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. Synopsis

In the Fourier siné transformation method, representing the deflection curve of
a beam or column by a certain series such as one each term of which satisfies the
terminal conditions, this series is substituted in the differential equation concerned

with the deflection curve and then multlplymg this equation all through by sin

T
ﬂ“‘zﬂ and 1ntegrat1ng from one end to the othe1 of a beam or colurnn the coeffici-

ents contained in the series are to be determined. This process is the same as
that used in expressing any function in terms of Fourier trigonometrical series.

By applying this method, however complicated a differential equation may be, it
is easily solved. :In this paper the author showed the applications of Fourier sine
transformation method in studies of the var1ous klnds of p10b1ems concerned with
deﬂectlon crltlcal load and frequency of oscﬂlatlon o:f ba1s and moreover the rel-

ation between thls method and others was descrlbed
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I. ON THE RELATION AMONG ENERGY, GALERKIN’S
AND FOURIER SINE TRANSFORMATION METHODS.

Taking, as an example, the case of a beam with variable cross section under
the simultaneous action of axial tension and lateral loads, the differential equation
of the deflection curve is

d d*y dy |

A PI@ g -NGE - p@ =0 )

in which E is the modulus of elasticity, I (z) the moment of inertia of the cross
section, N the axial tension and p (x) the intensity of distributed lateral load.

One of the special methods of solution of this equation is as. follows: First,

2

express the deflection curve in the form of the series

y=2Za, ¢u(2) (2)
each term of which is to satisfy 'the terminal conditions of a beam. In ‘such a
case, whatever the lateral loads are, a single mathematical éxp1‘e$sion holds for the
entire length of a beam and it is not necessary to discuss each one separately. =
Substituting the value of y given by (2) in the left hand side of Eq. (1) and
denoting this result for simplificatin, by ¢ (x) one gets

dg dﬂ Zan 907, (.’I)) 7 d 2' Ayn P (2’,‘) ‘ | |
SelE @ T NT ROy =@ (3)
Then, determining the coefficients ai, a,, as, .... in the series (2) by
lle(x)%,(x)dx—() (=123 ... '(4) '

deﬂectlon .curve can be determined. This process is called Galelklns method
In this case, an approximate result can be obtained by taking fo1 _y an explesswn
with several coefficients and then ajusting them so as to satisfy Eq (4). By takmg
only the first term or two terms in the series of vy, a satlsfactory approximate resull
is obtained for any practical appllcatlon . , ‘

Coefficients ay, a,...... are also determined by energy method as follows In
Eq. (1) p(x) is the lateral load per unit length of beam. Consuleung the lateral
load only, Eq. (1) becomes

d2 i . S . )
e = s )

d: d
Thus, it can be. recognlzed that - g {EI () dJ{} is the elastic force of the beam'
per unit length to be in equ1hbr1um with p(z). When the beam is sub;ected to
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an axial force only Ea. (1) becomes

s gLy (6

2

By comparing Eq. (6) with (5) it is obvious that N ;Z'i:, is the lateral force caused

by axial force.

Therefore, three forces dd {EI (x) } dz, p(x)dx and N Zzy dx act in the diff-
erential length dx of the beam and they are in equilibrium. If the beam is given
a very small displacement dy from the position of equilibrium, the total virtual
work is to be zero. This follows from the principle of virtual displacements and
therefore one gets
" 2 2
J Lo 21 @ 2]
Small displacements of the beam from the position of equilibrium can be ob-
tained by slight variation of the coefficients a, a,, as, ....... If any coefficient q, is
given an increase(b‘a,,, the term (a, + 0ax) ¢, (x) IS obtained in series (2), instead of
the term a, ¢.(x), the other terms remaining unchanged.
Thus the increase Ja, in the coefficient o, represents an additional small def-
lection of the beam given by the curve da, ¢, (x) superposed upon the original
deflection curve and Eq. (7) becomes

dy -
3y — N g0y — py |de = 0. (7)

['[5fer @92 N - b e @z =0 (=12 5...) (8)

With the value of y given by (2) coefficients a,, a., a;, ...... can be determined
and it is observed that Eqg. (8) obtained by energy method commdes with Galer—
kin’s formula (4).

In other problems such as the critical load and frequency of oscillation of bars
with variable cross section, the results obtained by the application of Galerkin’s
method appear on the way of the calculation process in the energy method, and
after all it is seen that Galerkin’s method is more advantageous for the solution of
the differential equation.

In the Fourier series txansformatlon method, it is the same with the above
two methods to express the deflection curve in the form of Eq. (2). Integratmg
Eq. (1) over the length of the beam after substituting the value of y and multi-
plying this equation all through hy any function ¢, (x), it follows that

S [2%{“ () %¢M} ~-N JQZZ’;@ S p(x)}m(x) d?: 0. (9)
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from which coefficients @, a, as,...... can be determined. This process is the same
as that used in expressing any function in terms of Fourier trigonometrical series.

Galerkin’s method is nothing but a special case in the Fourier series transfor-
mation method. In studying deflection, critical load and frequency of oscillation of

a prismatical bar it is advantageous sometimes to use ¢, (x) in the form of sin
AL

/ In such a case, this method is called Fourier sine transformation method.’

The series of y which is to be assumed at first in the calculation of differ-
ential equations will be given in the following various kinds of examples.

II. APPLICATION OF FOURIER SINE TRANSFORMATION
METHOD TO THE STUDY OF BENDING OF THE
VARIOUS KINDS OF BEAMS,

1. Simple Beam with Uniform Cross Section under the Simultaneous
" Action of Axial Tension and Lateral Load.

As an easy example to illustrate the method of Fourier sine transformation
the author takes a simple beam with uniform cross section under the simultaneous
action of axial tension and lateral load (Fig. 1). Denoting by EI:‘ the flexural ri-
gidity, by N the axial tension and by p (x) the lateral distributing load, the differ-
ential equation of the deflection curve is

d'y d'y
EI Ja —Ndxg — p=0. (10
.Fig. 1
The deflection curve in this case can be represented in the form of a sine series:
yv E a, sin n—}@‘ . 1n

n=]
Each term of the series satisfies the end conditions, since each term, together with
its second derivative, hecomes zero at the ends of hteam. Thus the deflections of
the beam and the bending moments at the ends are equal to zero.
The second and fourth derivatives of y with respect to x are, Tespectively,

_____ o T d'y N\ (mm\'. anx
z\”( ) l and.dﬂ‘é“"(ﬂsm I

Substitutiug these values in Eq. (10) and performing the Fourier sine transformation,
the following equation is obtained :

S: {Elia ( )sin NZlan< )nsin — P (x)}sm dr=0. (12)

Taking into account that
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naL I

g L T d
S sin mlA sin i dx =0 (m=Fn) and s sin? T dx = o5

0

an equation for determining the coefficient @, is found as follows:

7 l nr\® [ . ntx
EIzzn(*’l ) 9 + Na,, (“l‘> 9 :Sp(x) sin—,— dzx.

Thus
20| p@ysin " da -
h hich = 13
4 EI7 (i + n*w) in which w'= 2. a3

Substituting such expressions for the cofficients in the series (11), one gets

o | N, X
2 P d P (z) sin i dx i 27 14)
Eln*~ n'+ a2t wt I :

When the load is uniformly spread at the rate of p per unit length run over
from z = u to x = v (Fig. 2) one gets

o A :

r—_ F-n:l o nrx pl aTw - nrv

N~ s, S psin =" da= oS~ —COS Ty

W d N ' ‘

Fig, 2 and accordmgly“

( cos 28 L )
~ COS
y— 20 1| R S (15)
EIn'u n=1 n + 7’1} w- . l

In the particular case of a uniform load applied from z = 0 to = = [ (Fig. 3),

7=1,3,5

Y T
coszzl——coszl—lﬂ=1—(~l)” N "E p nnng——»’y
and thus Fig. 3
| 4?14“ 1 g '
~ EI7 ,E w7 (16)

The bending moment of the beam is obtained by differentiating the above equation.
Thus

2 9 =2, y
dy 4pl bl gnmm gy

— E .
M= I n*+n w? [
. n=1,3,00

In the case of a single concentrated load P applied at x = u (Fig. 4), assuming

. P .
that the uniform load of-g— extends from r=ut0o xz=u-+ £ one gets

k22

wig P pmx Pl nrtY nn(u+‘§) ,
S g STy dr=rg g (COSTy T sy
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If £ is directly taken as zero, the right hand side of the above equation appears
in the so-called indeterminate form 0/0. So & should be made to zero in both the
differential coefficients of a numerator and a denominator of the above formula.
Thus

g Wk E)  mm
_‘Fil_[ [ . l :' —:PSInﬂ N ‘.m&\'u__—a“"ﬂ._*/y
- o 1 . - l .
The new result ’will be true for the load P con- Fig, 4 ‘

centrated at x = ». Then the deflection curve and the bending moment become,
respectively,

2P\ 1 . nTY . WX
1

and -

_2PINY 1. . oamu. nmx '
M= — }J w0 My (@ =0~au). (9
2. Simple Beam with Uniform Cross Section under the Simultaneous
Action of Axial Compression and Lateral Load.
In this case, the differential equation of the deflection curve is |,

2 & |
EICLT%—FN 2= pla)=0 o)

If —u?® is replaced for »* in the results one has just got the new results will be
true for the simple beam under an axial compressive f01ce and thus
(a) in the case of any distributed load :

TN S b(x) sin ™ f dz

Nt
EIn'z n'—n' w? S 1’ @D
(b) in the case of full uniform load:
4pl* 1 . X o |
= EI7 7 —n* w* s A @2)
7=1,3,5 } ’

_Apr N1 1

M=5 Z S sin 0T 23)

(c) in the case of single load concentrated at x = #:

_2pPP® N 1 . T . oty .
—_EITIA*”ZJ'H"—n?wzsm I s l (?=0~u) (24).'



140 Tadaaki SAKAT

2P\ 1 . opmu . owmx '
= 722_w281n 7 sy (z=0~u). (25

M=)

3. Simple Beam on an Elastic Bed (Fig. 5).
If a simple beam with hinged ends is placed on an elastic bed, the reaction of
which, at each cross section of the beam, is proporti-
P onal to the deflection at that cross section, the differ-
2 ential ‘equation of the deflection curve is
Fig. b B EIC*Z:J;Jray—p(x):O (26)
) dx :
where « is the modulus of foundation. « has the dimension of a force divided by
the square of the length. It represents the magnitude of the reaction of the foun-
dation per unit length of the beam if the deflection is equal to unity.
The general expression for the deflection curve of a beam with hinged ends
can be represented by the series

v= >_l a, sin7E. 27)

n=1

Performing the Fourier sine transformation with the values of - y given by Eq. (27),
one gets

! nm \! . Ntz nrIL
go {EI Ean <‘Z4> sin =7 +a2ansm — D (x)} sm—l/ de=0 (28)
from’ which

nr A\t 1 A . ynﬂx ] ]
)7+aan”2—:gp(x)s1n—7~'dx-

Using the following notation :

alt

w'= pro
the coefficient «, and the deflection curve are respectively,
27 {p(x) sin 28 gy

an = (29)
ElIn* (n'+uw? )

and

2 .
= Y S 30
7 EIn* & l, nt + w' i (50)

In the case of partial uniform load applied from z = t0 = = v:
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(cos nu cosnml)
1 —1 -
L) e
EI#® w + nw [
In the ease of full uniform load:
4 ZLZ“ 1 . BT
Y = TR Z Arnw S (32)

n=1,3,5-

In the case of a single load concentrated at =z = #:

ZPZSS— gin U i 1
| ntt LU“

= ; sin— (x=0~u) (33

4, Stiffening Girder of a Suspension Bridge.

In the ordinary calculation of the suspension bridge, the effect of deflection of
a stiffening girder under load is not taken into account and it is assumed conse-
quently that the upward pull of the hanger on the girder is constant. In the
suspension bridge in which the span is long and the stiffening girder comparatively
flexible, the effect of deflection under load must be taken into account. If taken
into account, the upward pull of the hanger at any point on the girder would be

dy h
q@)=pg—H,(1+ ﬁ)dg;E (34)
in which
H,
B=7>
H,= horizontal component of cable stress due to dead load,
H additional horizontal component of cable stress due to any cause, as live
load or temperature change,
g = dead load per unit length on cable including its own weight,
and y = the deflection of the girder at the point in question, due to any given

live load.

If the live load per unit length is denoted by p(x), the stiffening girder is
subjected to the simultaneous action of p (x) and —g¢ (z) and consequently the
differential equation of deflection curve of the stiffening girder becomes

d4
Bl g5i= b~ q@.

With the value of ¢ (x) given by (34) the above equation reduces to

B maep St pw =0 (35)
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in which EI is the flexural rigidity of the stiffening girder.
The general expression for the deflection curve of the stiffening girder can be
represented by the series

o0

y = Z‘ an Sin -”’;—x (36)

n=

With the value of y given by the above eqation, employing the Fourier sine
transformation method, Eq. (35) reduced to

S [EIEan( )sm7“+ H, (]-l—,B)Ean( ‘) sin = P+ ﬁg]sm i dx =0,

Taking into account that

I T g . 7T, l
Ssmw—;icsin nl dz = 0(m = n)and Susuf ‘nlx"dx=—§“,

the above equation becomes

N2

Fla, (—”li)“é + H,(1+ B a (”—,”) j (p — Be) sin 25 da. @37)

Considering that p (z)is uniformly spread from x = # to z = v and g over a
total span, one gets

T X V2 nrY nry
Suj) sin de =" (cos ] —cosT )
and
"
S Bg sin 17;:5 dx = Eg*(l ~— COS u7) .
Using the following notation,
H,I*
w'=Trad + B (38)

the coefficient @, and deflection curve are respectively

T
. op D (cosnTu — cosﬂjlfy\ — Bz (1 —cos nm)
aAn= il 5 5 3/ 3 (39)
LT n ot nw
and

j) C0S ™ s Cos nﬂv) Bg (1—cos nm)

4 — ) — Bg (1—cos pz
- 2 Z kil sin 7 (40)

EIn" £ 7+ n®w? l

In the case of full uniform live load :



Solution of Problems of Applied Mechanics by Fourier Trans. Method. 143

— éﬂt@@ \ 1 . nrx
- EI7 25 G (41)
b |

71+nw !

In the case of a single load P concentrated at x = u:

nrYy
2P i‘ sin —— — 2 Bg (1— cos nn)

PO 7 ¥ % ¥
= . : sin 43
Y= R A n' At = 9
1Ty
1 sin —5 — 2Bg (1 —cos 727T)
M=2PLN T L T sin 77 (44)
w4 w’ A

The same results have also been given by Timoshenko applying the energy method
but the process of its calculation is more labourious in comparison with the above
described one. In the energy method, the process of calculation is as follows :

. The general expression for strain energy of bending is given by the equation

EI’ 1 dﬂy 2
V = wzﬁ Su (dxﬂ) dl‘

With the value of y given by Eq. (36), this expression reduces to

excedt.n

2 S AN A S A iz . mrx
= 250{2:11(\l>a" sin / —|—2<Z) Za,,amnmsm 7 sin ] }dx.

Taking into account that

b n T
Ssm Tx-sinmxdx~0 (n 235 m),

the above expression becomes .

EL( \! AN
‘SO le ( i > ax SIn i dx.

The change in strain enenrgy of the beam, due to the small increase da, in au,
is : .

l N4 T 4 l
OV = EI da, { cz,,(ﬂl” ) sin® = l - El da, a, (ﬁl““) EE (45)

Next, the change in deflection of the beam, due to the small increase dq, in

Ans iS
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nTxr

0y = 0g, sin 7

and accordingly the loads p and ¢ produce the work
oW = S pdx 0y— g gdxdy

ntx

‘ L d*y .
j paan Sln l CZ.CL - S {ﬂg _Hq (1 +B) IZE} 3anSln )Z - dCC

2]

= 5%8 (p — Bg) sin 7 d.ﬁL — H,(1+pB) da, SO{ ‘| @ (%7{) sin 12_7;_75} sin L’l“f, dx

n=1

= aanf(p Be)sin 5 dz — H, (1+ B)dan. a, ( )**. (46)

Equating this to the work done 0V, the same equation as (37) can be obtained.

, In order to determine the value of f3, equating the work done in the cable due
to stress with the work done by vertical displacement of load, the following . equ-
ation is obtained :

n=1,3,5

in which

q

s > + 2b sec” 7,

L= (1+8

= length of span, f = centre sag of cable, = length of one back stay cable
and 7 = inclination of back stay cable.

This equation can be solved by successive approximations. The method de-
veloped above for the case of a stiffening girder with uniform flexural rigidity
can be extended to case of variable flexural rigidity.

b5, Fixed Beam under a Lateral Load,

Taking the simplest case of the fixed beam with uniform cross section subjected
to a lateral load only, the differential equation of the deflection is

& |
EI % — p(@) =0. (48)

The general expression for y which makes y and :Z,f;’ zero at both ends is

— qﬁ . ;:{"J 2'2:2 . x n (_ri . iiz 714,,, i 72 .CL‘}
y = >_&1 a { _< e e ) — 1 lﬁ) o sin (49)

' ' . Loody 1l
In the case of a symmetrical loading, dTJ::) =0 at xz = 5 SO that
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a ( & S A sin ne (5:0')
n l2 l nﬁ l *

y E=—3
n=1,3,5+
From Eq. (49) the fourth derivative of y with respect to = becomes
dt ¥ 2 it Anx
foq = E an f—lj“ Sin ——l—.

n=1

Proceeding as in the previous articles with the above value the following equ~

ation is obtained :

T dz = 0, (51)

4 N . pnx )
SD[EIEI“’LTS‘HT—“@] ]

Now since
I

R ‘L : l )
S smwsmﬂdx =0 (m=n) and S sin“ﬁ:£ dr = o5
l Jo l 2
it follows that
. nitx
20 gp(x)sm—l“*dx .
: ' (62)

an = 2
EIy?

and accordingljr

ntx d .
[ P 220 AN
——{- (—“l?;— . )= 1)”( — ) —sin 7"} (59

2 ij P (x) sin

- EI7T371=] . 7
In the case of full uniform load,
_4p T o .
i @n = prA for » =o0dd, a, =0 ‘for n = éven,
and
ot 223 ’ 2z 1 | anx
-—7'3‘—lq+ )—(-1 e *‘l‘?+nﬂsml
2z oz 1 “ dd
| = T for n =0
Therefore
_ 4 1 LN S
= I W 1215 poll W +m sin= ) . (54) .
and accordingly - 4
Dy 8PE NV L fam  an 5B
M= =73 }_) - ( 5 sin = ——1)- (55)
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If Galerkin’s method is used for this problem, the Galerkin formula becomes

j (e Yoo 57 = b} {= (5= 5

x° x* 1 | urzx
- (— (la"—*l?>+751n7*}= . (56)
Taking into account that .
g‘ mnx 77

sin T, osin T de =0 (mXn),

the above equation reduces to -

e Yoo (- (5 -2 ) - (5= )}

M=t

[2 - 4 3 2 < - _3 2
i o Bra " sint T de = |, p {- (% ~ —) (=1 ("z? — 5 )} da

14 1 y
|, @ sin % . (57)

Now putting 1, 2, 3.--... r in n of the above equation, » equations may be obtained.
Next adding all these equations and then dividing with » one gets

(S ) - (5% 0 3o (- 2
+ ——‘ EI Ea" 74 sin® —’l_' dz = S: P (2) {_ (%_%x'in) —(~1)" (;‘;%_ 5;9)} da

7

g P (@) 2“}‘ sin—— l L dz. (68)

n=y

When 7 is taken to be infinite,

r

1 | #n |, anx 1 \ 1 . amx
TSOEIZ\““ iosin dzr =0 and " gp(x)nz-lnnsm—l dxz =0,

Nl

since integrated values would have the finite value.
Thus the following relation may be obtained, from Eq. (58).

! \ w’n® | amz 2 2527 oz L2 a2t
Jo{ ez Yo " sin T (5 =T+ ) = = o (G-} s

=1
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oo (G- ) - e (- T)

and accordingly Eq. (56) becomes

nir !

‘ wint ! 1 nRx
JEla, T sin® l da:—j plx) —sin—— dx

or
371.3 12
S EI an nl4 Sln n:x dx = 50 [) (x) Sin _757—;—:1; dx

Wh]Ch agrees Wlth Eq. (51)
Therefore it may be seen that the Fourier sine transformation method is more
advantageous than Galerkin's for the problems with regard to fixed beams.

6. Cantilever under a Lateral Load.

The differential equation of the deflection curve for a cantilever with uniform
cross section subjected to a lateral load only is

4

EL N~ b =0. 9

The expression for i which satisfies the terminal conditions is

— (o, . nxsi')xLﬁf£1~
“ 21 |2””(‘1)<313"12—z+ sin=—y  (60)

n=i

taking the origin of x at the fixed end.
 Substituting the value of y given by Eq. (60) and using the Fourier sine
transformation method, Eq. (59) reduces to '

g {EIZan i smn —p(x)}sin%dxco (61)
from which one gets, in the same way mentioned in the previous problems ;

20 f p@sin ™" dz

an = Elns 7'[3 ———— (62)
and
E gl) « Sm 1 : x° x 1
Y= EI?T & . { g (=) (3? I ) 0t sin }(63)
In the special case of full uniform load |

4 pit
EIj;)z for n = o0dd, a., =0 for s = even
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and

_Apt o 11, (:c R I
~ EIn* E a2 " (=1) 3 l?)_- ¥/ ,+1”7r tsm__l }

or

__‘%lzli (x &y 1 = 1 . oz
[ 2\ {2 FERD 7 3l3>_7l47[4 l +n57T5 smn 1 }:’ (64)

7. Beam with One End Fixed and the Other Hinged.
In the case where one end of the beam is fixed and the other hmged, the ex-
presswn for y Wh1ch satisfies the termmal condltlons 1s :

N (L2 3 2ay 1y
Yy —ZI an {-é—( I3 - lf‘i“ l >+717T ’Sln \l } SR (65)

taking the Origin of z at the fixed end. ~
The process of the solution of the problems concerned with this beam is the
same as in the preVIOus cases. .
8. Fixed Beam with Umform Cross Sectmn under the Simultaneous
Action of Axial and Lateral Loads., :
Denoting by EI the flexural rigidity and by N the ax1a1 tensmn, the dlffer—
ential equation of the deflection curve is
EIZ:C Nf;y p=0. 69

Considering the full: uniform load, the det-lectlon ~curve can he represented in the
form of a series, as mentioned above in article 5 : :

1 s .
E ( ; —T+ sin nlx>. . (67)
M =1,3,6 nr .

The second and fourth:derivatives of y with respect to = are, respectively. -

dgy " 2 nt - nurx . Nnx
2= N a e  ana e Y w e

=1 3,6- N=1,3,50

It follows, on the substitution of these values into Eq. (66), that

\ wn® | anx N 2 an | oamg
"El 2 a4 ST - N 2 an‘(‘?— Jz Sin ) p(x)~0 (68)

c 1,3 b : N=y,8, e

Performing the operations of the Fourier transformation method one gets ‘

toplnt | ownx S 2 . Vo gz
k1 gﬂa'flTSIH-de - NS(] v 2 an e Sin T+ NLan T s’ nl dx

Ry By b
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nrx ' P I
= p S sin 7 dz . 69)
Taking, into account that ‘
o opnx l Sl . T 2l
Su sin® T‘dx =5 and oS dz = P (n = odd)
the above equation becomes
N 7 AN NV Cogm 2pl
: EIan 2 _lﬂﬂ' n=123r." a.”'+ Nan 2 T . (70)
Using the notaion '
' NP
W= pre
Eq. (70) reduces to - S
8I*°N N . Ay
@n = EInt (n*+n* wﬂ) 2 = Eln* (n*+n* w? - @D
| Makmg r equatlons Wlth the substltutlon of L 3 5, e irifon and adding;.a.l_l_:
these equations one gets
8PN 2 N 1
@ = Ern . n EITT B
n=1,5,5 n=1,3,5. N= 13 . N=1,4,5- o Sig,

When # is taken as infinite, this equation becomes

( ) ) NI T8 RN S

1 EI7r n+nw "7 EIat | At w

B n=1,3,5, : =1, R ¢ T "=1’5jﬁ"'" )

from Wh]Ch

4'p- N 1
N EI=" R R
an = 71:1’3':' (72)
weids. g BN\ L o
EI =* o n'+ n* w’

Substituting this value for Ya, into Eqd. (71), the coefficient is determined as follows:

4pl* [ 8w 1 }
EI?T4 (n* + n® W 7? 't 0t w’

n=1,3,5-

3

an =

For simplification, using the following notation',

Suw? = ; 1
- [1 B E '+ ng
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the deflection curve of the beam and the bending moment are given by

4plia N 1 2 z 1 . anz\
e R 9
'_§plfa N 1 nt . anx ‘
=200 N (o 1) "

In the case where a fixed beam is subjected to the simultaneous action of
axial compression and full uniform lateral load, deflection curve and bending mo-
ment are obtained by replacing w® by —w® in the above results.

9. Fixed Beam on an Elastic Bed.

If a beam with fixed ends is placed on an elastic bed, the differential equation
of the deflection curve is, like that described for a simple beam on an elastic bed,

d'y
EI ja+ay—p@)=0. ‘ (76)
in which « is the modulus of foundation. Considering, for simplicity, the full uni-
form load, the expression of y which satisfies the terminal consitions is

w0 2 1 72‘ - " .
y= ) a (%-fwﬂ—ﬂsin ~”l—x) @7
=1,3,5s
With this value of y Eq. (76) reduces to

3]

@ 2 1 ' \
EI 2‘1 an l“ sin 7Z7lrx + a 2‘1 an <JZC “—%4‘7 sin ﬁlfﬁ) —p=0. (78

n
M =1,3,00 7=1,3,5

By the same proceeding as in the previous problem, the coefficient a, becomes as
follows : o

= EIn' '+ ) @)
in which, for simplification, the following notations are used:
4 8 4 . 1 -1
W=l g [1 " }] ‘ﬁ}
EIn ’ ‘EI ol (n+w) .

Thus, the deflection curve and the bending moment are given by

_Aplp Y 1 (& oz 1 oamx
= - “(lg_l+nﬂS1n l) (89)‘

oo

I 1 T . pnx
M= ~p~§— E <112— sin n—l*‘ -1 > (81)
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.~ In the problems regarding fixed beams with uniform cross section, it is consi-
derably labourious to determine the coefficients of the expression of y. In such
a case, it may be one of admirable methods to take the well-known normal function
of the oscillation of a fixed beam which is represented by an expression of the type

N cos B, l—cosh B, 1 . )
y = E @n {cos B, x—cosh B, x — ﬁgﬁi— Sinhign / (sin B, x — sinh 8, x)} “(82)

n=1

in which B, must be the n-th root of _
. cosPlcoshfl =1. (83)

For simplification, denoting by ¢. the expression in the brackets Eq. (82)
becomes : ‘

y=ian%.k R 7

n=1

Substituting this value of y into Eq. (76), multiplying this‘equation all through by
¢, and then integrating from one end to the other of the beam one gets .

So [EI 2 B an pu + @ 2 @ Po — p(x)] ¢ dz = 0. (85)

The ¢, -values constitute a-complete orthonormal set, ‘that is,
j: P O dx = 0 for ﬁr'-*% m.
Using this relation, the coefficient «, is giveﬁ by k‘
:
|, p@ 9 de
C@rsiv | gar

an (86)

The integral of ¢> can be obtained in every pafticular case by direct integration
of the terms in ¢%. This process is labourious, but ‘it is’ easier to get a general
result to cover all cases.” This result is given in the late Lord Rayleigh’s “Theory
of Sound” as follows : ' :

; . ‘ ol e .
SU SDEL dx = m {‘Pw D4 Py — 2-D Py -D3 Cn + (Dg Spn)z} \ ’ (87) ;

XB=

in which D indicates, for shortness, diffefentiation With'resp'ect to z, that is, Dé‘:fo‘r
L I? for e etc. and the form of this integral is independent of the terminal

condition at -z = 0. ‘
For D' ¢, may, of course, be substituted its value B! ¢.,.
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If the end x =/ is simply supported then ¢,= 0 and D* ¢,= 0 at that end,
80 that ‘ '

l ) .
S‘ gp;;’ dr = — m(D P D Wn)z;'ﬂ . e . (88)

If the end 2 = [ is fixed then ¢,= 0 and D ¢,= 0, so that

‘l 9 l 2
|y vide = g5 @ o e
If the end z = [ is free then D*¢,= 0 and D?¢,= 0, so that

Jyprdz= 4 Ll (90)

Thus, if the fixed beam on an elastic bed is taken,
XU ¢ndx = [(cos B, -+ cosh B, 1)

and accordingly

(EI B3 + a) I(cos B, 1 + cosh B, l)

In the same way, the problems of a beam with both- ends free on an elastic bed
may be solved taking the well-known normal function of the oscillation of a beam
with both ends free which is represented by the expression of the type

\ k3 h n
y= E an {cosﬂnx -+ cosh 8, x — giorfgnl — SCl(I)ISh‘[f ; (sin B, x + sinh 8, a:)}

N=1

in which 8, must be the n-th root of
cos f3l cosh Bl = 1

10, Beams with Varmble Cross Sections, .

.- In the case of beams with variable cross sections, the genera] expression of
deflection curve to be assumed at the beginning is also quite the same as the beam
with uniform cross section. But the coefficients a,, @y Qe in the expression can
not be individually détermined. In this case by putting' 1; 2, 3,------ into n of the

multiplier sm ;lzg in the Fourier sine transformatlon method, the sxmultaneous equ-
atlons must be made and then solving these cquatlons for a the coeff1c1ents @1y sy
gy e ‘should be determined. ‘ ’

This calculation is labourious but for practical purposes it is enough: to take
the two or three terms in the series of expression of deflection' curve with coeffici-
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ents «, and a, OT a,, a, and ;. Very satisfactory results may be obtained, by solving
the correspbnding two or three equations. Taking only the first term of the series,
accuracy of the result is sufficient for any practical cases, too. ‘

Calculating process with respect to bending of the beams with variable cross
sections is omitted in this paper since it is the same as the calculations of critical
load and frequency of oscillation of a bar with variable cross section which will be
related in the later articles. :

I1I. CALCULATION OF INFINITE SERIES.

With regard to the bending of the various kind of beams with uniform cross
section, the results obtained by the Fi ourier‘ sine transformation method were rep-
resented by the infinite series. Since this series rapidly converges, the first several
terms give the deflection with a high degree of accuracy. Taking only the first term
or two terms, accuracy of the result is sufficient for many practical purposes.
However, in the calculations of bending moment and shearing force, many more
terms must be taken than in calculations of deflection since the series concerned
with those is slow converging.

If one wishes to calculate the infinite series itself, this calculatlon may be per-
formed, as follows, giving quite the same results as in the ordinary calculation of
the differential equation. ( '

1. Beams under a Lateral Load. Only

Take, as an example, the case in which the umform load is applied over the
entire length of the simply supported beam The deﬂectlon curve in this case is
represented in the form:

©

4p 1 pma
=Ftw ) 5oy 03

M=1,8,00

which is obtained from Eq. (16), putting w = 0.
In the equation, :

2 VN <x, 22 at
| o T T e Tt

D . L z 22 2. . .
which is recognized by expanding 96 \T——?+—ZT in a Fourier sine series.

Therefore it is seen that the deflection is represetned by

225 a2t

~ oigz - o 04)

Again, the deflection at the middle of the same heam is



154 Tadaaki Saxai

_Apt Ny 1 e
y”=;—~ EIn® >_\ 7 st 2

7w=1,8,50

which is obtained from Eq. (93), taking z = %
Using the relation

it follows that

(95)

(95)

(96)

In the same manner all the results represented in the form of the series, con-
cerned with the bending of the various kinds of heam with uniform cross section
having only a lateral load, can be reduced to the algebric functions using the

following relations :

goii . wunx ___.,1A< i)
Znﬂ S =y \1=7

2
=]
i T 1 x x*
P2t COS T =TT = or g
1wz L(?x 32" &
B A U2 O Al CH AT

@

(=1 . wmx  x
;le nmw sm 1 21
(=1  anz 1
e S P AT
(=1 . nrx 1 /(x 2
e ST =Tl T
2(~ 1y arx 1 <_;7_ 22t 2
it 8T = g ls Tt
Nl ame 1 Te 22
At ST = T g \157 T 3P tgps

)

©7)

(8)
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2 1 g e 1 (L ol
Hwe ™ =8 1~ ) (99)
e 1 (1 _ 6 4_:6)
AP ST T 96 R
R ﬂ_L(i 2x° g)
e ST T e (g T /! J
cdad )
VL oo 1 (=1 1
=l1727f Sin 2 = 4 B >:x1 o sm 2 — 4
IS N S (=1 e o L
n‘zﬂ‘z 2 _48’ n?T 2 *—48
1 ar 1 (=1 ar 1
5 S5 =5, 2#3 S, =—7g
2 o0s /" 1 7 Z(:i)_"mSL, 17
O T T160 720 wnt T2 T T 16" 720
1 o 5 (=y. ar_ 5
i S T9” = 1536 2 A S o = 1536
1 _ 1 N(E S (100
Z{nznz - 6’ Z_‘Ineﬂz - 12
1 1 \\(=1" 7
At T 90° it 720
2 1 _ 1 1 gn ™ 1
71271'2 - 8’ ni 2
cdd cdd
g1 1 __L
E 1 Sinﬂ__s_
i o 9 71536 «

cdd /

2. Simple Beam under the Simultaneous Action of Axial Tension and
Lateral Load. o
If cos wl is expanded in a Fourier cosine series, it follows that -

o i n+1
cos = -2 SIMWT. {_1 + Z‘M

o e (0<w<z). (10D

n=1
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Next, putting iw in the place of w in the above equation and using the relations
of sin {w = 7 sinh w and cos 7w = cosh w, it follows that

2w sinh wr {,1_' \N1(= 1y cos uf }

: h wl = — , —
~cosh w oo il R | (102)

T
which may be also obtained by . expandmg cosh wd inaF our1er series.
Then, by using the relation of
(—'I)VH-1 cos sl = — (_yl)n cos nfl = :‘— CoS n (7T —_— 0),‘:

Eq. (101) reduces to

Ncosn(r—0) 1 . mcoshwd ¢
2—‘ Atw 2w9+2wsinhwn' C -(_103)

n=1

Integrating three times in succession,, it follows that .

\ iipi(ﬂ—ﬁ) . i 7 sinh wl .
Z nm 4+ wh + 2w20 ~ 2w'sinh wr (104)
cosp(m—0) . i, 1 7 cosh wﬁi ‘ ’
LI L COSR
2 nt + wh O 4wt 12y2 ,+(2w" 2w* sinh wr . (105) g
1 sin z (7 —6) 1 7’ 1 7 sinh wﬁ .,
L i — 3 I : f
n>:l w(n + w 12w ';9 + 1207 ° 2w“> f+ 2w'sinh wr :(106)\ '
Replacing = — 6 and 6 by 7" and T (1 ﬁ—'—> respectively in the above equa-,
tions it follows finally that R
\ nTx 1 7 cosh (1"%)
— 5 COS T = 5 : '
ot w l 207, ,,2{w Smhiw(r
® R . x
| 1 o T _ T 1 jﬁ) ~ 7 sinh wr (1— ] )
o+ w?) I 2wr\" T 1 2u'sinh wr

7 cosh g (1 M%) (107)

| i 1 I P A R
B ne S T\ ) T 120 20t T 2ufsinh wn

i 1 . 71,7'2;7,‘ ’__.7;1.—3‘(1 __-7_‘;)3 < - . 1 'i‘ [T
2t wd) SR T T 1202 N T 12w ™ 20" —.z)

o x
m sinh wmn, < 17_7>

2w'sinhwr
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Replacing 0 and = ;.0 by %; and = (1—*?)' respectively in:equa"cioﬁs (103)»»(106)
and using the relations of

x ) nrx

sinpn (1_7{> = — (hl)"sin'# and cos nw -(1—7) = (— 1)* cos e

it follows that

@ . ' - wrx

ECH TS I

St ur oS 7 2w* " 2wsinh wn

- , wrx

2 . ("—'].)n . 7’Z7r_l' B ‘Ai i ﬂSll’lh l

i {n’ +w)sm T T 2wt 1 +2wgsinhw7r o

(108)

uﬁrx

2 (-1 amx @ oa w1 TCSRTY

o l,n( +w)COS = 4@02\_12 12wt T 2wt 2w smh wr

w wrx

I ) T S ESENAR _rsinh

)0 T 2wt 1 12wt T 20 L 2wisinhr

Next, subtracting. the equations in (108) fror_h those in (107) it follows that

- wr  wnx
N Al S
n=} 2+ QCOS = . ; . .
e 10 ! 4w co,sh—uéE : . o
wn wrx
1 - . 7 cosh 2 "]
v U I .
4o coshj,:—
' - (109)
L wr  wrx
1 w2 ”Smh(z Tl )
i n*(n® - ud) €S ™y é,Swz( N l-)_ . owm
- * 4yw* cosh IR
ETIPEY PR BSSLE s
oddl i+ w?) ST =gwr\ 1 T ) gt Tt

4w" cosh %E /
The equations in (107) ~ (109) are useful for the calculation of the infinite se-
ries which appears in the results concerned with the beam under the simultanéous
action of the axial tension and lateral load.
Take, as an example, the case in which a simply supported beam is subjected
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to the simultaneous action of axial tension and full uniform lateral load. In such
a case the deflection curve is

_ Al i B S
YT ER L pvdw

n=2,3,b

Using the fourth relation in Eq. (109), this deflection curve reduces to

cosh(wr wr
SAplt 1 x  x 1 2 z)
y=”E—f{8w2ne (7—7?)~4w«n4+ wf}- (110)

4y 7' cosh o

2 2

. . N[z, . .
Using the notaion g = A I the place of w* = R the above equation
takes the form

AT . C"Sh(zzx"*)}

YEBE UL T T2t T 2ptcosh
or
) 2px
BRI E S . proosh | 110)
y=27101 12724 + 4¢* N cosh p
In the same manner the bending moment becomes
osh (v w&)
_4pr N 1 . nny . pl* ¢ 2 7 1))
M= =45 )\ Gpopesin = an {1_ e am
=185 ‘ COSh 2
or
2 ‘
Pl cosh < Zx —/1)
- - — ) (111
4dp cosh ¢

which may be also obtained by direct differentiation of Eq. (110").

In the case in which a beam is subjected to the simultaneous action of axial
tension and a single concentrated load P at ¥ = u, the deﬂect1on curve and bend-
ing moment are, respectlvely,

- 2P Z?E L sin 7% sin E (= 0 ~u)
Y = Erat =1714-1-7227/02 l I

and
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Replacing = -0 and 6 by = ( %——JZL) and = ( 1 —l;— + —9;—), respectively, in
Eq. (105) it follows that ‘ ‘

[22) (l _.x_\ ] x )
cosn [} =) e (R, reosh wr (15 47 )
"~ n¥n?+ w? T Gl L )"12w2+ 2wt T 2w* sinh wr

\

. u x u x .
and also replacing = — ¢ ‘and 6 by = <T+—l—) and = ( 1—7—7), respectively,
in Eq. (105) it follows that '

8 (_u, X h (1 K
COS nrT l -+ l ) nt x ] 7t 1 T COSn wr —_ l — l
A

— e - >.(113)
fogr] W+ wd) 4wy ! 120 T 20 2u° sinh wnr

From these two equations the following e’quatio’n can be obtained :

Mitran foos (5 =) = eosme [ )

. umx ‘
e (1 u_) x 7 sinh wn ( 1- A ) sinh = 7
- - 1 - w® sinh wn

Using the relation of

0 i 1% o WE (JL A (_%_ A
sin / sin i -cqsnn‘l~l)—cosnn\l+l)

the above equation takes the form

" . AN
E} 1 o e ___1 (1 w\ 7w sinh wr [ 1— ] sinh 7
nln(n+w)sm 4 sin I ~ 2w\ ] ) '

! 2w’ sinh wn

(114)

In the same manner the following equations are obtained :

\

. u wrx
2 J— "”x__"_(l uy nsmhwnil—— Z_)COSh ]
1 +w2) sin =y cos Ty = g5 a1~ z)‘ 2u* sinh wr

(115)

7 sinh wr (1— I ) sinh wrx

[
E s ny ] I
Ly gesinTysins, = % sinh om : |

Using the above relations the expressions of the deflection and bending moment
given by infinite series reduce, respectively, to
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inh wr (1 l)- inh 2
Pl3‘ 1 " x smnh wnr \ _— l Sin l 116
S IR Sl A
ETI \w'r l l 7' @’ sinh wr
or
h2 (1 ) h o
Pl sinh 2p {1~ 7 sin Tl | 16
y = { 1——“’*) - (116)
N 1] 1 2/usmh2,u
(. =0~u)
and
PI sinh wn (1—%) sinh 7"
M= ] (117)
mw sinh wr ‘
or ‘
2
Pl sinh 2y (1—7 >smh"l;i ’
M = . a17)

2p sinh 2;1

In the special case in which a smg]e load s placed on the middle of the span

. l
it follows that, given ="9

. . 2px 2px%
Pl(x sinh # sinh ] ‘}_ Pl {_ sinh — ] }
Y= N2l = 2usinh2x S 2NVl ~ 2ucoshulf

and

2
Pl sinh %

44 cosh u

3. Simple Beam under the Simultaneous Action of Axial Compression
~ and Lateral Load.
From Eq. (101) it follows that

2y (e / ; . s 00 .
2(_1)_ cos nf 1 7T COB 1 a18)

W— w7 2wt 2w sin wn

n=1

Proceedlng as in the prev1ous article, the fo]lowmg equat1ons are reduced from the
above equation : '

Lt w—w 2w 2w sin wr
zﬁézlﬂ,,(”—.@ _ o L, msinud ' (119) -
n@—uw?) — 2w 2w'sinwr ‘ , o :
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gcosn(n—_@* ] 71'2 1 n cos wl
) e —w) T T 2wt T 12wt T 20t T 2 sin wr
ﬂ sin » (n—40) 1 . (__l 1 m sin w0
>J Bi—w) = 1m0 12w2+2w")0 + St sin wr
p 'w: (( x‘ Y
2 1 nwrx 1 7 COS W \1— ] )
— - COS 1 = — 2w sin wr
) . (1 ,,x_
_ 1 omx -t il
S —w) M T 2w \U T ) 2u” sin wn
o x :

i B nrx ﬂz_. (1 x; 2 __i »lﬁ T COS wr (1 —7*> (1 20)
i —w?) COS™ == 4\ ) T 12 T 2wt T 2u* sin wan ‘
%‘Fl Wg*i_( EAY ( oo .

L= 1 = 12 17T )— ,12w”+2w4) (1—“;5)

7 sin wr (1 - —7—) }

+ 200" sin wr
» co WK
[ V- S
L g ST T 20T 2wsin wn
& wrx
(=1 . owmx 1 x ™ Sin I
n:ll W' — w?) ST =T 0wt 1T 2ufsinwn
- ; B (121)
(=1 . mnx g n* 1. "oy
s R C0S Ty =— T g ot i a5 A= 5isan
e Wi —wd) cos du® [? + 120t V¥ 20"~ 20 sin wn
@ wrx
2 (— 1y sin nx n? _xj+( n? +_7f_)_3‘_ 7 sin 1
= (i — ) I~ 7 12w P 120 T 20 | 2w sin wr
5 ( wr  wry
: 1 nry zsin | “pm = 7 )
n=1,3,6.+ w— w cos I wr
“ dwcos 5
R s
2 g T 2 T 1 ) - (122)
faa %(% n- l R V7 +, W
4w2cos-2—
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() |
I RN S & iy =) |
i w—wd) ST T T g\ T ) wm |
dw’cos —5 |
|
wr o wrg
IR PRI i
S i —wt) T T T 8w z‘zﬁ)*zxuﬂ* wr |
~ 4w“c03“2— !
/
® . (1 u\ . wrx
T S . T il S l)sm !
72=1 nﬂ - w“ Sln l sin l - Zw Sin wr .
t i %\ wrx
E‘ ni nrx bis w oy T SIMWT (1~_l )COS e
7,l,n(n w)sm ] €o8 1*2—252(1—7 " 2u* sin wr (123
1 WU o TR i(l AP
Hop—wy) S0 ST = g1 l)«l : \
u\ . wrx
nSlnwrr(l— l)smT
+ T 2wtsinwm

Using the above equations, the deflection curve and the bending moment in the
case in which a beam is subjected to the simultaneous action of axial compression
and full uniform load become as follows:

w0

4p* \1 nrx.

EIﬂ' w— nSln l
n=1,3 5

wr  wrx
cos| 5 — "y~

4pl’ 1 [z a2y 1 2~ 1 )
= EI {_ 8w2n?< I~ lz)_ At t wrr} -2y
: : - : 4w nt cos o »

or taking the notation of

. _UN
K= 4Er
Eq. (124) takes the form
' 2ux
2 .
y = ng {_ﬁ . 2 - ,1_} A ffﬁ?(l _ﬁ> 124/
2 1 ! 2u 44 N cos p (124)
_ 4pr 1 . HTK
M - 7.[.3 7 =1,3,5-- 1 %w2 Sln l
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e

- ZUZ ﬂ2

or

COS(M Mﬁ)
| 271
(-1 o wr g
CcOSs 2

4p2 COoS u

el

(125)

(125)
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In the case in which a beam is subjected to the simultaneous action of axial
compression and a single load at x = %, it follows that

1. . wnnu . nx

_2PP Y
y= Ezn‘*z 0

n=1

— %21/02

sin Sin

l l

. ,(1 _'u__‘ .
= 1_’!,‘;’{ 1 <1 l>i sin wr {1~ - )
EI\"wa\"" 1) 1 * w’® 7 sin wr
or
. ;M,\
_ JLI{ (1 & rsxn2,u (]_ I )
YTN —\—l)ljl‘ 2p8in 2p
and
_iplg 1 . wru | wnx
=" e nz,n‘ 2 SIn l sm 7
. Pl sin wn (1_%) Sinf’i’;?f :
T wmsinwr
or
: u\ . 2px
Pl sin 2p |{1— ~l—) sin =™
M= 2 sin 2p \

} (126)

(126')

azm

(1271

In the special case in which a single load is placed in the middle of the span,

it follows that

and

. 2ux
sin—,

}

128)

(129)
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These results may also be directly obtained by replacing w by iw in the results
obtained in the case in which a beam is subjected to axial tension.

4, Fixed Beam under the Simultaneous Action of Axial and Lateral Loads.
Putting x = 0 in the third formula in Eq. (1'09), it follows that

: 1 ks 7 sinh b;ﬂ
2 7V~Mw7
N=1,3,5 ﬂ(n+W) . 4w COShM
. .NI* NI

Usmg ‘the notation po= 4ET in the place of w* = EI 5 the above formula reduces
to

>_l T +w) 3;;12 (\l;—tan;l;l #)

Consequently, a in the formulae of (74) and (75) reduces to

o=[1-% 2 srvw = [1-20 Y asora]

n=1,3,5 7=1,8,b

Y
= tanh
: 2 ) .
Substituting the relation of w = K into the forth formula of Egq. (109), it
follows that ‘

2‘ . nn¥ 1 {x AP R COSh(gT'_F\)}'

vetin T (n +w)S T T2 U0 T T2 T reoshy

Therefore the deflection curve in the case in which a fixed beam is subjected

to the simultaneous action of axial tension and full’ Jateral uniform load becomes
as follows:

! © - 1 i
H4§Iln E n+n w (*”_ch—'l_ﬁsmﬁlr{)»

n=1,3,b-
f2px
4pll {( x hﬂ) 1 ‘ COSh (\‘ IA“/‘I)}
=32 EI\\ 1 T ") T 2utanhp T 2pcoshp

o h ( 205 > N
_ Al I( ¥y cosh {75 — p | — coshp,
T Rp RN LT ) 2 cosh ¢ tanh f
NN
t sinh -;~ sinh <~~—_. /
S (A P R )} 30
32/12EI Wi e g sinh p
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(k)r' o : -
Pl x e sinh *‘l"l;isinh (,u— 11795_) e
y = “2N"{(T“ 12> - 4 sinh 4 } (130)
In the ééme manner, the bending moment becomes
o 72 /zcosh(,u——l")
M= ]L ]___ \ 131
4p2 { sinh g } ‘ (s

which may also be direbtly obtained by direct differentiation of Eq. (130).
" In 'the case in which a fixed beam is subjected to the simultaneous action of
axial compression and full lateral uniform load, the deflection curve and the bend-

ing moment are obtained by replacing # by iz in the above results, so that

4pl* x gy S glﬁism(‘/ll)x_'u‘)
v = mi )t s ) (09
or |
sinﬂsin(,u £
yiarEs x) l B 1)1 L T
v zm( FPTOU)T O psine (132)
. and : - L
| prcos (- 25

‘ M="ga) sin
IV. APPLICATION OF FOURIER SINE TRANSFORMATION
METHOD TO THE STUDY OF BUCKLING
: OF BARS WITH VARIABLE CROSS SECTION.

1. Unsymmetrical Bars with Variable Cross Section.
Denoting by I (x) the moment of inertia of the cross section at x and by P

the axial compressive. force, the differential equation of the buckling curve is.
EI (x) gor + Py =0. (134
Taking the case of a bar with simply supported ends, the deflection curve in
this case can be represented in the form of a sine series:

y = E a, sin ﬂl;ﬁ (135)

n=1
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Each term of the series satisfies the end conditions, since each term, together
with its second derivative, becomes zero at the ends of the bar.

The second derivative of y with reépect to x, from Eq. (135), is

Substituting (135) and (136) into Eg. (134), it follows that

- I(x)z' (ln( )sm YZTx +*§2‘an sin zu;_xzol

Multipling this by mnTand integrating from one end to the other of the bar it
follows, taking the ends at ¥ = 0 and x = /, that

l, {I(x) .an(T)sin”—?—% Wa sin W;x}sinﬁ?lﬁdxzo. (137)

Taking into account that

& nx x Loonm [
s sin ml sin W; dx =0 (m~vn and .Sn sin® ’%2{ dx = 3

the above equation reduces to

except.n

- .
() {a,, (ﬁ;) sin® 7%% + E an (7’;77 sin m;rx sin W;x} dx — a, é 2 =0 (138)

R,
<

Eq. (138) is extended over all values of # and s in a sYstem of homogeneous
linear equations in a; a, a; - as follows

Ty 411 + Tw @y & g oas oo '

For @ T Ty Oy Ty Qo A e
(139)

Tyt Ty @yt Ty a4 e R
Buckling of the bar becomes possible when a system of equations gives for ‘coeffi-

cients a, a solution different from zero, i.e., when the determinant of a system
(139 becomes equal to zero. Thus it follows: that
BTy Ty T

T Te T o o :
=9 (140)

s T3 7o
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from which the critical load ‘P is determined.
Now, 101 an example, take a case in Wthh the moment of inertia of the bar

Varles as follows ‘
I(x)=a+ bx + cx” +dx* +ex'. (141)

Substituting this into Eq. (tfl%38)' and using the formulae :

Lo MK ! T2 S
s 31n2—'l—dx~ o ‘soxsm i dx = 4

0 AR 1 T I & 30
Slx sin® %’J‘G’dx = ~5( 3'—ﬁ>; Soxc‘sm‘-’ nl'—dx =g (1—77)’;

0 n'n’ nm
“‘ s iz 1 r (1 A 3 P ein T ™ g — 0
lox S1 / =g 5 ’+2n4n‘* 5 LSIH / S Ji X =4U;

v urx mﬂx'd = Adpml* hen - o . ad b

0 X Sin l Sim l X = (ng_mg)z ot wihen # + m 1S an o numper |

% sin —7 sin 7 dx = O when # + m is an even number:

ooy omrx C o Agml®

xsin T sin T da = s e (= 1)"’”

LI nIx mux
xsin 7 sin — 7 dx =

5 :

“L nx . mng-
|

|

—6nml ;1 8(n +m"‘)}

(*— m?)r? | (n'—m’yn’
when # + m is an odd numbe1

nnx, . mny Gnmll

1
j x%sin “sin - dx = T 2 when # + m IS an even number:;
0 l l (n 72

: wex . mnx o 8uml® 12 (1 +m)
jxsm ! sm Ty l dx = 7 (% )27.[2 { (nz mz)a }('— 1) ’

a system of homogeneous linear equations in a,, a, -+ is finally obtained of the
following type:

oo [ b (g e 31 g{i(}g 1. 31 Py
ammlat a2y 2n7r)+ 8 nj-’nZ)“‘f,z 5T nﬂnﬁzwnaﬂfzm

Mminieteén mn - Ldd

+ Z} Clnf(n—:il'n;;;?{ 4cl + 64 + 8613 l:l— %12—(23:‘;2:? J} - O ’(h,%zz)j{‘lb
el 4 Bar| 1~ 8((: +mﬂ 8l 1— lzzéf "f;]} =0 (142)

Taking the values ofn-l m=2,34-;n=2,m=134-; n=3 m=1,
2’4: ...... s ;
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the above equation reduces to a group of equations as follows.:

- o f [ b cl(l L) 3. glj(i 1.3 'P_l.}

2l t 4t (3 o) g _l“nz)““z ‘5_7r‘T27r4>}_2E
' 0
—Tg @ {2b+2cl+3dll/1——‘§—) +4el (

—g—*>} + :232 a3{ZCl
+ 3d1* -+ 4el? (1— 3132,)} — =0

FREERY +6d12(1_;—§;‘3;) + Bel? (1—%)} - afow g+

T
+ Czl ( 3 sln) dslz(l 4%;) 43( 5~ 4171- 3;4)]“4%}
+ g a{ab ael +6a(1— pors) 4 8t (1= g2}~z 0
et 6ar 51—} — o o fav et 6ar (1555 )

v (1-ggi) + foel g 4o 5 (- 510

.....................................................................

_ (142)
General equation (138) can also be obtained by applying the energy method as
follows : i

By equating the internal work to the external work, axial force is ex-
pressed by

Copr o dt\? ‘
& gui (ZL(J})J)) dx | . )
di ) 9% o

Substituting in this expression the series (135) for y, the critical load is de-
termmed by finding such relations between the coefficients a,, a,, -as-

» :

--as to make
expression (143) a minimum. The condition for the critical load to be at its mini-
mum is

opP
Ba,

or, for simplification, denotmg by N the nume1at01 and by D the denommatm in
the right hand side of Eq. (143), it follows that

oNY_ Lo N
aan\ D) = D aan(N) - DZ atl,,(D):O
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Using the relation
' Po5 N N P
= [, ) T mm= T
p ° DT E

the above equation- reduces to

3 0
(N) = & 3q, D) =0

da,
or

i<' P
5a (N = ED):O

from which one gets

Area b (a0 o

The first and second derivatives of y with respect to x, from Eq. (135), are,
respectively,

dy _\1 (mr) _ wix Iy N1 (n‘z "
. —;Jlan( ] )cos l’ and det = »,,lean‘ l)sm 7

Hence

dx) n,an l COS l + an am %m l )COS l COS l

excenmi.n

(diﬂf)‘_E nrN L TE E et [ ) i P i
dx* —‘n‘ an< i )sm / + /| a, am N'm I sin l sin i

\

dEv\? \ 2
Substituting these into Eq. (144) for < 5??3;) and <%§) it follows that

exeepi,n

! \t nx 1
ﬁo I (x) {Zan (l )Sln nl + 2 2 an 1 m? (7;_) sin W;x sin 173[759;} g

ereapt.n

p nm \* nrE Y pmy 2 N
TR SOZan (7*) cos? - ] + 2 Z’ Qn 1M (—l) cos "~ cos m_-} dx = 0,

Taking into account that

! nnx m?‘[x ' L nny . l ;
S cos ;7 cos 3 dx =0 (nXm) g cos® i dx = 5
0 ! ! Jo l 2

one finally gets

excet.n

1 nr 2 ] X w\2 . . ) .
"O I (x) {an <T) Slng%‘— + I am (27;7) SlnLT;x'SIH m—;r"ﬂz } dx — ay ZPEZ,\ 0
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which agrees with Eq. (138). In the present problem, however, the process of
calculation by the energy method is more labourious than by Fourier sine transfor-
mation method.

For examples of the application of Eq. (142), take a bar whose moment of
inertia of the cross section varies as a certain power of the distance from the
lower end (Fig. 6) so that the moment of inertia of any cross section at x is '

~ (A4 (145)

where I, is the moment of inertia at the middle of the bar.
By taking various values for #, various shapes of the column are obtained. Assum-
ing that‘ n=1 in Eq. (145), one gets the case of a column in the form of a plate
of constant thickness (Fig. 6. I) and of
varying width 2.

(I ) ‘ The assumption » = 2 represents,
% L with sufficient accuracy, the case of a
I L‘: bﬁ;l built-up column consisting of four angles
() a7 connected by lacing bars (Fig. 6.1I). In
2 7 - ﬁ this case the Cross ‘.sectional area of the
%/, . x @d column remains constant and the moment
kgt of inertia is approximately proportional
Fig.. 6

to the square of the dlstance of the
centroids of the angles from the axes of symmetry of the cross section.

By taking # = 3 one gets the case of a column in the form of a plate of
constant width and of varying thickness £ (Fig. 6.I1I).

By taking » = 4 one gets such cases as a solid truncated cone or a pyramid
(Fig. 6. IV).

Then the differential equation of the curve, in general, can be solved by means
of Bessel’s functions and in the particular case of # = 2, the solution can be ob-
tained in a simple manner. In this paper, however, the author shows the solution
by means of Fourier sine transformation method using the result given by Eq.
(142). '

The coefficients in I (x) = a + bx + cx®+ dx +ex*, cor respondmg to each case,
become as follows:

I. Inthe case of n=1;
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II. In the case of # = 2;

I * b=1 24 ; I —‘1—*——
a = (:7'7771"'72, = cﬁia c = c( _l__\‘
(14 3] (145 1+

III. In the case of # = 3;
A3 34 , 32 1
azlu—“l‘_s, b=I, L c=Iﬁ“ﬁ, dzlc"——l*'a, e =0,
(%) i) [++2) [ y)

IV. In the case of n = 4;

; A4 b1 443 7 642 de] 44
a = chﬁ-‘_l’ = c(—_l_.\—i’(;: c(——d?y = c(—v—l—‘ly
e ) () vy )
’ 1
e =],

l 4
) |
Substituting these into Eq. (142) and taking the two terms in expression (135)

with cofficients @, and a,, the equations, from which the critical loads corresponding
to each are to be approximately determined, are obtained as follows :

: 32 \*
1. @— ) (da— k) — <—§—) =0 (146)
in which ’
)
' 1 1 16 2
IL. (a~—-7—k)(4a—7—k)—(‘9—){32=0
in which
l 2
TR SR Fs Eﬁiﬂ,
c=mlp Tt 3)’ p=2Q@ 7+ 1, k="""F
16\
IIL. @=P—k@da—p—F)— (T> & = (148)
’invvhich'
S T R S S 3 4 3
*= <13+2 12+z+4)’f9=2 R
l‘3
N . P</1+—~)
o A A 40 2
5= 642 o A .40 LA 2]
lg +61 3<1—97T2)’ k“- lEIL .
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Iv. (@—B+7—k) (da— f + %r — k) — (1@)0 =0 (149

in which

(zf S ST R Y E 3
a = Zl+ ZJ'I lz+l+5) [3}23124‘31""“],7:2”2:

. x Lt (1) 1m R T2

8:81 + 12 lg+121<1-cq)+4\1—9n2), k= 2 .

Solving the above equations, the smaller root gives the critical load in each
case. This value can be represented in general hy the formula '

P, =C "“;ﬂ (150)

2

in which Z“I is the critical load of a bar with uniform cross section having the
value of I.. Several values of the factor C are given below in Table 1, in which
I, is the moment of inertia of the hottom cross section. When the ratio I/I.
approaches zero, the values of C should be determined taking the three :or more
terms -in .expression (135) and therefore thé values of C in such cases were calcu-
lated taking the three. or more terms.

Table 1. Critical Loads for Unsymmetrical Bars with Variable

Cross Section, coeff: — IEI( o

0.01 0.5 0.6 07081 0.9

0.954 0.971] 0.985 0.994 0.998

0.02 l 0.04 | 0.06

1 |o. 754\ 0.764 0.780) 0.794 0. 8075 0.819 0.868, 0. 904 0.952
0. 874 0.920, 0. 950‘ 0.971] 0.985

|

o

Ao

P |

’ 0. 650‘ 0. 792l 0. 8()‘)‘ 0. 918| 0.950’ 0.971 0.9851 0,994 0.998
t

2. Symmetrical Bars with Variable Cross Section.

0.08’ 0.1 ‘ 0.2 } 0.3 | 0.4

f |
| |
2 4561 0. 519‘ 0.5956! 0, ()4()| 0. ()84‘ 0.715 0,820 0. 881[ 0.922 0. 901 0,971} 0.985 0.994] 0.998
0.336 0. 419i |
f |

1 0.519) 0.585- 0,634 0.675 0.802 0.994) 0,998

3
4 0.284 0,373 0.482 0.556 0.610

|

In the -case in which the va11at10n of the moment of inertia of the Cross
section is.continuous throughout the whole length of a bar, the formulae obtained
in the previous article can be used. When the variation, however, is discontinuous
at the middle of a bar, the mtegratlon in Eq. (138) should be performed subdiving
it into two parts.

Thus, takmg in account that

- mrrx, nrxy (5 ., __L
Susm 7 sy dx =0 (m—vn), Ssm 5 dx i
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the formula corresponding to Eq. (138) becomes

1 GL(‘E ptom

‘0 I{(x) {a,,, (%l” ) sm*’ﬂ*— + E an (mn> sin ! ;m sin W;x}dx - an,% =0.

In the case of a symmetrical bar, considering a symmétrical shape of the buckled
curve, all :the values of » and s are to be taken.odd only.
If the! variation of the\moment' of inertia is

‘ ' [\ :
I(®) = a + by + cx*+ dx*+ex' (x =0 ~7> , (152)
using the formulae in which # and  are obd numbers:

EPELC N A foge 2 L (L L),
Suxsm ldx:4i4+z),goxsm _8‘6+‘ >

1t [ ntnt
(o % gy = L (Lo 2 2
‘Oxsm j dx =g \16.+4n‘ﬂ2‘—-‘fn" ;
e
.‘o x Sln l X = 8 0 + 21’) 2 ni 71.4) 3
14 ‘ 5
o nrTx mrx I n+m
- i e S e dn er;
SU x sin — “sin = I dx = (n+ mpn when —5 is an odd number ;
5 . nnx . omrx —? nt+m. _
( x Sin sin dx = ;—  when —5 is an even number ;
0 l l (n— m)"" 2 . : o
Ll 2 2y 73 n+m
2 e ol nrx . mTx (% +_”L.)l . T
sﬂ & sin =, sin ,l dx == ( 1)’
12
S i muy s { W+ m’ 2 }
iux sin —sin — l dx = 3l Ar—miynt ~ (ntm)
, nt+m,
when _2'% is an odd number ;
1 ’ ) / N 9 ‘ 9
‘o nrx mnx w4 m? 2
Z g s NN L HEEA _ 1 _
sox Sm Ty sm Ty dx o Sl {4(n2—mz)2 ™ (n—m) 7_T’*J
n+n
when ‘EW iS an even number ;
5 L. onmx . omny J 2 {n“"+ m 6+ 6n2m2+,m4} ; L
s ghsin sy dr == s w4 T emmepe SO

the formula,‘ corresponding to Edq. (] 42),is finally obtained of the follbwi‘né type:

o b (1 ! e {1 1 ar(1 3 3
“w{”’”‘[u Ty (4 * >+ gl T o)t 8 16 T hpr T
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we+n
—, - cdd

el [ 1 1 3\ P Cm (o ()
Ty (E + o T n*ﬂ‘*ﬂ - 4E}+ Zl @+ {b + (n— m)*
e+ 2 2el* Td+m®  6(n*+60'm*+m?)
+ 3dl? [4 n—mf~ (+m) nz] + (n—m)z[ 4 T (B—-m)n :l}
N m* dw+m’) T #+m’ 2
- ;} @ (n—m) {b Y wrmy T 3dl [4 (m+m)t "~ (n—m) ﬂz}
2el’ '+ m*  6@m+6mm*+m?) |
t ot mp [ 4 T (B—wmyn }} =0
(n, m = odd). (153)

Taking the values of # =1, m = 3, 5, 7---
Tooes ven,
the above equation reduces to a group of equations as follows:

(o T wolak)e d (k) # e
5
8

el 1 1 3 Pl 5 3
+ 5 (ZO*"Z_nE—?H — i’ff} — 9a, {b + g+ ydl (
o’ (ﬁ_ 51 25 { B3 . (E 2
+ 8 2 471_ )} + 9 [723 b + 8 Cl -+ 4 dl 8 —971_2)

el® (13 97
+ '8“("2“@)} =0

for Fan Far(3-2) e LS - B afor oo

2;[4)} -

A

i(il ar/1 1 1\,51_3(1 1
+ o 6 tom) g et 2e o) T 2

17 3 17 2\ P (17 711
+ B b+ gy el + 4‘”( 7) 32(2 *1'*6?{2)}"

8 9n?

@ f, 13 3 (13 2 ) 13'(13’97‘

cn=3, m=1,5,7-

40 T 18

sn=5m=1, 3,

3
n‘)

.
—)

=0

8
3 17 2 el 117 771" 1 1
—dl (?5 —) 39 (‘” qu)} + as {25n { 7 +b (*"4f+ﬁ>

i(l, 1 ﬂ(_ 8 3y erf1 1 3
+ 72 _16+257r2)+ 2 {16 T 10072~ 6257) T 2 \ 40 T 50> 6257

1

3

(153)

)

Pl

E

7—]—2”;)}.—- 9a; { b+ %% cl

}

Pl

E

4 tor

}
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Now, for example, 4ake a bar whose moment of inertia of the cross section
varies as a certain power of the distance from the lower end (Fig. 7) so that the
moment of inertia of any cross section at x is

&

1) =1, (w---—l—)il (x =0 ~%> (154)

in which 7. is the moment of inertia at the middle of the bar.

In the same manner as in an un- T N
symmetrical bar, taking two terms in & |
expression (135) with 4, and a, the Z (1 7
equations, from which the critical loads ]L T % —;/x ‘.-r;__::"_
corresponding to the cases of =1~ % ! ey
4 are to be approximately determined, l v/ s

are obtained as follows:
%

| U: @

L (@+1—Fk) @a+1— k) -9=0 (155 g
in which Fig. 7
() P13+ y)
o =TT l -+ 4 , k: EI:, .
1 2
. (a+ﬂ—k)(9a+ﬁ——k)—9<l3+?>=0 (156)
in which
, Ly
Y S B PO <R N M
“““\1ﬂ+2z+12)’f”= [ty k="
o ,
T1L. @+B—T—R)@i+f——g —H-9¥=0 (157
in which
R A - T S SR S O W 3 1 3
a:n*<13+412+4 l+32>’ BZZZ+2 l+8,
A
S algl B4 85 2) Platg)
r=ge =3ty g k= TR,
. . .
IVv. L @B =R Oe+ By k)= 98=0 (158)

AR I I B | 4@ 3 31
“‘v”z(?J”‘z“'éz?“L’87*'8“6)’B:_l?“*?Jf—zz”*T’



176 . Tadaaki Saxal

ENPEUR NIV SN RN N
7= o 41“)’5:1””4 pE3 T g )t g\ T e

\

L
Pl
k="pgr -

The values of the factor C in this case become as shown in Table 2. The
values of C in the case in which the ratio 7,/1. approaches zero were also. calcu-
lated taking the three or more terms in the series of y.

Table 2. Critical Loads for Symmetrical Bars with Variable
n2 B,

Cross Section. Coeff.: s

“Lolle l
™~ 0.01 | 0.02|0.04|0.060.,08{01 02|03} 04)|0b] 06} 07 0.8]0.9
N\ E

1 0.595 0.604) 0.618 0.632 0.645\ 0.656\‘ 0.711} 0.757 0.798‘ 0.886] 0.872} 0.906, 0.938] 0.970

0.350 0.35)4! 0.450| 0.489| 0,520 0.547% 0.645) 0.715 0.771) 0.820, 0,863 0.902; 0.937| 0.970
0.258! 0.313; 0.386| 0.436/ 0.473 0.508§ 0.622 0.709 0.762 0.814} 0.861 0,899 0,935, 0,970

Lo

oW

0.218i 0.28()} 0.356| 0.410 0,452 0,486 0.610 0.694’ 0.758[ 0.811) 0.858| 0.898] 0,985, 0.970
V. APPLICATION OF FOURIER SINE TRANSFORMATION
METHOD TO THE STUDY OF STABILITY OF THE
UPPER CHORD OF A LOW-TRUSS BRIDGE.

As a special example among the buckling problems, take the upper chord of a
low-truss bridge. In a low-truss bridge, there is no bracing in the upper horizontal
plane (Fig.8) and the upper chord is in the condition of a compresséd bar, the
lateral buckling of which is resisted by the elastic reactions of the vertical and
diagonal members. At the supports there are usually frames of considerable rigidity
so that the ends of the chord may be considered as immovable in a lateral direction.
Thus the upper chord may be considered as a bar with hinged ends compressed
by forces distributed along its length and elastically supported ‘at intermediate

points.

A general method of solving pro-

blems of this kind is of the $ame sort

as used in the case of continuous bea-

ms on elastic supports. However,
the amount of work necessary to
obtain thé critical value of the com-

pressive force increases rapidly with
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the number of elastic supports. The stability of the compressed chord can be
increased by increasing the rigidity of the lateral supports.

If the proportions of the compressed chord and verticals of the bridge are such
that the half-wave length of the buckled chord is large in comgparison with one
panel length of the bridge, a great simplification of the problem can be obtained
by replacing the elastic supports by an equivalent elastic foundation and replacing
the concentrated compressive forces, applied at the joints, by a continuously distri-
buted load.

Assuming that the bridge is uniformly loaded, the compressive forces transmitted
to the chord by the diagonals are proportional to the distances from the middle of
the span, and the equivalent compressive load distribution is shown by the shaded
area in Fig.8.

In calculating the modulus S of the elastic foundation, equivalent to the elastic
resistance of the verticals, it is necessary to establish the relation between the force
R, applied at the top of a vertical and the deflection that would he produced if
the upper chord were removed. If only tending of the vertical is taken into
account, then “

where I, is the moment of inertia of one vertical. Taking into account the bending
of the floor beam, and using notations indicated in the figure, it follows that

,_ Raé  Ra+bpd
=3BEI, T 2EI,

where I, is the moment of inertia of the cross section of the floor beam. The
force necessary to produce the deflection ¢ equal to unity is then,

1
Ry = a (at+dyd’ (159)
3EI, T T 2EI,
and the modulus of the equivalent elastic foundation is
R
B=—" (160)

. C

where ¢ is the distance between verticals.

In this manner the problem of the stability of the compressed chord of the
bridge is reduced to one of buckling of a bar with hinged ends, supported laterally
by a continuous elastic medium and axially loaded by a continuous load, the intensity
of which is proportional to the distance from the middle.
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This problem was solved by Timoshenko by using the energy -method.. The
same result can be obtained more easily by applying the Fourier. sine transform-
ation method. : T '

With regard to the differental equation. of the deflection curve of the buckled
bar; it is noted that the intensity of the distributed compressive load at any - cross
section, distance x from the left support, is

a=a (192?‘% \(161)

in which qy 18 the intensity of load at the ends. I or a truss with parallel chords
and a lalge number of panels, it can be concluded from elementary statics that
the maximum intensity of the axial load can be assumed as follows:

Q :
do =95 » (162)
in which @ is the:total load on one truss and % the depth of the truss.
-+ Accordingly, ‘the total compressive force at any cross section; distance x from
the left support, becomes v

2\

from which the shearing force due to the compressive force is

If the shearing force due to only compressive force is taken into considertion,

then ' ' ’

E ey ( ) dy

| g ==®\*= 1) ax
Differentiating, this with respect to x; it follows that

4

d'y 2%\ dy x*\d'y
Eldx4+q”<l_ l)dx' qo(\x— l)dxzzo'

Adding the effect of the elastic medimﬁ, the differential equation of the deflection
curve of the buckled bar is finally obtained as follow :

2

dty < X Nd'y ( 2x\ dy
EI‘dx4,+ Qo x“ l )dx2+ Qo 1- l)dx +ﬁy_0 (164)

. This equation can be also obtained by considering the equilibrium of a differ-
ential length of the buckled bar. In the above equation, the cross section of the
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upper chord is assumed as constant along.its length and the modulus of elastic
medium is also considered as constant. The differential equation of the deflection
curve of the buckled ba1j is no longer a simple equation with constant cofficients.
In its solution the Fourier sine transformation method can also te used to advan-

tage.
The deflection curve of the buckled bar in the case of hinged ends can be
represented by the series

N1 . #T%
e

Substituting this into Eq. (164) it follows that

EjZ(ﬂlﬁ)“ansinn%q (_ )F( )ansin nrlrx

+Qo(1 —%‘)i}(%ﬂ)ancos +[;’ZansmT 0

. . WX B .
Multipling by sin— 1 and integrating from one end to the other of the bar, one gets

(e 37 Yoo = = ) 9} 7

(1 - 2HEI (nlﬂ) @n COS W;x + B E ay sin W;x} sin Wl[x dx = 0.

(166)
Using the formulae:

. : l
gsianmsinn—?"dxzo (m=n),; Ysm- nl dx = DR

! mny |, K : 2nml
50 % sin—- ¥ sinTy T dx = {(— 1y — 1} =

Lo g 5 Lo, nx lé(l 1

Yuxsm“*'l“ dx = s (nx sin’® dx = TR \T — oin)

¢ Ty /?

gu x’sin &l * sin - L 7 dx— ( Tym+m- = %*Z)wn

! ntx . nnx t mny ., nw W;M nl
jo cos —~ sin dx =0; g cos sin a dx = {(—1) - 1} -
! ntx ., nnx 1 P
Sox cos —i“sm*fv-l—“ dx = — 9 Ogm

¢ mrx " 'm+n nhlz__.
Sux cos sm l dx—( 1y Ry g
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a system of homogeneous linear equations in a;, @, as, ---of the following type is

finally obtained :

m+nt eyen

, wn mn (m*+n)
(129 [(7¢4 -+ 7’) o= Za(\ 3 — 1)] + 16a Z‘I m&* =0 (167)
in which, for simplification, the following notations are used;
@l TRl B
o = 4 - JEI r = t EIl" (168)

The summation in the second term of the above epuation is extended over all
values of s different from » such that s + #» is an even number. Thus, the series
represented by Eq. (167) can be subdivided into two groups, one containing the
coefficients a, with values of m taken odd and the second with all values of m

taken even.
The equations of the first group are.

[(1+r) 7t — 20 (\Jg——1>}al+a(125aa+%~a5+-177~25 a7+...) =0

\
15 255 609
o @ a;+ [(3‘1_*_ ) mt— 2a (3n%— 1):}a3+ a(? as+ 50 o4 ) =0

65 255 25 1295 ‘
9 o B [ -2 B a2 ] o

175 609 1295 49
7p ¢t B %@t g tast [(74'*'7) n*—20 <?ﬂz—1ﬂ @t =0

The equations of the second group are:

4 160 15
[(2“+T) nt — 20 (?n"—'l)}a2+ a (‘g_cu + 7%"‘"') =0

160 16 ) 1248 )
g tat [(4.4+r) nt— 20 (—3' n— 1 )] a,+ @ (75'* au+---/ =0
15 1248

36 ‘
o emt o5 %a+ [(64+T) nt—2a (*3“ nt— ] )] agt - =0

(169)

(170)

Buckling of the chord becomes possible when one of the above two systems
of equations give for coefficients a,, a solution different from zero, i. e., when the
determinant of system (169) or of system (170) becomes equal to zero. Thus, one
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gets the determinant equations, from which the critical load is given, as follows:
15 65 175
A gre qga g @
15 265 609
2% A g H |
65 255 1206 ... | =0 171
o A 5 a

18 8 A T1g @
175 609 1205 |

o

72% 50% 18 ¢ A
in which
4, = [(n‘*+ r)n*—2a ("g— e 1”
and :
160 15 1088
A e Tgma ggga
160 1248 160
g A ey
15 1248 4800 .. | =0 172)
2% 954 A g9
1088 160 4800
592 % g % 49 ¢ s
in which

A, = [(m—f- r) nl— 2a ( ’;) 7 — 1)} .

Eq. (171) cofresponds to a syinmetrical shape of the buckled bar; Eq. (172) corr-
esponds to an unsymmetrical shape of the buckled bar.

In the case in which the rigidity of the elastic medium is very small, the
deflection curve of the buckled bar has only one half-wave and is symmetrical
with respect to the middle, Eq. (171) should be used. The first approximation is
obtained by taking only the first term in the series (165) and putting a; = a;---=0.
Then, Eq. (171) becomes , '

b

(1+r)nz-2a( 3 -1)=0 (173)

from which
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o (1 +7r) -
o )

2(5e-1)

Using notations (168), it finally follows that

ol w47 B
( -‘14—)c= e (174)

, "
2 (? m?— 1) .
To get a better approximate result for the critical compressive force, the two
terms in expression (165) with coefficients @, and a, are taken. The corresponding
equation, from (171), is

[71'2— % (3; - 1)! [81# — %a(3m -1 ﬂ - (1;)«1 ~ 0, (175)

i

\

Sovling this equation for e, the critical load may be obtained. ,

Where a greater restraint (7 > 3) is supplied by the vertical members of the
truss, the buckled form of the chord may have two half-waves and an inflection
point occurs at the middle of the bar. To calculate the critical load in such a
case, Eq (172) should be used. With.a further . increase of r; the buckled bar has
three half-waves, and Eq. (171) should be again used in calculating the critical value
of the compressive load..

In all these cases the critical load can be represented by the equation
(\%"l)f C"‘ZE} . e

e

in which the coefficient C depends on the rigidity of the elastic medium. Several
values of C calculated by Timoshenko are given in the following table:

Table 3. . Values of C.

A
16Ef, !

56.5

5 l 10 | 15 ]22.8
! |

100 1162.8] 200 | 300 ‘ 500 ‘1000

:
C 2.06 | 3.63 9.51

5.10 | 6.37 l 7,58 11.9 |'14.9 | 16,5 | 19.8 ’ 24;0{ 33.0 - ¢

“The method developed ' above for the case of a bar of uniform cross section
supported by an elastic medium of a uniform rigidity along the length of the bar
can be extended to include cases of chords of variable cross section and cases where
the rigidities of the elastic supports vary along the length. :
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VI. APPLICATION OF FOURIER SINE TRANSFORMATION
METHOD TO THE STUDY OF TRANSVERSE OSCILLATION
OF BARS WITH VARIABLE CROSS SECTION.

© I.. Unsymmetrical Bars with Variable Cross Section.

The differential equation of the maximum deflection curve: in' the transverse

oscillation of bar with variable cross section is representented by
C;i {El( )dxy} q~Q4 Wy = 0 am

in which the following notations are used: -

g (x) = dead load per unit length of the bar including live load which oscillates
with the bar;

g = gravity acceleration ;

n,= frequency of free oscﬂlatlon

Assuming that q(x) is constant along the length of the har and using the
notation of

4n .
k= Eg (178) |
the above equation becomes
&y a;y} o | g

Integrating this with respect to x, it follows' that

I(x)dy,—ks y(s)g dvde + Cix + C,

3 S(x — &) yE)de + Cw + C,

. . . . d*
Taking a bar with hinged ends, the terminal conditons are dxy = 0 at both ends.

Therefore ,
C,=0 and €, = — = al =9 y@de.

Thus the d1fferent1a1 equatlon (179) reduces to

1) dxji —k|e-ty@a - [ ale-oy@a.  asy

The deflection curve in this case can be represented in the form of a sine series
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ey . x )
y = E a, Sin ﬁ’;- (181)
n=1
Each term of the series satisfies the end conditions, since each term, together with
its second derivative, becoms zero at each end of the bar. . Substituting this value
into the differential equation (180), it follows that

k(g o\l . mmE
o AN s)nz,l a, sin "7 dg = 0. (182)
Calculating the integrations in the second and third terms in the above equation

it follows that

g . nnE ) I\, wnx
So(x-—é) sin ‘“l—dé =gt (;;) sin =,
£ . nné I

T SG(Z‘E) sin —, de = - x.

Thus, Eq. (182) reduces to
o 8 x = [ \®
1(¥) ) (%) sin ;" — & )] an (74;> sin ™" = 0. (183)
=1 ' n=1 )

X

Multiplying by sin i and integrating from one end to the other of the bar, a
system of equations in «;, «,--- of the following type is obtained :

except.m

0 n nx . Commy . gy
‘SDI (x) {an (%’) sininT + E ann’ m* (—7;*) sin Tn sin %} dx

— le a, =0 mn=1,2,3-) (184)

Oscillation of a bar becomes possible when the above system of equations
gives for coefficients «,, @, a,--- a solution different from zero, i. e., when the
determinant of system (184) becomes equal to zero. From this determinant equation
the frequency of free oscillation is determined.

The same result can be also obtained by the energy method. Equating the
internal work to the external work, frequency of free oscillation is expressed by
the well-known formula
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2

o M)‘J
RCI-LS 185
7y = 4 f . (
So gy dx

Substituting in this expression the value of y given by (181), the frequency is
determined by finding such relation between the coefficients a,, a,, a;--- as to make
expression (185) a minimum. In this method, however, it is more labourious to
arrive at the result given by Eq. (184).

Now, take a bar whose moment of inertia of the cross section varies as follows :

I(x)=oa+ bx + cX¥*+dx’+ex". (186)
Substituting this into Eq. (184) and calculating the integration, a system of
homogeneous linear equations in a,, a, as---of the following type is obtained :

Lt [ b f_(,l_ ._L> Ao A _‘31‘(1 1
Ay YN T 213+ 4lz+ 21 3 -—2%277:2 + 8 \ — nznz) -+ 2 ‘ 5 —kﬂzﬂ'z

m+nicdd

- E n (’;’fﬁf}) {f‘lﬁ+47” + Gd[.‘l Blwtm) | 8ez[1—12 (”f{”)]} ~ 0. (187)

T2 — 7;,;2)2

m

From this equation one can also derive the equations corresponding to a bar.
whose moment of inertia of the cross section varies as a certain power of the
distance from the lower end so that the moment of inertia of any cross section at
¥ is, as in the buckling problem,

A+ x\"
Ix)=1, ( ] ) , =1, 2, 3, 4. (188)
i+
Taking two terms in expression (181), the equations, from which the frequen-
cies are to be approximatately determined, are obtained as follows:

I. In the case of n =1;

(@ — K) (401 - {%) - (—9—)2>r 4=0 (189) -

in which

II. In the case of # = 2;
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(img = &) (1= =) = (F)p=0 a0
in which o
e E D), pesfatar), ko2
III. In the case of # = 37}
@_p_K%pr_ij_(ﬁym=o o1
. in which |

, . ( w3 ok A 10 8 4 3
@=m\ Tt 12*‘1*4)’ =9 1+

2

2o 40
3;@672‘—#67‘—{—3(]——' ﬁ)’ K =

IV. In the case of n=4;

(e —p+717-K) (4a—ﬂ+~i—_7'—§>_<'1§)6~>352;0 (192)

\in which

\ U I CHE S o 3
a:nz(*’1‘74—27';4—274—7“—{-*5‘), /3:37:;%3_T+L T =0

. ’ K ’ ., - Z.‘
N T Y »40 _@ 2 ( A +—)

Solving the above equations, the Smallel root glves the frequency of the fun-
damental‘oscillation in ‘each case. Lo

2. Symmetrical Bars with Variable Cross Bection,

“Proceeding as in the previous article, ajri equation corresponding to Eq (184)
becomes as follows ; S ‘ ‘

erveps.n

L
2 nn‘ 4 T kl
[ 1o i 5 ST e (s e M 0,000
If the variation of the moment of inertia is
{
I(x)=a+ bx + cx*+dx*+ ex?, <x =0 ~“"’2‘) (194)

considering only a symmetrical shape of the oscillation, a system of homogeneous
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linear equations in a,, as, as, -+, corresponding to Eq. (187) becomes as follows :

\ \

{ . 4[&, b (_.1_ S S T A S i(_L S 3
a,\nn 413‘*‘ 4l 4 + nemt + 8] 6 + n27r2) + 8 16 + dppm ™ pint

Bt m

scad
Ty

+_%L(1 E i ‘)]_—kz_}+ E n“mw{b ¢ (R +m?)

10 2t ) | o G 1 Ly

\

-+ m 2 2el {n2+ m* 6 (n+6mPm?+ m")]}

+ 3d|:4 (n*m)é_ (n+m)* 7TZ:|+ (. —m)* 4 T (17 — m¥n*

n+m
s e en

Z‘ Ji‘l_@‘f“{ b . c(n+m) Bd[ W+ 9 }
I e R O A KN T R TR

m

. 2Zel [ng+ m* 6 (n'+ 61 m*+ m‘)}}
mrmil 4 T emr =0 (195)
When the moment of inertia of‘ any cross section at x is
. o ,
() = Ic< f—) =123 14 (196)
X—l——z-

the equations, from which the frequencies are to be approximately determined,
become as follows, taking the two terms with the coefficients «, and q,:

I. In the case of n=1;

K
@+1-K) <9a+l—?>—9=0 (196)
in which
‘ )
(A1 M
a:ﬂ<l+4>,K= TTZIU .
II. In the case of n =2;
@+ B —K) (Qa + B8 — "g‘) -9 ([J’+ —8—)- =0 (198)
- in which
‘ . ; 1y
APIEVET Wiy )
@ =T lz+21+12), |8= l+-2_, K = 7,

III. In: the case of % = 3;

X
9

@ h—7—K) (91— g )—96-2:0 98)
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in which

L3 o+ 14 1 (f‘f 3.2 3
c=m\EhTy Ty 7 tg) BTty l+8>

l 3
R M\t g
T:an) 0 = lg+8 l+4\8-—n.2 , K= n? ],
IV. 1In the case of n = 4;
, rRS
@+ p—71—~K) (9a+ﬁ~*g*—TJ~)—952=0 (200)

in which
( At A3 ry Pl 17 423 32 3
a = n’ ) B =

A
T o et 80 et 2ty

w15 X ENE. _2_) 1(5 51) k(”_z_
.8 P e

3( 44 1o /5 ol
4l+1) 0 = 13+4 lr_»+31 +8\2m47l‘2 ngl—:

Solving the above equations, several values of the fundamental fregency are
given as shown in Table 4. In the case where the ratio j,/]. approaches zero,
the values of frequency were, of course, calculated taking the three or more terms.

Table 4. Values of Frequency for Symmetrical Bars with Variable

/EICJ N

Crossff Section, Coeff : le pdll

Iy/Iec ’ (
0.01 1 0.02 | 0.04 | 0.06 0.08{ 01102103 0.4 05 0.6 0.7 } 0.8 t 0.9
|

n N\ i
|

| | !
1 0.783 0, 7881 0.796 0, 808: 0. 810{ (.817 0.847’ |
2 0.630 0, (75,21 0,687 0.712| 0. 732} 0,749 0.809, : 0. QOE)l
3 0,543 0. 089' 0,641 0.675| 0,700, 0,722 0, 7941 ‘ 0. QOSI 0. ()28‘ 0.949,
4
l | | T

0.500t 0.555, 0.616( 0.656 0. 685E 0.707 0.787) 0. 836 0.872, 0.902, 0. 9z7| 0.948
VII. APPLICATION OF FOURIER SINE TRANSFORMATION
METHOD TO THE STUDY OF BENDING OF
RECTANGULAR PLATES.

0,969 0,985

1

0.868 0.895 0.915 0. 9341 0.952,

0. 8&9 0,880 0. 929 0.949, 0,968 0.985

0. 840 0.875

|

0.968 1
0,968, 0,985

|

0.985

Taking, as an example of the simplest cases, a rectangular plate simply sup-
ported along all its edges, the well known differential equation of the deflection curve

due to the nofmal pressures is

o' o'w o'’ ‘
D(ax4 +Zaxyay2+ ay)——j)(x):O © o (200)

in which the following notations are used :
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ER’ ‘ ;
D= 12*(]“"*) ; h = thickness of plate;
o = Poisson’s ratio; p (x) = load per unit area at any point;
w = deflection of plate at any. point.

Let the axis of ¥ anb y be taken along one pair of edges and the other pair
be x =a, y=>5. ‘Then the deflection curve in this case can be represented in
the form of a double infinite sine series: 4

mrx . nny

w = 121 772]1 QSN — a sin —I;‘ . . (202)

Each term of the series satisfies the boundary conditions, since each term, together
with its second derivative, becomes zero at the edges of plate. ,
Ty ., nr

Substituting the value of w given by Eq. (202), multiplying by sin -LE 'sin 72

and then integrating over the whole plate, it follows that

w N\ peper o ommy | WYy
Amn D7Z' (lﬁ;‘ + -‘b‘_) ( S 22 —‘bA dax dy

- Hb b (x) sin ﬁlg’f sin ﬂ%x dxdy =0 (203
JUJ0

since every term in the integral vanishes except the two terms having the co-
efficients a,,, and p (x). This equation is also derived by energy method by a more
labourious process.

Using the formula:

ga " ng 3 ler_x._d d ﬂ
[ Jysin " e axay =

the coefficient a,,, is finally obtained as follows:
a (b 7T TI.'
5 s P (x) sin ﬂ;% sin Zi,b_ dx dy

_ JoJe
(lnm - ab (771“_ n_ )_ (204)
4 Dt 2 b

and consequently

S g P (x) sin anx sin nb dx dy - yy
w= abDTr4 2“21 (;i N ﬁ_{)z sin — _—sin . (205)
. a’ b?

Considering, for an example, the particular case of a uniform load fully applied
over the whole plate, it follows that
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@y omAx . Nny dab ) .

SD L p sin —, sin—= dx dy = " when either m or » is odd,
=0 when either m or n is even,

Therefore the coefficient a,, and the deflection w become respectively as follows :
16
Aoy, = 7: %2 2 nm, N = Odd, (206)
. m )
T Dmn ( ag + bg )
16 N N 1 bs ™
M=1,3,5 n=1,8,5= mn( 2 + bg)

In the cases of partial distributed load and a single concentrated load, the
results can be also found by a process similar to that used for a beam.

Adding : This study was helped by the Grant in Aid for Fundamental Sci-
entific Research of the Ministry of Education.



