Title	Equilbrium between FeS and mixed gas of H2 and H2O
Author(s)	Uno, Tatsuji
Citation	Memoirs of the Faculty of Engineering, Hokkaido University, 9(1), 84-90
Issue Date	1952-03-31
Doc URL	http://hdl.handle.net/2115/37768
Туре	bulletin (article)
File Information	9(1)_84-90.pdf

Equilibrium between FeS and Mixed Gas of H2 and H2 O.

Tatsuji U NO
(Received Aug. 31, 1951)

Introduction

Reactions between FeS and mixed gas of H₂ and H₂O produce Fe, FeO or Fe₃O₄ and gaseous sulphides as the case of mixed gas of CO and CO₂, which has been previously reported by the author.¹⁾ As gaseous sulphides, in this case, H₂S, SO₂ and S₂ are considered to exist and the formation of SO₃ is negligible on account of the very low dissociation pressure of H₂O. Only one among Fe, FeO and Fe₃O₄ is stable according to the equilibrium relations shown as follows.

Although many observations are reported on these reactions the author uses the results obtained by Emett and Schultz² for his calculations. As Emett and Schultz did not show their results as a function of absolute temperature, the author calculated the equations as follows.

log
$$K_1 = log p_{H_2O}/p_{H_2} = -3306.22/T + 3.455 \cdots$$
 (3)
log $K_2 = log p_{H_2O}/p_{H_2} = -854.28 /T + 0.502 \cdots$ (4)

Using these equations the following table can be obtained.

$F e_3 O_4 + H_3 \rightleftharpoons 3 F e O + H_2 O$							
temp. °C	600	800	1000	1200			
log pugo/pug	- 0.332	0.374	0.858	1.210			
H ₂ , %	68.2	29.7	12.2	5.8			
H ₂ O, %	31.8	. 70 . 3	87.8	94.2			

	FeO+I	I 2≠F e + H 2 C	, ,	
temp. °C	600	800	1000	1200
log pн ₂ o/pн ₂	- 0.477	- 0.294	- 0.169	- 0.078
H 2, %	75.0	66.3	59.6	54.5
H ₂ O,%	25.0	33.7	40.4	45.5

Formation of H₂S

On the formation of H2S, three reactions are considered,

$$FeS + H_2 \stackrel{\rightarrow}{\rightleftharpoons} Fe + H_2 S \cdots (5)$$

$$FeS + H_2O \rightleftharpoons FeO + H_2S \cdots (6)$$

$$3\text{FeS} + 4\text{H}_2\text{O} \Rightarrow \text{Fe}_3\text{O}_4 + 3\text{H}_2\text{S} + \text{H}_3 \cdots (7)$$

Reaction (5) is determined by the author as follows.³⁾

$$\log K_5 = \log p_{H_{28}}/p_{H_{2}} = -3910.28/T + 0.887...(8)$$

From this, log K₅ at 600°C, 800°C, 1000°C and 1200°C are calculated as follows:

China and the state of the stat						
temp. °C	600 ,	600		1200		
log K ₅ *	-3.592	-2.757	-2.185	-1.768		
108 0			1	1		

When FeO is the stable product of the reaction, reaction (5) must be combined with

$$Fe + H_2 O \stackrel{\rightarrow}{\smile} FeO + H_2 \cdots (9)$$

Therefore, from (8) and (4), the following equation is obtained.

$$\log K_6 = \log p_{\text{H}_2\text{S}}/p_{\text{H}_2\text{T}} = -3056.0/\text{T} + 0.385\cdots\cdots(10)$$

By means of this equation, log K₆ can be calculated as follows.

Exploration of the Control of the Co							
temp. °C	600	800	1000	1200			
$\log K_0$	-3.116	-2.463	-2.016	-1.690			

Under the condition where $\text{Fe}_3 O_4$ is produced, reaction (7) must be considered, and this is obtained by combining reaction (6) with the reaction

Calculating from (3) and (10),

$$log~K_{7} = log~p_{H_{2}} \cdot p_{H_{2}S}^{3}/p_{H_{2}O}^{4} = -5661.80/T - 2.300 \cdots (12)$$

By this equation $\log K_7$ can be calculated as follows:

WITH THE PROPERTY OF THE PROPE					
temp. °C	600	800	1000	1200	
log K ₇	-9.003	-7.76 3	-6.905	-6.280	

From the above calculations, the following three equations can be introduced.

$$\log p_{H2S} = \log K_5 + \log p_{H2} \cdots (13)$$

$$\log p_{\text{B23}} = \log K_6 + \log p_{\text{H20}} \cdots (14)$$

$$3log \ p_{_{H2}S} = log \ K_{7} = log \ p_{_{H_{2}}} + 4log \ p_{_{H_{2}O}} \cdot \cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (15)$$

Therefore, $\log p_{H_{28}}$ is shown as a function of $p_{H_{2}}$ and $p_{H_{20}}$. At a given temperature the following table can be calculated for $\log p_{H_{28}}$.

log	$p_{H2}s$
-----	-----------

H ₂ %	99	95	90	80	70	50	30	20	10	5	1
H ₂ O%	1	5	10	20	30	50	70	80	90	95	99
600°C	-3.596	-3.614	-3.6 38	-3.689	-3.639	-3.302	-3.003	-2.897	-2.721	-2.597	-2.340
800° C	-2.761	-2.779	-2.803	-2.854	-2.912	-2.764	-2.618	-2.454	-2.286	-2.154	-1.897
1000° C	-2.189	-2.207	-2.231	-2.282	-2.340	-2.317	-2.171	-2.113	-2.030	-1.898	-1.641
1200° C		-1.790									

This relation is shown in Fig. 1.

Formation of SO₂

In the case of SO₂ formation, the following three equations can be considered:

$$FeS + 2H_2O \stackrel{\rightarrow}{\leftarrow} Fe + SO_2 + 2H_2 \cdots (16)$$

$$3\text{FeS} + 10\text{H}_2\text{O} \rightleftharpoons \text{Fe}_3\text{O}_4 + 3\text{SO}_2 + 10\text{H}_2 \cdots (18)$$

The author determined the equilibrium constant of the reaction⁴⁾

$$3\text{FeS} + 10\text{CO}_3 \xrightarrow{\rightarrow} \text{Fe}_3 \text{O}_4 + 3\text{SO}_2 + 10\text{CO} \cdot (19)$$

as

$$log~K_{_{19}} = log~p_{so_2}^{_9} {\scriptstyle \bullet} p_{co}^{_{10}} / p_{co_2}^{_{10}} = -52669.7 / T \, + 22.438 \cdots \! (\, 20\,)$$

The equilibrium constant of the reaction

$$H_2O + CO \rightleftharpoons H_2 + CO_2 \cdots (21)$$

has been precisely determined by many authorities and Maurer and Bischof⁵⁾ gave the following equation:

$$\begin{array}{l} \log \ K_{21} = \log \ p_{CO_2} \, p_{H_2} / p_{H_2O} \cdot p_{CO} = 2203.4 / T \, + \, 5.1588 \times 10^{-5} \, T \, + 2.5426 \\ \times \ 10^{-7} \, T^2 = \! 7.4617 \times 10^{-11} \, T^3 - \! 2.3 \cdots \cdots (22) \end{array}$$

Calculating log K_{21} between 600°—1200°C, the author gave a simple equation for this reaction as follows.

$$\log K_{21} = 1775.87/T - 1.634 \cdots (23)$$

This equation agrees well with equation (22) in this temperature range.

From (19) and (23), for the reaction (18)

$$log~K_{18} = log~p_{802}^{_3} \cdot p_{H_2}^{_{10}}/p_{H_2O}^{_{10}} = -34911.0/T~ + 6.098 \cdots (\,24\,)$$

is introduced and log K_{18} can be calculated as follows:

temp. °C	600	800	1000	1200
log K ₁₈	-33.892	-26.438	-21.328	-17.603

Equilibrium constant for the reaction (17) can be calculated from (24), and (3) as follows:

0.784

$$\log~K_{\scriptscriptstyle 17} = \log p_{\scriptscriptstyle 802} \! \cdot \! p_{\scriptscriptstyle H_2}^3/p_{\scriptscriptstyle H_{20}}^3 = \, -12739.07/T \, + \, 3.184 \cdots (\, 25 \,)$$

temp. °C	600	800	1000	1200			
log K ₁₇	-11.408	-8.688	-6.823	-5.464			

Equilibrium constant for the reaction (16) can be calculated from (25) and (4) as follows:

log
$$K_{16} = log p_{802} p_{H2}^2/p_{H2,1}^2 = -13593.35/T + 3.686 \cdots (26)$$

temp. °C 600		800	1000	1200
log K ₁₆	-11.884	-8.9 83	-6.992	-5.542

From these results the following equations can be obtained:

$$\log p_{SO_2} = \log K_{16} - 2 (\log p_{fi_2} - p_{H2O}) \cdots (27)$$

log
$$p_{809} = log K_{17} = 3 (log p_{H_2} - p_{H_{20}}) \cdots (28)$$

$$3\log p_{S_{2}} = \log K_{18} - 10 (\log p_{H_{2}} - p_{H_{20}}) \cdots (29)$$

Then if the temperature was constant log p_{80_2} becomes the function of log p_{H_2} —log p_{μ_2} , that is p_{H_2}/p_{H_2} . Fig. 2 represents the relation between log p_{80_2} and log p_{H_2}/p_{H_20} .

When $p_{\pi_2}+p_{\pi_2}=1$, log p_{so_2} is calculated as follows:

- 6.746

H2, % 99 90 70 50 30 20 10, 5 1 90 H2O,% 5 10 20 30 50 70 80 95 99 -15.875 -14.442 -13.792 -13.088 -12.512 -11.297 -10.070 -9.290 -8.116 -7.034600°C -4.645800° C -12.974 -11.541 -10.891 -10.187 -9.719 -8.688 -7.584 -6.806 -5.632 -4.550-7,728 - 6.823 - 5.719 - 5.017-10.983' - 9.550' - 8.900' - 8.196'-3.928 - 2.8461000° C -0.457

-6.278 - 5.404 - 4.360 - 3.658 - 2.283

log pso2

From these results Fig. 3 is obtained.

1200° C

- 7.550

Dissociation Pressure of S₂

 S_2 vapour produced by the dissociation of FeS has nothing to do with the gas composition.

Therefore from the equation described before,³⁾

$$\log p_{S_2} = -16916.4/T + 6.64\cdots$$
 (31)

log ps2 at 600°C, 800°C, 1000°C, 12000°C are calculated as follows.

temp. °C	600	800	1000	1200
log ps2	-12.74	-9.13	-6.65	-4.84

Sulphur content in Gas atmospere

From the above calculations, at given H_2 % in H_2 — H_2 O mixture, gaseous sulphide which shows greatest partial pressure is tabulated as follows. Besides this gas, some gaseous sulphides whose partial pressure is greater than 1/100 of the greatest are also described here.

H ₂ , %	99	95	90	80	70	50	30	20	10	5	1
H ₂ O, %	1	5	10	20	30	50	70	80	90	95	99
600° C	log рн ₂ s -3.596	log рн ₂ s -3.614	log рн ₂ s -3.638	log рн _я s -3.689	log рн ₂ -3,639	log рн ₂ s -3.302	log pH ₂ s -3.003	log рн ₂ s -2.897	log pH ₂ s -2.729	log pH ₂ S -2,597	log pH ₂ s
			log рн ₂ s -2.803							-2.154	
1000° C	log рн ₂ s -2,189	log рн ² s -2.207	log pH ₂ s	log pu ₂ s	log рн ₂ s -2.340	log pit ₂ s	log рн ₂ s -2.171	log рн ₂ s -2.113	log pH ₂ s -2.030 log pso ₂ -3.928	log pH ₂ s -1.898 log pso ₂ -2.846	log pH ₂ S -1.641 log pSO ₂ -0.457
			log p112s	t	i		log рн ₂ s	log pH ₂ S -1.787		log рн ₂ s -1.689	log рң ₂ s -1.432

Only the gases described in this table have important influence upon sulphur content in the mixed gas of H_2 and H_2 O, and the other gases can be neglected.

Now, as both H_2S and SO_2 contain 11430g S per 1 m^3 , from above table S grams contained in 1 m^3 at equilibrium state are calculated as follows:

H ₂ , %	99	95	90	80	70	50	30	20	10	5	1
H ₂ O,%	1 .	5	10	20	30	50°	70	80	90	95	- 99
600°C S g/m³ log S			0.3290 -0.4827								
800°C S g/m³ log S	2.4796 0.3944	-	2.2508 0.3523	-	-						27.0023 1.4314
1000° C S g/m³ log S	9.2535 0.9663				-		9.6454 0.9891	-			531.893 2.7258
1200°C S g/m³ log S	24.1670 1.3832		21.9505 1.3414	Į				- 1			

This relation is shown in Fig. 4.

From these results, important gaseous sulphide produced by the reactions between FeS, H_2 and H_2 O is seen to be H_2 S. But at high H_2 O content or at high temperature, SO_2 plays also an important role.

Conclusion

From the calculations on the partial pressures of H₂S, SO₂ and S₂ as gaseous sulphides produced by the reactions between FeS, H₂ and H₂O, the author calculated the sulphur content in gas atmosphere at equilibrium state.

By this calculation, H_2 S and SO_2 are the important gases at the equilibrium state of the reactions between FeS, H_2 and H_2 O. This is similar to the formation of COS and SO_2 in the reactions between FeS, CO and CO_2 . But as H_2 S is more stable than COS, mixed gas of H_2 and H_2 O is preferable for desulphurization than that of CO and CO_2 at the reducing side.

References

- 1) Uno, T.; Section Rep. Japan Inst. Metals
- 2) Emett, P. H. & J. E. Schultz; J. Amer. Chem. Soc. 55 (1933) 1376
- 3) Matoba, S. & T. Uno; J. Iron Steel Inst. Japan 28 (1942) 651
- 4) Uno, T., K. Kanbara & E. Honma; J. Iron Steel Inst. Japan. 36 (1950) 479
- 5) Maurer, E. & W. Bischof; Z. anorg. allg. chem. 178 (1929) 371