultaneously: toithe point of ‘the:stress ¢, at the critical!
slenderness ratio 4,, which correspond to-the maximum:buckling stress and the: mini-
mum slenderness ratio of the domain of the elastic!buckling respectively::: This
slenderness ratio ‘amounts to 99.346 for St.37 and. 80.479 for St 52 (Diagram.7, the
points a), B : T :
3. The .Euler’s classical theory, instructs,. .as the miluence f’lCtOl of the mate-
rial, the modulus. of elasticity solely,; while the present. theory. has found that, besides,
this factor, the limit of proportionality -of the material 4, -effects a firm.influence.
upon. the strength of the elastic buckling,; 7. e., approximately .in the square. of it.
Thus, acknowledging the existence - of: the -remarkable - influenceof -the grade: of.

*)y As an example of such a ki‘ar—l'eachi’ng thought, it Iﬁay be quoted: Swain: Struai:ut:alkEnginee‘lfAi‘n"g L
(Strength of Materials), p. 426, 1924, McGraw' Hiil, New York, N. Y. R L
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material, the theory of the elastic buckling has become- to be provided with .its
reasonableness and perfectness, and consequently the proper significance and contents
of the elastic buckling has become to be understood dlstmctly through such a theory,
at the first time (Diagram 4, 6, 7).

4. According to the Euler’s theory, the column can resist no load at its slen-
derness ratio of an infinity, while the author’s theory instructs the fact that such a
column with an infinite slenderness ratio is still able to resist a load of some finite
value, though it is small. In the other words, it necessitates still to apply some
finite load, surely, in order to make the maximum fibre stress introduced in such a
long column equal tc; the limit of proportionality of the material. This asymptotic
value of the elastic buckling stress is peculiar to the grade of material and the type
of cross-section (TABLE III), R

5. The column of St 52 can resist the more intense flexure than that of St.
37 elastically (Diagram 4, 4a). Hence, the ]imiting stress of the elastic buckling,
o, 18 far greater for St 52 than for St 37, and this pos1t1ve effect of the grade of
material increases remarkably with the growth of the slendelness ratio (Dlaglam 6
7). And the stress ratio o, (St 52)/0, (St 37), finally, converges to the asylnptotlc
value of the square ratio of the limits of p10p01t10nahty of both materials applom-
mately, namely 2.322, which value is neaﬂy indifferent from the type of cross-section
(Diagfam, 10, 10a). Thus, we can recognize the fact that the higher grade of
métefial ‘enlarges the domain of the elastic buckling notably, on account of heaving
the upper limitting boundary stress and hlowering the critical minimum slenderness
ratio 4,, of the domain in problem. "

6. The influence of the gradé of material upon the elastic )buckling strength
of a column is fairly different according to the type of cross-section. Taking the
cases of Sections 2 and 9, as an example (Diagram 10, 10a), we can ohserve no
such a notable' difference of this influence between them fovr,, the region of the
minor slenderness ratio. Nevertheless, for the region where the slenderness ratio
becomes major, the difference of the grade effect upon the cross-section type grows
fairly great; and with the slenderness ratio grown greater furthermore, the ahove
difference becomes slight again, and the stress ratio o, (St 52)/0, (St 37) for each
cross-section type converges to the asymptotic value 2.322 (approximate) gra‘dually.
The type of Section 2 may be acknowledged to be far sensible than that of Section
9 for the influence due to the grade of material.

7. For the columns with the same moment of inertia but the different cross-
section types, the Euler’s theory shall give the same buckling stress o, ; while the

author’s theory gives, in this case, the different buckling stresses, because the new
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theory involves, besides the moment of inertia, the quantity ~ or  as the factors
: e /7

of the cross-section, by the square of the Jatter one the buckling stress o, being
influenced approximately, ana hence, making the effect of the cross-section type
remarkable (Diagram 5). The similar effect of the cross-section type upon the
flexure of the column may be accepted as remarkable also (Diagram 3). Further-
more, we know that the composite section is superior to and more effective than
the solid section in the resistance to the intense flexure and stress due to the elas-
tic buckling always, with the exception of the types of Sections, 1,3 and 5, i. e,
the I-type cross-sections (Diagram 3, 5). Among the composite types, the I-type
cross-sections are of little advantage at the standpoint of the elastic buckling, because

their cross-section factors - are all less than those of the solid sections (TABLE I).

Te

‘8. The column of the symmetrical cross-section has a single mode of the
elastic buckling for the entire range of the slenderness ratio. In the case of an
uﬁsymrnetrical cross-section, the double modes of the same are possible for the region
of the major slenderness 1‘atio, though the limiting buckling stresses o, subjct to
them are closely near by each other (Diagram 6). For the region of the thinor
slenderness ratio, the triple modes of the same are possible, their limiting buckling
stresses rather heing of little differences as a whole. Three modes of the buck-
ling of the latter case, however, are never possible simultaneously for the given
slenderness ratio, but it is possible in pairs of two modes of the same for the definite
regions of the slenderness ratio which are different from each other (Diagram 7).
Namely, taking the case of Section U as an exmple, the mode of the bucking sub-
ject to the stress o, (Sb) is possible for the entire range of the slenderness ratio,
while the curves of the buckling modes o, (9a) and o, . (9a) have an intersection
point in the region of the minor slenderness ratio, the mode o, , (9a), hence, being
possible for the region of the slenderness ratio major to this point, and the mode
a, (9a) possible for the same ratio minor to the same point, elastically. And such
a tendency may be valid always in the case of an unsymmetrical cross-section,
invariably from the grades of material (Diagram 7).

9. Regardless of the grade of material, it is advantageous to design the unsym-
metrical composite - cross-section so as to make factors y/y. and r/7, equal, as the
result of which the buckling stresses subject to the double modes of buckling app-
roach to each other, thus heaving the upper limiting boundary of the domain of-
elastic buckling to be .determined by the disadvantageous mode of bucklirfg (as an
example, the case g, (ba) in Section), Diagram 7. For the case of the symmetrical

composite cross-section, with the .sectional area given, it is advantageous to design
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the cross-section to be provided with the larger values of the factors - for both
7

orthogonal directions of the symmetrical axes (biaxial case), and this is invariable
also for the monoaxially symmetrical cross-section.

10. The component bending stress o, of the resultant maximuPn fibre stress
which reaches at the stress o, at the limit of the elastic buckling increases so rapidly
with the growth of the slenderness ratio, compared rélatively with the average column
stress o,, that, taking as an example Section 9, the difference between the buckling
stress ¢, (9b) and o, , (9a) subject to the double modes of elastic buckling almost
vanishes for the region of the major slenderness ratio (Diagram 9). Consequently
the stress ratio ¢ /o, also increases actively accompanied with the growth of the
slenderness ratio, and it approaches gradually to the asymptote which is peculiar to the
cross-section type and the grade of material. In spite of the varieties of the cross-
section 't'ype, this asymptotic value for St 52 is lesser than for St 37 by 34.49;
sim'ultaneously,‘the reason of which lies upon the fact, that, for the régiori of the
major slenderness ratio, the portion responsible to the stress o, is far greater for St
52 than for St 37, while for the region of the medium slenderness ratio, vice Versa.*
For the solid cross-section, the same portion is far lesser than for the composite
cross-section type (Diagram 8, 9,). Finally, excepting the case of o, , (9a), the diffe-
rences among the stress ratios ¢,/0, due to the types of crosssection may almost
Vamsh for the region of the minor slenderness ratio, and the ratio values become
to form a single curve approx1mate1y (Digarm Ya).

11. For the practical region of the minor slenderness ratio (in bridge DlaCthG,
A < 200), there should be no essential impediment approximately in the design of
a compression member to follow the classical theory of Euler, ¢, , = E:TE

12. Finally, the author wants to inspect the permissible deflection of a long
column which is to be expected for the elastic buckling. In the Japanse bridge prac-
tice, the permissible maximumn slenderness ratio for the grade of structural steel
is specified as 150 for laterals and sway bracirigs, and 200 for the composite tension
members, which values can be sought to correspond to the permissible deflections
mentioned in TABLE V, applying Diagram 4a. Those values are obtained for
Sections 2 and 9, as the difference of which for the two types of cross-section is
very small for such a region of the slenderness ratio; the case of the larger
buckling stress o, (9a) is excepted here. ‘

By this table, we know that a fairly great flexure due to the elastic buckling
is admitted in this country. The column from the higher grade of material may

have an_ample margin allowance to the limit of elastic buckling, holding the same



20 ., Toshizo KON

buckling ﬂexure with the lower grade one.

TABLE V. Permissible deflection 34/l of Japanese
Specification for Bridges

(Type Sections 2 and 9)

¥yifl 1
A -
St 37 St 52
150 0.0058=1/172 { 0.0115%=1/87
200 0.0106==1/ 94 } 0.0180%1/56
Postscript

The incomplete abstract of the treatise was sent to Chairman Prof. Dr. Ingr.
K. Yuasa to be submitted to the general meeting of Column Research Committee
of Japan, J. S. C., 4. May, 1949, some parts of which related to the buckling st-
rength of the column of an unsymmeti’ica] cross-section has been improved afterwards
and made complete by the author as delivered in the present one. Hence, he is
liable to express that some parts of the former diagrams and conclusions mentioned
there, ré]ating to the above item, should have been modified reasonbly as to be seen
in this treatise. '

The author gratefully écknowledges his indebtedness to Mr. Y. Maeda and
Mr. T. Yoshino for assisting in calculations and the drafting of diagrams.
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Numbers in brackets denote Types of cross-section and
Modes of buckling (cf. TABLES 1, II III).
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Upon the Limit' of the Elastic Buckling
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Diagram 9a. Curves oy/oa —2.,p for the minor slenderness ratio,
Sections 2 and 9.

Materijals: St 52 (Full lines) and St 37 (Dotted lines).
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