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$I. Introduction.

The author wishes, first of all, to make some introductory remarks
on the application of the method of Michell and Love to the various
kinds of boundary value problems. Now that particular solutions for
the problems of thick plate under variable pressure or tangential load
have been published in the present writer’s first report (1)"—that report
will hereafter be called “(I)’—and in which needed features have been
stated of generalized plane stress solutions which may correpond to
complementary solutions so that preliminary works on the whole has
been completed, it remains to describe some manners in which the
boundary conditions of boundary value problems are to be fulfilled.
In this report illustrative descriptions chiefly of problems concerning
the rectangular thick plate will be given. Incidentally, the term
“particular solutions” may he inappropriate but not sound singular and
s0 may be permitted to be used, the author thinks. Mathematical
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computations involved in this report will be lengthy but may be said
to be essentially simple owing to the ingenious method proposed by
Michell and Love. As mentioned in the introduction and Seec. III of
(I) regarding the order of accuracy of this method, which is principally
dependent on the assumption made concerning the derivative of o, with
respect to z at the plane surfaces of the plate and, further, on the
approximate forms, in a strict sense, of r., r,. in the generalized plane
stress solution, though needless to say, Prof. Love says ambiguously
in his book that the special forms of 7., z,. and o, are assumed in a
proper way, conditions on the bounding cylindrical surfaces of the plate,
which are varied with respect to 2z coordinate, could not be satisfied
generally by the use of this method. Therefore, the writer cannot but
adopt the reduced boundary conditions represented by the resultant
foreces and couples and, if necessary, apply Kirchhoff’s theorem regard-
ing torsional couple and vertical tangential force on the cylindrical
surface. Certainly due to this deficiency of accuracy it is necessary
to apply Love’s method to the moderately thick plate, but in an obvious
way the above mentioned inevitable process of calculation in regard
to boundary conditions may have .a correspondingly slight improper
effect which is merely of local perturbation. So the method will serve
to enable one to arrive readily at the solutions with sufficient accuracy,
if the thickness of the plate is properly taken. In view of the above
stated properties of this method it will be pertinent to indicate the
forms of solutions in the higher degree of accuracy furnished by the
infinitesimal theory of elasticity or of solutions which are to be ob-
tained under general boundary conditions for sufficiently thick plate,
In a later report the present writer proposes to show this complete
solution, though it seems not necessarily satisfactory. What follows
will deal chiefly with the cases in which loading function satisfies the
equation of Helmboltz, i.e., it is a v-function, and tractions are applied
to the upper plane surface of the plate for the sake of simplification,
since, as described in Sec. IV and VI of (I), the cases of general loading
function and lower plane surface load can be treated easily. In Sec.
II there will be offered some additional remarks on the feature of
solutions for generalized plane stress furnished by Prof. Love and
Southwell, which were not discussed in the first report. Therein is
shown the verification of the fact that solutions by Love may be
(quite the same as those by Southwell, It is presumed that this
verification is needed from the viewpoint of consistency. In section V
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brief mention of mixed boundary value problems is made and it is shown
that these problems can be solved correspondingly easily with the aid
of the procedure of Love but it is to the author’s regret that the
descriptions may be too sketchy on acecount of limitation of space.

§I11. Additional Remarks on the Generalized
Plane Stress Solutions.

Generalized plane stress solutions are so indispensable to solve the
thick plate problem by the method adopted in our paper that we could
not pass over the fact that there exist two, at first sight, different—
sseming kinds of generalized plane stress solutions, viz., solutions by
A.E. H. Love® and by R.V. Southwell®. It can be shown as in the
following that these two kinds of solutions are identical with each other
to the order of accuracy, whereby the so-called generalized plane stress
solutions are constructed.

For reference, solutions by Southwell are quoted as follows:

X 1 o )
e = ay‘d’i+ 1+v omay Pz,

o)== ———— 7 [(x,4,2) , A SRR 2.
Y ox 1+4v oray @4,2) 2.1)

X 1 ¥ &
Tyy = - b T (e — 2 [ (m,1,2) ,
"’ aray  2(1+v) < e ax‘*’) @y,2) J
where
¥ = - 1 v 2F, 12— 2F, 1
2 1+ 6 14v

Pt,=F,, =,
eyt (0T TR

\pp, =, =0,

¢

I'(x,y,2) =", ¢=H@wyz— 1 2f (w,9)
9z 2

(PH=0, Fif(@y)=—2G),

G, is a conjugate plane-harmonic function of /', and it is clear that
we can take F,, I, equal to &, @, respectively, the last two functions
being found in the solutions by Love.

Taking account of only the restraint which is to be imposed on
the tangential stresses v, r,. the following forms for them are seen
to be desirable,
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H]. 'a 2 1 2 A 8@
L=t By L ()30
T oLty oy 2(1+p)(Z ) % 2.5
Ty = _1___ 2 Vi = ,,14 (B2 36, ,
214y o 2(1+5) 2y

putting H(z,y,2) in the form
H(x,y,2) = Hy+2H,+ -2 #H, ,

(V‘;’HI =ViH,= 0, i Hy,+ H, = O)

in which H.(x,y) is taken to be A°Gi(z,y). The right-hand sides of
Eqgs. (2.8) are the forms obtained by Love and this agreement is shown
in  the paper by Southwell. Generalized plane stress solutions by Love
are indicated on pages 432-433 of (I).

Now we shall show that the forms of stresses (2.1) could be trans-
formed into those (2.7a) of (I) by rearranging and converting the second
terms of the right-hand sides of Eqs. (2.1). It is noticeable that the

function I'(x,y,2) = wa~H,+zh‘3G,~zf is not a plane-harmonic funec-

tion, though Southwell implies it is so, and hence the second terms
in (2.1) cannot be merged in the first terms. Though ¥ in (2.1) con-
siderably resembles Z (2.1c¢) plus %/ (2.8) of (I), they are certainly
different and ¥ in (2.2) can be rewritten into the following form,
using the symbols adopted by Love,

(x(, =0 #6,) -<zx; %?T 70,\-71%;%; , (2.4)

because, it being possible to neglect the indetermination regarding
plane harmonie function in this event, formulae

P, =0, ri=_—4"1 g

(1+v)
yield the relation between X, and ;.
/[_;(1+”) A=A+ —2 P (2.5)
(1—v) —vy

H, and W*G, in I'(z,y,z) can, doubtless, be merged in %, and ¥ in
the first and second parentheses of the expression (2.4) respectively,
When this annexation is performed, we can in the sequel put I” (zy, z)
in (2.1) in the form
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'(@,y,2) = 1" (m0,2) = —2f (@), oo
and also put for convenience’ sake the expression (2.4) in the form

Sl e 2 5 o
/»c — /.I '*~ -/-_— "]7-'" z«‘l_,] — /\.«, T e — z/.’[ y

in which #'= <x(, — v
-\ 2 1+v

have for =,
—o'X 1 < aﬂ >]1/<x 7/,2)

T ey 20 \ar
2 (iaam) < —f(x,?/)> (2.8)

_ =%, 2% & L'
axay (1—v) axay 2(1+v) ox’
and, if we perform the operation Fj= :: + : - on the right-hand side
" Yy
of (2.8) except the first term, it vanishes, as is readily proved. So
we ecan write
—3%!
Ty = ——e — )’1+}’ ........................... 2. 93
e P - ( ) (2.9a)
2z . z 3
v ( ) %y =0, (2.9b
P24\ ap o (S @) = ( )

(1—v) axay
because restriction imposed on two arbitrary plane-harmonic funections

contained in ¥; and f(«,y) caused by the formula (2.9b) would never

undermine the generality.
Next we apply the operations : and ; - to the formula (2.9b)
Y T

and then we obtain the relations.
2= 3 z z 3°f
el SR A 2 =0,
or \(1—2) o ' @A) ' (140 ooy )
. : (2.10)
2 & g 2 g R ,ﬁaf*}
ay ((1—v) az® (1+v) (14+v) axay
1t is evident that the expression in each brace of (2.10) can be

equated to zero within the theory of elasticity. Hence we may write

from formula (2.10)
—2z 3 ., z  &f _ =z o, .

(1—2) o ' (14+2) ooy (14)
Using this relation normal stress o, in (2.1) can readily lead to the
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form of solution found by Love :—

X . z
oy = —— (M"+AY+ 0,
ay‘~’< ) (1+v)

We have likewise for o, 5, = 2 (L) + 2B,
i ! ax'z( ) (1+v) I

Thus two kinds of solutions prove to be entirely equal within an
irrelevant, arbitrary additive plane-harmonic function and hence we
can apply the generalized plane stress solutions of Love without any
apprehension to solve boundary value problems. Southwell sought,
indeed, solutions in such manner that in the earlier part of his calcu-
lation he applied only the condition for s,, setting conditions for r,, and
7,. aside. He thus obtained first general solutions under the former
condition and, therefore, solutions due to him seem at first glance
more general than Love’s solutions. Neverthless, it may be said to
be desirable to consider all the conditions for o,, 7., and z,. from the

outset.

§ III. Rectangular Thick Plate Simply Supported at the
Boundary under Normal Upper Surface Load, the
Loading Function of Which is a v-Function.

We shall use the term “v-function” as defined on page 448 in
See, IV of (I). Most notations to be used in this paper are found in
Sec. Il and IV of (I) or self-explanatory. In the following, if necessary,
suffixes 1, 2, and 3 may be attached to the right sides of labels in
order to distinguish between quantities which correspond to the solu-
tions of three kinds, namely, plane stress, basic parts of generalized
plane stress and particular solutions respectively., Particular solutions
needed in this case are found in Sec. IV of (I) and the required
boundary conditions will be as follows:

T=0, S=0, G=0, w =w®y0) =0,
namely

T4+ T 5=0, Si1+8S3=0, Giot+Gi3=0, at = +a,

Toi+To5=0,8,+8S:=0, GootG.ys=0, at y=+b, >

Wyt W, ;=0 on the boundary,

(3.1)

since
T1,‘z = T_’z = Sn,szzsz,z =Wy, = 0,
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Cartesian coodinate system (z,%,2) is taken as shown in Iig. 1
and the z-axis is drawn upwards as usual. This coordinate system is
adopted for symmetry. Let a given loading function be of the fol-
lowing form:

0= = Py Sin a, (x+0) sin B, (y +b) = —pv(w,y) = ~pv, at 2=h,
P (3.2)
where a, =7, B,= ™ and m, n are 1%
20 2b 4
positive integers. In this paper we shall ‘
solve boundary value problems by the use -a a x
of the method similar to Hencky’s related ¢
to thin plate problem. From particular —
solutions in Sec. IV of (I) we have on the
boundary Fig. 1
T,=0, Gy=0, Wo 5 = Wy (Q?,fl/, 0> ==, e (3. 3)
Sia =S, = & 2,(1—cosh 2h) (sinh 2kh—2kh) 22&H)
: ’ i 2 9Y
=Q 2u(®@Y). (3.4)

2% ay ; x=2¢, or y==0

and, hence, in order to satisfy the boundary conditions (8.1) we only
have to take into account the plane stress solutions (2.1) of (I), ag is
easily seen from the forms of the resultant forces and couples due
to generalized plane stresses (2.10) of (I). Now the following four cases
are conceivable,

case I (m=2m/, n=2n", cage Il (m=2m'+1, n=2n"+1),
case III (m=2m/, n=2n'+1), case IV (m=2m'+1, n=2n"),

in which m’ and %’ are, of course, positive integers,
Firstly we take case I and, considering the forms of S,; and S,;
and the boundary conditions concerning 7, we may write

, 1 1% 3 o
¥ = 9hy RO, o 3,6
’ "3 1+v ( )

=AY, (Y sinax + z BX (x)sin By, e (8.7

with X,(z) = a cash .6 sinh 8,z — x sinh B, cosh B2,

Y. (%) = bcosh a,b sinh .y — ¥ sinh a,b cosh o, ,
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in which a, = 7; , Bs= ;‘Z , r=2r, =25,  We shall delete suflixes
a

r and s of «, and 8, always in the sequel. It will be obvious that

9 a

a 123
T, =2~
Y

L1V
and T,,= —a——# derived from (3.7) vanish at the edges x= ¢
ax’

and y=-+b respectively. Then the following relation must hold at the
edges x = ~4a:

S = — [Z A.,.{(ab cosh ab~sinh ab) cosh ay+
— a sinh ab-y sinh ay} a(—1)"+ 32 B, (Ba—sinh pa cosh fa) x
X €08 By] =8, = — (=1 Qauf, cOS By . roeee (3. 8)

Then, if we substitute the formulae

oo 1 W/
cosh ay = % - 2 &, COS ﬁ’yj cosh ;T Y cO8 i("bﬂ—y dy , ]
) s’=0 q e}
! (3.9)
. 1 LT s'r
yeinhay = -~ 3 e, c08 fy| ysinh " yecos” ™ ydy,
b =0 0 2a b
in which &, =1, &, =¢e,=¢,=---=2, into Eq. (3.8) and equate coeflicients
of similar terms on the two sides of the equation, we obtain the

relation :

___1)s’+'r’+l6 a2’
4, (ST e, 20
2 (rb* + s’y

(r‘:;l‘)")
= (’_41)“', Qa’mﬁn s fOl‘ s = n , 1
=0, for w'x¢. J

sinh’ab+ B, (Ba—sinh fa cosh fa ) SZF

By the condition in (3.1)
S, = SZ,I—‘_SJ,S =0 at y==+0b,
we find another similar relation in the same way as stated above.

sl 2abMr”s”* sinh? fa
(b'?,r/i' + azs/:! )-z

= (—1)71L’Q6r711[371. y for ¢ = 7nl f ]

=0, for ' =xm’.]

A, (ab— sinh ab cosh ab) o + % B, (1)

Then two sequences of coefficients {A4,}, {B,} can be determined from
these formulae (3.10), (3.11), applying the method of successive approxi-
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mation. As in the theory of thin plate, a problem of thick plate with
simply supported edges can be solved readily in comparison with that
of thick plate with clamped edges.

Next we shall determine the form of % for case II (m=2m'+1,
n=2n"+1), We may put for 7" (3.6)

g = > A‘,_ Y‘] (1/) cos ax + 2 Bqu(x) cos ﬁy R R R (3 12)
in which
X, (@) = a sinh Ba cosh px — «x cosh Ba sinh Bz , 1
Y, (y) = b sinh ab cosh ay — y cosh ab sinh ay , J
rT St N
=", =10 r=2r41, 8=28+1 .
<a 2a ﬁ 2b g r S ° ) >

It is easily seen that the conditions 7, =0 at x =-+a and 7,=0 at
y=-tb are fulfilled by (8.12), (3.13).

By the condition

Sl,1 - _<a yl — —Sl,f‘) :(—_1)7L,+1Qam[3n Sin ﬂny """"" (3- 14)
ox Y

at the edge x =g, utilizing formulae

‘ . )
sinh ay = % SE (28/221) -ryjo sinh (277/—221) my sin (28 2: ) mydy,
yeoshay = 2 $1sin @17 S yeosh & +1) b ain (28 +1) (28/ + i) ydy,
b s’ 2() 0 2a
............................................. (3.15)

which obviously hold in the rage —b<<y<b, we obtain the relation:—

sS4 (— 1)”’4111)7*3

‘e

= (=1"Qa,B, for s=mn, |

3.16
=0, for s;f-n.'f ( )

The condition at the edge z = —a similar to (3.14) evidently leads to
the same relation as (3.16) because of symmetry. Then by the similar
condition pertaining to shearing stress resultant at the edges y =+,
we get the relation.
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A, (ab+coshab-sinhab) a1 3 B, (— 1)+ 40075 cosh fia

O+ @’y
= (-1"Qap For m=r, |} oo
~0, for m+#r. f

From Egs. (3.16), (3.17) two sequences {A4,}, {B,} may be determined
in the same manner as before.

For case III (m=2m', n=2n"+1) we may write %" (3.6) in the
following form :

=AY, (y) sinax + EBSXS((L’> COS BY, oo (3.18a)
in which

Y. (y) = bsinh ab cosh ay — y cosh ab sinh ay , ] ...... (3.18b)

X,(x) = a cosh Ba sinh fx — x sinh pa cosh Bz, !

rr s
=TT =5 p=2p, s=2¢+1) .

(v= Gy B=gy 3 T=2 s=2741)
For the conditions regarding S, S.:; we have from (3.4)

S1,1 = ],3:i(——1>nrQ0’.}n[3n sin ﬁn'y at x = *+a - (3 193)

SZ,I — HSE,:S:?(*1)m’Qam{3ncosamx at Y = ib (3- 19b)

Observing the right-hand sides of equations (8.19), %" can be taken to
be an odd function of x and an even function of y and, hence, the
form of 7 (3.18a) has been taken in consideration of the conditions
that T5,=0 at ¢=Ha; T,,=0, at y==b.

Using the formulae (3.15), we get the relation from (3.19a).
(“1)8'"”'“16(12[)827”3
( e,r,z+a-282)2
=(-1)"*""Qa,p,, for n=s, |
=90, for nss, |

cosh® ab+ B, (fa—sinh pa cosh ga)(—pB)

A4,
(3. 20)

which is obtained by the condition at z=a, while the condition at z =
-—~a only results in the same relation as (3.20).

From (3.19b) we have similarly the relation :—
(= 1)+ 2ab*r°s’ sinh” Ba

(b;"’)"! + ar’s'l)"
= (~1D""Qua,p., for m=r, ]
=0, for mz=r. |

A, (ab--sinhabcoshab)a-+ 2B, &

(3.21)
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Accordingly coefficients {4,}, {B,} are readily determined by suc-
cessive approximation. ' :

We shall discuss case IV only for reference,
For case IV (m=2m'+1, n=2n") by the conditions

Sl,l = _SI,S = -—Q a"ng;’y) = i <_ 1)“’ Q avaL cos Bny’
ox 3Y

at x:i_a’ ............ (3.22&)
S;',] = -‘—Si,.'; — Q a:’l(aiy_) = $ (_1‘)M,Qam 7 Sin amx s
o oy
at y:iby ............ (3.22b>

T,=0 at x==+a, T.,=0 at y=:D,

utilizing formulae (8.9), we can derive the following relation from the
condition (3.22a):

85" ( o 1)8’ + r'+717 zrq?b?,.‘_’s‘l

A, -sinh’ab+ B, (fa--cosh fa sinh Ba) g

(br® 4: a,-zs‘j)z
= _1\"’ oo s for s="%"n,
(1) Qanp | (3.2
=0, for s#n. |
(a:';i, :%’Z, r=2r'+1, s==2¢)
a

And by the use of formulae similar to (3.15) the following formula is
obtainable from the condition (3.22b):—

A, (ab—sinh ab cosh abja-+ 3 B,( —1y"+s 40T cos’ fia
s br*+a’s’y

— (—1)m,Q a-mﬁn <'r — m) y ]

=0 (r#=m). |

Hence, two sequences of coefficients {4,}, {B,} can be determined from
two sequences of equations of types (3.23) and (3.24).

Thus we have found that the forms of %7, ¥, and @, for four cases
can be obtained from them. Therefore, all plane stress solutions can
be found immediately with the aid of formulae (2.1), (2.5) of (I) and
then we can determine the solutions to the whole problem by the
superposition of these and particular solutions in Sec. TV of (I). It is
noteworthy that in this case of rectangular thick plate simply sup-

. (3.24)
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ported at the edges the solutions to the problem are obtained without
the aid of generalized plane stress solutions. Now we shall indicate
the forms of solutions in case I.

We have from (3.7) by means of the equation Vix/ = 2hV3¥,=2h8,

. 1 /. 1 - f
Yo= o (M L BG,) = A,) (b cosh ab
o= g (Mg )= 211[‘/; (b coshab+
— ; i h a sinh ab) sinhay—ysinh abcosh m/} sin ax -+
-+ 2B, {(06 cosh fo— ? 17 h*g sinh pa) sinh gz +
— 2 sinh pa cosh Bx | sin [ByJ L R PP (3. 2ba)

6, = _;1 (32 A, asinhabsinhaysin az + 3 B,#sinh fasinh frsin ﬁy> .
T ;
.......................................... (3.25b)

According to (2.1) of (I) we have for stress components

= _?_L 7=2_(y _1_ Y20, =4, % [Iabcosh ab—2sinhab +
Tt T a'y“'( Y2 14w >§‘ "on L1
+ " a’sinhab- <z _ 1 h"’) | sinhay-—asinhab-ycosh cry] sinax 4+
1+v 3 J i

e 2 B, ,,@ [{a cosh fa + T_’i—: Asinh o <v — % If)} sinh Bz +

—sinh ﬁa -z cosh ﬁx] sin [}U PR (3' 263)

0,0 = E:c 1=—S4, ;;L [{b coshab - asinhab- (z — é h‘")} X
]

x sinhay —y sinh ab - cosh ay] sinax+ 3B, 2[’; [l Bacosh fa -+

. v o s o 1 ,. 1 .
— 2sinh a4 i #’sinh Ba - <z —§h> sinhfz +

/f
- BSlnh ﬁa xCOSh {_’.}x } sin B?] s et (3‘ 261))
Tayt = o7 [ abeosh ab Jr_ a’sinhab- ( N h9> +
ox ay B 1+ 3
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— sinh ab} cosh ay —asinab - ysinh wy] cosax +
~— E B;- [ {ﬁacosh Ba + Tﬁﬁ sinhpa- <z iy h) —smhﬁa}

x coshpx — f#sinh fa- xsinh,@xl cos By .

By (2.5) of (I) we obtain for displacements

wy = ?i?zi [z A, l( 2sinh ab— vz’ sinh ab— (1 +») abcoshab +

= »hﬂa“' sinh ab) sinhay -+ (1 +v)asinhab - ycosh ay} cosax -+

+ Z‘Bsz‘f ( —2sinh pa—1#°3"sinh fa— (1 +v)Bacosh fa + ; vh*B*sinh fa -+

+ (1++)sinh fa) cosh fz + (1 +)Bsinh fa- = cosh ﬁx} sin [a’y] , (3.27a)
1 [2 A, f ( -~2ginhab— 2%’ sinhab —(1+v) abeosh ab -+

OhE .
+ = »h"’ a’sinh ab +(1+»)ginh ab) coshay + (1+v)asinh ab- ysinh a'y} X

V=

X sin ax + 2 B, { (2 sinh fa—2°8 sinh fa— (1 +v) fe cosh fa+
+ ; e sinh /Qa) sinh pz-+(1--v)8sinh fa - x cosh ﬁm}. cos By] , (3.27D)
7’; {2_, A, asinhab- sinh aysinax + Z‘. B, [Jsmhﬁasmhﬁxsm 9y}

WL

W, =

So the solutions to the problem under consideration can easily bs
obtained by composing the above written solutions and particular solu-
tions in Sec. IV of (I). For examples, we have for o,

0= 0oy = 54, % [ fabcoshab—2sinbab+
h l 1+

x sinhab - o < 2t — i h.f') 1 ginh ay — asinh ab - ycosh ay] sinag -+

—~ 2B, [— [{ﬂwcoshﬁaJr T smh pa-B (2 ( s h"’)}sinhﬁx +
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. . K v | 3
— Bsinhpa -z cosh 9y 8V L 80
BsinhBa - xcos Bx] I [< y o - acc9> x
x sinb 2khsinhk(z+h) + <4U* + 3*> khsinh k (z—h) +
2’ ax”
" zf’ { I cosh2khsinh (24 )+ 2k cosh k (z—h) +
e
+ kz(sinh 2kh cosh & (2 + h) + 2khcosh k(z—h))}] , e (3.28a)

and for displacement u

u=u,+u; = (3.27a)+

(;{;L V) K av [(2;» 1)sinh 2khsinh k(z+ k) +
k

+ khcosh2khsinh k (z+ k) + (4u-~ 3)khsinh k(z—h) —2kh* cosh ik (z—h) +
— ke{sinh2khcoshk(z+7) + 2kheoshle(z—h)} ] . «oovov (3. 28b)
(K =p / (sinhe 2%k — 4ET), I = &+ L) |

Here we write only the forms of 8, ¥, and 7 in the other three
cases II, III, IV, although for these cases expressions similar to the
above must be presented, since they are so lengthy.

case Il.:
0, = %1 (Z A,a coshabeoshaycosax+ 3 B, Bcosh facoshfrcosBy),
/wa,z=0,
bt :xn—% liuzz@o—-%[zfl I bsinh ab + 1+ya'cosha‘bx

X (z — % w )) coshay — coshab - ysinh m/} cos ax -+

ﬂcosh fa - ( é lf)) coshpr +

-‘COShBa'xSinhﬂx } COSﬁyJ y e e (329)
(r=2r'+1, s=2¢'+1), {4,}, {B,} from (3.16), (3.17),
case III.:
By = 5 (Z} A, acoshabeoshaysinazx -+ ZB Bsinhfasinh fxcos Bz/)
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Lo = 7—1:=o ’

¥’ = zlh [Z A,.{(bsinh ab+ ««i—vvacosh ab- (z — %— hf) coshay +

+ v

— coshab-ysinh a'y} sinax+ 3 B, { (a cosh fa + 1: Bsinhpa. x
§ Y

X (z — % h)) sinhpz —sinh e - coshﬁx} cos ﬂy] , e (3.30)
(r—=2¢", s=2¢+1). {A4,}, {B} from (3.20), (3.21).
case IV.:
By = jhl | }"_, A,asinhab-sinhaycosax + Z:Bsf? cosh facoshfrsinfy |
Lo =dlemo s

Y= "72'71]; [Z A,.{(b cosh ab-+ ﬁ;asinhab' (z ——%« h}) sinhay +

y
1+v

— sinhab - ycosh ay} cosax+ 2. B, {(asinhﬂa + Beoshpa. x

X (z — é h) cosh fz—cosh fa - xsinh pz } sin [?y] RTINS (8.31)

(r=2r+1, s=2¢), {A}, {B,} from (3.23), (3.24).

When a simply supported rectangular plate is bent by general
pressure applied to the upper surface, we can get the solutions accord-
ing to Sec. VI of (I), if a given intensity of pressure f(z,y)=F(z+a,
y+b) can be expanded in a double trigonometric series of the form

floy)=Flatay+b)= 2 X p.sina,(@+a)sing,(y+0d),

m=1 n=l

=2 2 PunVun (%, Y)

k2 K3

in which

ma nr (™ . .
Ay = oy ==y Do = [ S F(a,y)sina,xsinB,ydedy
2 za ﬁ » 2[) ' m ab Jo J, ’ ) n ﬁ H

The forms of solutions which correspond to a single term of the
series (3.32) or a sinusoidal load, both so-called particular and comple-
mentary, were obtained in the foregoing and, of course, labels which
represent these solutions ought to have suffixes m, n originally, but they
have been dropped for the sake of brevity. As a consequence, solu-
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tion o,, for example, to this problem will be of the form

HMR

i Gam s onereer e o (3.33)

and the expression (3.28a) is a solution o, ,, in case I, where m and »
are both even positive integers.

§IV. Rectangular Thick Plate Clamped at the Boundary
Stressed by Normal Surface Load, the Loading
Function of Which is a v-Function.

We shall take a coordinate system as indicated in Fig. 1 and let
loading function be of the type of (8.2). The origin of the coordinat-
es lies at the middle point of the plate and, hence, the plane (z,y) is
a middle plane and thickness is 2k, needless to say. As the boundary
conditions for the clamped plate we may take

o =0, =0, wy=0, 2P =0, i (4.1)
v

in which the system (u,, v, w,) denotes displacement of any point (,
4,0) of the middle plane of plate and » is the direction of the outer
normal to the bounding curve, In the first place we shall determine
the expressions for ¥, and &, contained in the plane stress solutions
in See. IT of (I). Considering the fact that u,., v,. in (2.7b) of (I)
vanish on the middle plane z=0, we may put by (2.5), (4.29) of (I)
as follows:

1 1 oY v
.= —__ T4 %% L goY N )
Uo = Yo F Uy ===y 0 =y (é‘ (L4220 ax) S 22)
1 1 EY4 v
o= Vo1 o3 = —— 0z == — 1+ O JEY L 4.2
o Tt o E "B <ﬁ ( }> + ay > (4.2D)
in which

(14 f‘l[ {(20—1) sinh 2l + kb cosh 2kh + (3 —4) kh)
-

% ginh kh — 2K°h° cosh kh ] B PR R RPN (4. 3)

where

K= / hokh—dkRY), K=K, = ot + A
p/(sin ) Tt = 4<a»‘~’+b?>

P = Poy V=V, (xr y) - Sin (2% (fv -+ Cl/) Sin ﬂn (U -+ b) ¢
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Then, if we put
O = B OV, =i, g, e EPTT 4. 4)
2T 3Y ‘

X, £, may be _‘gaken to be plane biharmonic functions in this case,
considering the property of u,, and v,,.
First we shall treat case I (m=2m’, n=2n"). Observing the forms

v
Of Jﬂ, 9,, , or
o oY

v gyt .
J2Y — (=1 Ja, cosa,zsing,y,
o

.................. (4. 5)
J Y = (—1)y~"**J B, sin a,,x cos . ¥ ,
oYy
. - 72'779 _ T ‘ . - PN
with a,,b——é& , B 55 we. may write for X,
X, = 2 A, (bcosh ab sinh ay — y sinh ab cosh ay) cos ax +
+ 3 (B,cosh fr+ Cyxsinh Br)sinBy . oveeeeeens - (4.6)
<a T , :.,,SE,, ‘7' = 2r', 8= 23’)
2a 2b
Accordingly we get by (4.2a), (4.6)
Pek, = — (14v) 2 80" — ' 4, 2a sinh ab sinh ay cos az +
+ 2028 cosh Br sin By . Fig=0) e 4.7
By integrating this eduation we find for 6, .
' 2
B, = A, sinh'ab sinh ay sin ax — 3, C, sinh
= ) (2 ab sinh ay sin ax Z inh Bz smﬂy)
............................................. (4.8)
and, hence, ¢ will be of the form -
£ = ST 6, do = (1 9 < DA, - sinh ab sinh ay cos ax +
. o 1 ) o . ‘
- 2.4 (,5 h§7 COSh P)‘/U gin Iﬂ/) e e e K4' 9)
Now we can obtain the expression for % from - 1 X —&

3y ar  (1+4+3)
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and write %, as

7, = ({j) [ {(+) ab cosh ab + (3—) sinh ab} cosh ay -+

— (L+) a sinh ab - y sinh ay ] sin az+ pX

1-+1)3 B,
@i pllIeB. s
+Cy(3—v) } sinh fz + B(1+»)C, - w cosh fir] cos fy . (4.10)

Then the second term of (4,.10) may be expected to have the following
~ form in view of the boundary condition:

22D, (a cosh fa sinh fz — x sinh fa - cosh fx) cos By, -+ (4.11)
and, whence, it is found that B,, C, are to be of the types
3—v)
B,=D h Ba + @ hBa) . e 4,12
(acos fa e )sm /?a> (4.12)

C, = —D,sinh fa .
Putting for A,, D,
A, = A (A+Y)a, Dy= B,(140)B  oroeeeeeeeiinn (4.13)

and deleting dashes of A., B., we finally obtain the forms of X, ¥
and, thus, of &, o

o = Fu,= 2 A, (1+v)a(b cosh absinh ay — ysinhabeoshay) x
x eos aw + LB, [{(+v)facoshfa+(3—v)sinh Ba} cosh iz +
— (1+)Bsinh fa - zsinh fo ] sin By + J:” y e (4.' 14a)
=Ev =2 A, [ {1 +»)abcoshab +(3—»)sinh ab} cosh ay +

— (1+»)asinhab- ysinhay | sinaz+ 3 B,(1+v)p(acosh fasinh fz +
—uxsinh fa cosh ﬁx‘) cos Py +J %3- TR (4.14b)

Formulae (4.14) obviously satisfy the conditions
5 =0 at y+b, 5,=0 at z = +a respectively and, therefore, the
houndary conditions (4.1) only require that

6 =0 at x=-1a and 6,=0 at y==+b, v (4.15)

that is to say,
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; A, (1+v)a(beoshabsinhay—ysinhabcoshay)(—1) "+
+ Es:‘B“ [(1 +v)Ba-+(3—v)sinhfa - cosh ﬁa} sin By =
= (=1 Ja,sinfy, oo ERRITISITI OIS (4.162)
D4, {(1+v) ab+(3—) sinh ab cosh ab} sin oz + 2 B.(L+2) X
x fB(acosh Basinh fz-- sinhpa - xcoshpfz) (—1)* =(—1)y""""J§,sina,x .

.......................................... (4.16b)
By means of the following expansions
ca 1)
sinhay = %u ?g sinib”yj sinh 7 ysm~b—de ,
’ (417

b
0

oo ' ' /
ycoshay = f‘ S sin §b£ fyj ycosh-~ ™y sin gb@ ydy ,
5 =1 a

we obtain from (4,16a)

ZA (L+v) ((b 713 ;;:4)“(”/ s1nh‘lab+Bs{(1+»)/3a+(3—»)sinhﬁacoshﬁa}»
T

=(-D)*"Ja,, for s=un, ]
4.18
=0, for s#n. f ( )

Similarly we have from (4.16b)

(1+;) ab+(3—») sinhab coshab) +31 5, & +”>( ~1) T 4ally's” sinhe B

O'r*+a’s”)
:( )”L PIJﬁn ’ for m=r ]
4.19
=0, for m=#r f ( )

Solutions of Fgs. (4.18), (4.19) can easily be obtained.
Next we shall take case II (m=2m'+1, n=2n'+1). In the same
way as in case I we get for X, and ¥, the expressions

X =—3 A, (14+v)a (bsinhabcoshay—ycoshabsinh ay) sinaw +
+ 2B, [ {(3—u)coshﬁa+ (14 v)ﬁasinhﬂa} sinhfz--(1-+v)Beoshfa x
x g cosh /'IJCLJ cos ['?,U , e e e e (4" 20&)

%= 2 A, [ {(8—v)coshab+(1+v) absinh ab |sinh ay-+
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- (1++)acoshab - yeoshay | cos az-- 3 B,(asinh facosh fe +

—gcoshpa-sinhBr)(L+)B-sinfy ,  —ovoveeren RERRTRTRRT (4. 20b)

in which a:»gtm, ;9:;%, r=2r"+1, s=2¢4+1 .
o

Considering the forms of J ov , .
2% Yy

+ oV P .
Jg; =(—1)""*"*Jq, sina, ccosh,.y,

J 2 = (—1yv "+ J B, sina,,xsin B,y ,
oY

it is found by the help of expansions of the types of (3.15) that

- ZA (L+) (wﬂlgg;;;‘f(;;e;ﬁrgcoshg ab + B, { (8—v)sinhBacoshpa —(1-+v) ﬁa}

=(—-1"Ja,, for n ==, ]
- (4,21
A =90, for n#s, J( a)\.
A,](3—)sinhabeoshab — (1 +v)ab} — 31,1 T2 (=1 80V cosh’ fu
(b +a's")
= (=1)"JB,, for m=r, ) (4.21b)
=0, for m#r. .

For case III (m=2w', n=2n"+1) in consequence of the forms

J- v , J-2Y and of the boundary conditions we may write %, and %, as
3 Y

X = 7_‘, A, (1+v)a(bsinhad césh ay—ycosh ab - sinh ay) cos ax -+
+ 2B, | 1(L+vBacoshpa +(3—v) sinhfa} coshfr—(1+1)4 x
| % ginh fa « xsinh Bx] COSPBY , e (4.22a)
1= 04, [{(1+») absinhab + (3—») coshab} sinhay—(1+)a x

- coshab -y cosh ay] sinax— 33 B, (1 +v)B(acosh fasinh ﬂx -

— g sinh ga cosh fz) sin fy-, S ERRERRYY s (4. 22Db)

v S
where a=--", B="""-, ¢r=02¢, s=2¢+1.
2a, / 20
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Then by the aid of the developments
sa Ol |- o , Oa N
coshay = 2 S cos (28 +1) 7 ;z/S cosh 77y cos (2s'+1) 7 ydy , |
b o 2bh " 20 2h |
9 = Y P (4.28)
ysinhay = e » cos/?yj ysinhaycos pydy ,
87 =0 0
we have the relation by (4.22a)
1+4v) (1) 8ab*r*s cosh’ab f
4,3ty B,/ 3—1) x
Z 7 (0*r* + @’s°)? FBAA k(3
sinh o cosh Ba! = (—1 ' Ja,, for s=mn,
x B p | (=1 ] (4. 24)
for s+#n, f

and, using the developments of the types (4.17), we obtain from (4.22b)
the relation.

A, {(8—)sinh ab cosh ab—(1+) ab) + 3 B, L) (1) 8ab'rs'sinh® fa

7 (b°r* 4-a’s?)?
=(—-D"Jp, for r=m,
(=1)" T8 FE (g 2am
=0, for r#=m. |

For reference we indicate the forms of ¥, and %, and the required
relations in case IV. It will be readily seen that these are also ob-

tained by the proper interchange of labels and suffixes in the results
of case III in this section., We may write

Xi=—214.01 ¥ v)a(beoshabsinh ay—ysinh abcoshay)sinaz -+

+ EBSF«’(S—u)coshBaJr(l +v)Basinh fa sinh fx—(1+v) Beoshfa x
s | /

X % cosh B J sin By ,

%, =A,[ {(14v) abcoshab + (3—») sinh ab} coshay— (1+v)a x

x sinhab- ysinh ay} cosax -+ 2 B,(1+v)B(asinh facosh fz —
x cosh Basinh fx)cos By ,

....................................... (4. 25b)
in which o« =7

E S
, — “,,, 7‘:2'}"/—}—1, szs’,
2a 8 2b
and
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A, (L-4+2) (—1)"*"8a’br'ssinh*ab +B,

+ 2 {(3 —v)sinh faecosh fa +

- (b‘z,r'! n CLQS"‘)""
— A +v)Ba; = (—1Ja,,, for n=3s,
(1+y) paf = (1) L (4260
=0, for n#s, |
A, (8—)sinh abcosh ab+ (1+) ab) + 3 B, L)1) "Bl cosh fa
m (0*r° +a’s*)
= (—=1y»*"JB,, for »=m,
(=1mIg "l (4, 26b)
=0, for r#m. |

Next we shall indicate the forms of &, and ¥, definitely, From
(4.8), (4.12) and (4.183) we have in case 1

0, = 21 A, 2asinhabsinhaysinaz + 2 B, 23sinh fasinh fesinfy, (4. 27a)

and from (4.2), (4.6), (4.9), (4.12) and (4.13)

1 r V7. . —1 1 .
Yy = mj fe—7)do = i [g; A, L {(@sinhab-+ (1+)abcosh ab) x
1

x sinh ay —(1 +v) asinhab - ycosh ay} sinax 4+ X B, B (2sinh pa +

+ (1 +4) facosh fa)sinh f — (1 +v») Bsinh fa - wcosh ﬁx} sin ,By] , (4.27D)

From these basic functions (4.27) we can readily find the solutions
of the first kind according to (2.1) and (2.5) of (I). For example, we
have

by = i;yi - (‘1}1’)) [g Ayl (v(—2+a2)sinh ab-+ (14 ) abeosh ab)
x sinh ay —(1+v) asinhab - ycosh ay} sin ax -+ 2 B, (—f) x
X { <(2 +v %% sinh fa + (1 +v) facosh ﬂa) sinh Bz —(1+v) 8 X
x sinhpa - x cosh Bx; sin (?y] PP (4.283)
Eu,= {‘_‘_. A, [ {uoﬁz?sinh ab+(1-+v) ab cosh ab}- sinhay—(1+v) asinﬁ ab x
x ycosh ay] cosaz-+ 3 B, [{(3 —v-+yB%)sinh -+ (1 +») facosh fa} x

x cosh Bz — (1) Bsinh fa - wsinh Bx] SINPY. e (4. 28b)

Here we write the forms of @, % and ¥ .
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for case Il (m==2m'+1, n=2n"-1-1):

6, = 31 A4, 2aqcoshabcoshaycosax-+ 2 B,2Bcoshpacoshprcos By ,

»

Xo = Z]::n ’

1 = (1111,) [E A, %; { ( (1+42) absinhab+ (24 va®2’) cosh ab> coshay +

— (1+v)acoshab - ysinh ay} cosax+ 2B, {13 { ( (1+v)Basinhpa +

+ (24 v %) cosh Ba) cosh Ba— (1 -+v) Bcoshfa - xsinh fx } cos ﬂy] )
P TS ST (4.29)
(7":27"’+1, 8:23’+1), {4.}, {B.} from (4.21)
for case III (m=2m' n=2n"+1):

0, = 35 4, 2dcoshabeoshaysinaz+ Z B,2p3sinh fasinh fxcospy ,

?

X() =7 }::=-0 ’
2L = i [2 A, 1y ((1 +v)absinhab+ (2+va's?) cosH ab) cosh ay +
(1+w)L% a

—(1+ u)acoshab-ysinhay} sinax + EBF}; { ((1+u)ﬂacoshﬂa +

+ (2 v %Y sinh ﬂa) sinh fx —(1+v) fsinhfa - x cosh Bw} co8 ﬂy] ,
(r=2r" s=2¢'+1), {4.}, {B,} from (4.24),
for case IV (m=2m'+1, n=2n"):
0, = Z‘, A, 2asinhabsinhay cosax + ZEB‘* 2p3 cosh facosh Bxsin By ,
X =2l s
Yo [}j A, i { ( (1-+v) abeoshab-+ (2 -+ va®z*)sinh ab) sinhay +

" — (1+4v)asinhab - ycosh ay} cosax+ 2 B, [13 { ((1 -+v) Pasinh fa +

+ (2+vf%%)cosh ﬂa) cosh fz—(1 +v) fcosh Ba-xsinhﬁx} sin /B’y] ,
.......................................... (4.31)
(r=2r'+1, s=2¢), {4}, {B;} from (4.26).

In the next place we shall seek solutions regarding basic parts of
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generalized plane stress for the clamped plate. Iirst we shall have
to determine the form of w, by means of particular solutions and the
boundary conditions for w,.

By (2.5), (2.7b) and (4.31) of (I) we have

Wy = Wy, Wo,o+ Wy 0 = W ot Wya= *% {(1 -+ ))(:/.; +h2@;}’ -

4 ) FE 15 (o 1)sinh2bh—Eh cosh 2} coshith +
'/ ]

© 4+ (4v-—3)Ykhcoshkh — 2Kk’ sinh kh] v, y), RTINS (4. 82)

in which

9.y 1 _‘V) o :
pry - L g g g
14 (1+)/) i 1%77 . ‘
and by performing the operation F{="F3%-F} on w,(x,y) (4.82) we obtain
the differential equation

V‘;'M’() — _j'v(m’rlj) R T R (4' 33)

. . 7 (1+v pk’ [ ‘ L \
in which J = Q,_,EQ inhoth o, |20 coshi-r lsinh 20k}

It is to be noticed that according as kh approaches to zero this
differential equation becomes reduced to the well-known equation DFfw,

I3 B
=Z', in which Z’:j PZdz+V 0, |par—0.] s, and Z is volume force per
- .

unit of mass in the direction of the z-axis and ¢ is the density of mass
of material. However, Prof. Love in his book says this differential
equation is correct, whether the formulae defining the curvature of
the middle surface of the plate is exactly or only approximate]y cor-
rect and, hence, this remark of his may be said to be not entirely
reliable. In this case equation (4.38) reduces to Fw,(wz,vy) = —wov(z,y),
as in the theory of thin plate, since Z=0, o.l..,=—m(z,y), 0.].._,=0,
p— 2 ER_

3 (1)
problem :

differential equation Fiw,(x,y) = —Jv(x,y) (4.38) valid at any point

of the middle surface of the rectangular thick plate, and boundary
conditions

Now we come upon the following boundary value

20,

ov

w, =0, =0 ........ ........................... (4' 34)
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along the boundary and » has been defined before.

Accordingly general solution of the differential equation (4.33) is
to be given as the superposition of complementary solution of the
homogeneous equation 7jw,—=0 and particular solution of (4.33), which
by inspection can be shown to be of the form

W3 = — ,,ZT v(x,r[/) ............. e e e e (4 35)

and complementary solution is obviously a plane biharmenic funection.
Therefore, we can put

u}” (a;, ?/) o —— }g{ {Z (x @/) >|F.‘f2.) (x’ y) } . R AR (4. 36)
Substituting this expression into the second condition of (4.34), we have
Z‘ = —a,sinp,(y+b)cosqa,, (x+a)]ar,, at z=a,
@
; (4. 37)
:7 = —p,.sina,, (x+a)cosB, (y+b),_.,, at y==b.
Y

Consequently the above boundary value problem can be reduced to
the following :

differential equation. FiZ =0  ccvviiieeriiiieriiiiin (4. 88a)
boundary conditions, X =0 along the boundary--- (4.38b)

and the conditions of (4.37).
Now we shall take case I (m=2m/, n=2n’). Taking account of (4.38)
we may put

X =3 A, (beoshabsinh ay—ysinh abcosh ay)sinazx +

+ 3. B, (acosh faginh fx—xsinh facosh fz)sinfy, - (4.39)
in which « :‘72"’7— , B :;7[;, r=2r', s=2¢', Then Egs. (4.37) may be
o
rewritten into the forms
L (1, sinBy at = *a,
2w
- (4. 40)
Pk _ (—Dy™ B, sina,z , at y— &b,
Y ‘

From (4.39) and (4.40) we get the following relations:
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S1 A, (beoshabsinhay—ysinhabeosh ay) a (——1Y" -+ 2B, ;— (2pa—

—sinh2Ba)sinBy =(—1y"*'a,sinBy, atz=+a - (4.413)

STA, % (2ab —sinh 2ab) sinax -+ 3 B, (e cosh fasinh fx —xsinh pa x

x coshfx)p(—1)" = (—1)y"""'p,sina,x, at y= b .- (4.41b)

By the use of expansions of the types (4.17) we obtain the relations
between the coefficients in equations (4.41).
(—1y "+ *"4a’b*r’*s’ sinh* ab 1 .
A, + B,-=- (2PBa—sinh 2Ba
; n_(bvz,r/: +CI/QS’2)2 9 ( ﬂ ﬁ )
= (—1y"""w,, for n=s,
. 4.42a
=0, for n=*s. | ( )

1 . (— 1Yy "+ 4076’ s” sinh* o
A,—(2ab-—sinh 2ab)+ 3 B,
"9 (2ab—sinh 2ad) s2 7 (0" +a’s™)?

= (—1y"*'B,, for m=r, ,
(4. 42D)
=90, for m = r.

From these relations two sequences {4,}, {B,} may be determined.
In case II (m=2m'+1, n=2n"+1) equations (4.37) become

7@X - —_}:(M]‘)n,amcos [;71 Y, at T = i a,
%
; (4.43)
ﬂaﬁw - i(__]‘)m,ﬁn cosa, T, at Y = —_t b .
oY

Whence we may write for ¥
X = 2 A, (bsinh ab cosh ay—y cosh absinh ay) cos ax +

+ 2 B, (asinh fa cosh fz—ax cosh fasinh fx) cos fy , (4. 44)
in which a="'% , fB= S’I, r=2r41, s=2¢41 .
2a 2b
By (4.48), (4.44) we have
1

3

A, (—1) a(bsinhabcoshay—ycoshabsnihay)+ 3 Bré- X

x (2Ba-+sinh2Ba)cosfy = (—1)"*'a,,cosf,y , - (4. 45a)

A, % (2ab-- sinh 2ab)cosax+ 3 B, (—1)"f(asinh facosh fr +

—xcoshBasinhfz) = (—-1)v*'B, cosa,,x, e (4. 45Db)
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Utilizing developments of the types

coshay = 2 cos(Z ;2)” T uj cosh. 92% ycos (28,;61)—-@ydy ,
. ! (4. 46)
ysinhay = Z} cosﬁ’yj ysinh ay cos fydy ,
we readily obtain from (4.45)
1)+ 8a*b’r*s cosh® ab 1 :
4, (= +B,L (280 + sinh 2
2 ~v(br+as) 2 (2fa - sinh 2ja)
= "41 Bk wn Y f " — o, 7
(—1)y""a or n==: } (4. 472)
=0, for mn+#s.
(Zab -+ ginh ab) + Z B, (1) 8a%brs’ cosh” fa
7 (O’ + a’s*)
— ___1 m’ 1 - f ) = ,
(=13 or m=r } (4. 47D)
=0, for m=#=r.

In case III (n=2m/, n =2n'+1) the conditions (4.37) are written as

Y4

or (——1)"'“0{m COS.Bn?/ ’ at = +a, (4. 48&)

o

2}( . +( 1)m B,LSIHIXM y at y e ib y (4. 4.8b)
Y

and similarly we may put for %
X = 31 A, (bsinhabeosh ay—ycoshabsinh ay) sinax +
-+ 2 B, (acoshpasinh pz —x sinhpacoshpr)cospy , (4. 49)

in which a="", 3=57 p=2/, s=2¢+1.
2a # 2b

When we substitute formula (4.49) into Egs. (4.48), the resulting équa'—
tions are

> A, (bsinh abeosh ay—ycosh abginhay)a(—1)"" -+

+ EBS—;—(ZBa—sinhZBa) cosPy =(—1)"*'a,cosB,y, (4.50a)

A, (Zab Fsinh2ab)-+ EB (acosh Basinh fx +-

— sinh paeoshBx)B(—1)" = (—1)""*§,sina,x . (4. 50b)
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S0 that in the same way as above we obtain the relations.

“ STA, (—1)"8abrs coshab + B, -; (230 —sinh 2pa)

- (b"5r'2 +-a'zs'2)'3
= (—1y*a,, for s=mn, ] '
' : 4,51
=0, for s#mn. | ( 2)
1 . (— 1)+ 8abrs*sinh®Ba
A, (2ab-+ sinh 26b)+ 2 B, "sinh’fa
"5 (2ab-+ sinh 2ab) ; : = (Or 1 s
— _1 PN - fOl' r=1m ,
- | 5wy

=0, for rim.f
In case IV (m=2m'+1, n=2n") we write for reference

ax

ax’ 3 - :\__. (—1)71’ a7nSinf9ny H T = (_1>M)+118n cos amx ’ (4‘ 52)
20 !x:—l«(‘ Y y=+0
1= AY. (peosax+ DBX,(@)sinfy , o (4.53)

in which
' X, (x) = asinhfacosh Sz —xcosh pasinh fx
Y. (y) = beosh absinh ay-—ysinh abeoshay ,

re

2a

and from these

Q@ = y ﬁ:’s’t{’, '1":27‘/4“1, 8:28/7
2b -

DAY, @a(-1)" + X B, (2a-+sinh2Ba)sinfy=( 1" ,sinfy

A, % (2ab--sinh 2ab) cos aw + 3 B, X, (@)B(—1)=(—1)""""B,cosa,x .

.......................................... (4. 54b>
Whence similarly from (4.54) we obtain the following relations:
Y e 8a’br s sinh’ ab
a (Ir’+-a’s™y
=(—1y"a,, for m=s.)
=0, for ns. |

4,1 +B, %(2pa,+ sinh 2 fa)

(4.552)

A, kS (2ab —sinh 2-0)+ 3 B, (=1 8057"3 f?sh"’ﬂa:
20 s 7 (O°r* -+ a’s)
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= (=1y*8,, for m=r, ]

4. 55b
=0, for 77@1;67”.] ( )

Thus it will be supposed that ¥, namely w,., has been determined,
although the above process of calculation analogous to that of Hencky
may be said to be approximate one. In any way a boundary value
problem of this kind could not be dealt with readily, since there seems
to be no other better approximate methods. It will be needless to say
that the Fourier expansions used in course of calculation are valid in
the whole needed ranges. .

In order to make use of the formulae (2.7) and (2.8) of (I) we have
to find the forms of @, ¥; and 7/. It is obvious from (4.32) and (4.36)
that c

Woe = ;} {(1_1_‘/):,5;_*_]%2@’} — "];;:] X, (4. 56)
and, performing the operation V3 on (4.56), we easily cbtain the ex-
pression for #,. At first we shall take cagse I (m=2m/, n=2n") for
simplicity in the sequel. Now we have

— 28 J

O, = 2=
T A K

(24, asinhabsinh aysinaz+ X B, fsinh fo sinh fwsin fy) ,

.......................................... (4.57a)
and by (4.56) and (4.57a) '

y= A [ZA,,»’<2h‘3asinhab—(1~;)bcoshab)sinhay+
(1—*) k' L5770
+ (1) sinhab~ycoshay} sinax + 3 B, {(2hﬂﬁsinhﬁa~(1—u)a X
x'cosh,?a) sinhﬂx—%(lwp)sinhﬁa-xcoshﬁx}sin ﬂy], -+ (4.57b)
so that
Y7 Yl 2—v) . E J oL ol (2"”/) 3 s
W=ty 2 g B [ A, (2htasinhab — 2"z x
2 6(1‘4-u)7 (1) I 2 t< Vasinha 3 2

x sinhab—(1—»)bcosh sz) sinhay + (1 —v)sinhab - ycosh ay} sinax -z --

+ Z B, : (iZh,‘-’ﬂsinhﬂa, (2;’) #psinh fa—(1 u)a,coshﬂa) sinh 3z +

€

4 (1 --+)sinh e - weosh ;S’x} z-sinﬁyJ TR PN (4.57¢)

Once these basic functions are obtained, solutions of the second
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kind or basic parts of generalized plane stress solutions can easily be
found by the help of formulae (2.7) of (I); for stresses

(1),
E

J H—Z]A az[ —2us1nhab+(2h @—3*)) )a s1nhab+

—(L—v)ad coshab}' sinhay+(1 —u)a sinhab- ycoshay] sinax +

+ Z‘,Bsﬁz[{ —2sinh ga— (2 —2 ”> #) #)@'sinh -+ (L =)0 x
X cosh ﬁa} sinh gz —(1—v)fsinhfa - xcosh ﬂx] sinfy, - (4.58a)
(1—*) k'

(Z“V)y‘z g ,
7T %2 =S4, az[1—2s1nhab+ (2n ——f.v)a81nhab4

+ (1—)abcoshab | sinhay—(1—v)asinhab- ycosh‘ay] sinaw +
+2B ﬂz[ 2u51nh/3a+(2h (2 ”) \ﬁsmhﬁa ~—(1--y) Ba x

x cosh fa} sinh gz-+ (1—) Bsinh ﬁa: weosh ﬁx] sinfy, - (4.58b)

(1) &

w Ty T —2 A,.'az[{(Zhg— 2 z) a’sinhab—(1—v)ab x

% cosh ab+ (1—v)sinh ab} coshay+(1—v)asinhab. ysinh ay] cosax +
— 2 Bsﬁz[ ( 2 — (2 (2=0) o )stinhﬁa—(l—u),?acoshﬂa+(1—u) X

x ginh ﬁa ; coshpz +(1 —v) Bsinh B - wsinh ﬁx—l cospy, - (4.58c)

=
T T {1 ;
X cosh ﬁxs]_n By) (h ___z‘) .................................... i (4' 58d)
Tyes =— ( E ) = (EA a smhabcoshaysmax+28/? sinh fa x
v Slnhﬂx COS[J’J) (h ._z'~> ) rerareeerier . 589) »

and for displacements
~(1—~v)—]:lr%| -u2~ZA [ 3 ) asinhab— (1—u)bcoshab‘

% ginhay +(1 —v)sinhab. ycosh ay] az cosax -+ 2 B, [ (Zh "§_ 4‘1) X
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X p*sinh fa—(1—v)Bacosh fa+ (1 —v)sinh ﬂa} coshfx +

+ (1-—v)Bsinhga -2z sinh,@x] ZSINPY , e 4. 59a
el -—»)’3—;’ v =34, [ (20— 2_§l #) a*sinhab—(1 —v)abcoshab -

+ (L --v)sinh ab}» coshay+ (1 —v)asinhab - ysinh ay] zsinax +

+ 2B {2 -2

Y zﬂ> Bsinh fa— (1 —»)acosh ﬂa} sinh e +
+ (1 —v)sinhga- xcoshﬂx] BZCOSRY ,  cerrrreiereeianeans 4.59b

(1;;)]04 w, =3 A, [ {»z2 asinhab—(1—»)beosh ab} gsinhay+ (1 —) x

T

x sinhab - ycosh ay] sinaz + X By | { v2*Bsinh fa—(1 —v)acosh ﬂa} x
s i

x sinhpz+ (1 —v)sinh pa- xcoshﬁx] sinay . e 4.59¢c

Thus we have obtained the solutions of the second kind to the
problem of clamped plate in case I but we shall abridge the similar
expressions corresponding to the other three cases and only brief
mention of the forms of @, % and ¥/ in these cases will be made in
the following, for reference.

_op J cosh (cosh cos cosh
O, = a _y) 7 STA,a [cosh ab [cosh ay . {sin ax+ 3 BB [sinh Ba X

sinh  \ginh cos cosh
cosh cos
X [Sinhﬁx (COS‘BZ/ et (4. 603)
cosh sin
(A=) ' (A=Y B 2]
E J7 T E T 2. , (4. 60b)
) Loty fet ‘ - L9 cosh sinh
(vgp) 67 A= EAZ {(2”_?“2’) “[coshab~(1ﬁu)b Sinharbl %
' : A sinh cosh )

-cosh rcosh ginh cos ‘
X [cosh ay -+ (1 — )| coshab- 'y(sinh ay} . [sin ax + 3Bz %
sinh sinh cosh 208 ’




518 Kin-ichi Hata

9, . cosh sinh 1 cosh
X [{<2h Ty z) B Lsinh fa—(1 »——p)a[cosh fa; - [sinh Bz +
: sinh j

cosh cosh
cosh sinh cos
+(1—v) (sinhﬁa . x(cosh ,Bx] : [cosﬂy B CETLETRERPRLEY (4.60c)
cosh sinh sin

As regards the expressions (4.60) the rows of the first, second and
third correspond to cases II, IIl and IV respectively and {4,} and {B,}
must be those determined from (4.47), (4.51) and (4.55). As in the
case of simply supported rectangular plate, suffixes are to be such that

case II (m=2m'+1, n=20"+1, r=2r"+1, s=2¢+1),
case III (m=2m/, n=2n'+1, r=2v¢", §=2¢'+1),
case IV (m=2m'+1, n=2n, r=2r"+1, s=2¢ ),

7 st
a = og’ B= o
E J _ »p 1
1= & (1—v)k (sinh2kh — 2kh) '
In the preceding calculation we used the same symbols 4., B, for
the coefficients in the expressions for solutions of the first and second
kinds, that is to say, because it appeared that no confusion would
arise, we did not distinguish them by using primes but it may be
desirable to give primes to A4, and B, in the solutions of the second
kind. Now we can get general solutions by the superposition of three
kinds of solutions to the clamped plate problem. We have, for ex-
ample, by (4.28a), (4.58a) and (4.25) of (I) in case I (m=2m/, n=2n")

12(1 —v) cosh kh + khsinh /ch

O‘m ,: d.’u‘\+am,‘_’+”zi'—;A (1+ )l’

+ (1 +v)abcosh ab]» sinhay+ (1 +)asinhab - ycosh ay} sinax +

— { v(—2-aZ")sinhab +

L ﬂ)[t@“/” )sinhfa) -+ (1) facosh fa} sinhfz +

— (1+1)psinhpa - xcoshﬁx]smﬂerZA E 7
- (1»—»)

+ ( o2 ;-f z?) a’sinhab — (1 —v) abeosh ab} sinhay-+(1—v)u =

€]

[ —2vsinhab -+

x sinhab -y cosh m/Jsma:v + 3B, ( E”)]I z[.{-Zsinhﬁa -
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— (z;f—z; ¥ ) #sinh o+ (1 —») fa.coshpa sinh po—(1—)Bsinhfa-
KT 4
X % cosh Bx]sm By +—— 2)— + —) sinh Zlchsmh k(z+h)+ <4u
LY sy o o

+32% ) khsinhk(z—h) + o ’ —khcosh2khsinhk (z+ k) + 20 x
« coshlc(z —) -+ kz (sinh 2kh coshl (z-+ k) + 2kch cosh o (2 —h)}] . (4.61)
and by (4.28b), (4.59a) and (4.29b) of (I) in case I "
U= Ut Ut U= 2} A, -}%[{ua?z? sinh ab 4 (14 v) abcosh ab} sinh ay +
-~ (1+v)asinhab - ycosh ay‘l cosar + L B, [ (8—v+4vf'2*)sinh fo +

+ (L) fabosh fa) cosh gw—(1+») Bsinh fa - wsinh /S’x] sinpy +

+ Z A, (<1__1u>) ]i [,’ <2h'l — 2—;5 z) asinhab ~(1 ~v) bcosh ab} sinhay +

+ (1 —v)sinhab- ycoshay azeos ax + };‘B( 1) J 2h,3—~2;i)z'3 % X
11—k 3 P

x sinhpa—(1 —v)pacosh fa-+(1 —v)sinh ﬂa reoshfr+(1—v)f x
(1+v) K av
E I
cosh 2%h, | ;sinhk(z+ k) 4+ (4v—3) khsinh k(2 —h) — 2k coshk(z —h)—Fkz x

X sinh/?a xsinh ﬁx] zsin py — [ /(2y—1)sinh 2%h +Fh x

x {sinh 2kh cosh(z+ )+ 2kl coshz (5 —h) ,] C e, (4.62)

These are the solutions to the problem of clamped rectangular thick
plate under sinusoidal pressure pv @, Y)=Dn.sina,, (x+a)sing, (y+0), (m=
2m’, n=2n").

As stated above at the end of Sec. III, when loading function is
general and can be expanded in the like of (3.32), solutions may not
be hard to obtain by utilizing the solutions in the above four cases.
Solutions for the simply supported plate under variable normal load
outlined in Seec. III may be said to be the direct extension of Navier’s
solutions in the theory of thin plate and solutions described in Sec. IV
may be called the indirect extension. These solutions satisfy all equa-
tions of equilibrium and compatibility and Kirchhoff’s four boundary
conditions, as frequently mentioned. Anyhow we could solve the cor-
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respondingly difficult problems applying the method of Love, though
the solutions obtained may not lend themselves readily to numerical
computations. Moreover, the difficult-seeming mixed boundary value
problems can be easily dealt with, following the mode of attack de-
scribed above. So a brief mention of mixed problems concerned with
rectangular thick plate will be offered in the next section.

§ V. On the Mixed Bouudary Value Problems Relative
to Rectangular Thick Plate.*

(a). On Several Typical Cases.

It will be worth while to note that by the aid of the systematic,
ingenious, if somewhat lengthy, method of Love we can comparatively
easily treat the mixed problems of thick plate, though mixed boundary
conditions seem to be under some restriction. That is to say, when
mixed conditions are general, it seems to be impossible to tide over
the -difficulty to solve the problem without making some approximation.
Herein we shall discuss chiefly the simply connected plate laden with
sinusoidal or variable pressure. Mixed problems of thin plate sub-
jected to a uniforin pressure are often treated but that is not the
case with thin plate loaded with variable pressure, probably because
the latter problem is too troublesome, and solutions for variably loaded
thick plate with ‘mixed boundary seem to be rarely seen. Now we
shall proceed to investigate several cases. Always in the following

(& 1* ¥ 1y
B A gl A B A
2& 2t
& a x
5 b
c -4 b o 24 5 X e ° @ X
42 e o
< A X Coordinate system IIT,
{ % } > 0 >
£ |
Coordinate system I Coordinate system II.. B 4 A
Fig.- 2 0 24 X
= D

Coordinate system IV,
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we shall chiefly discuss the problem of thick plate under a given normal
load, whose loading function is a v-function

DoV (8, 9) = D0 (2,Y) = psina,, (@-+a)sinB, (y+b), - (5.1)

mr hrr

(=G o=y
ordinate system I in Fig. 2.
One of the coordinate systems shown in Fig. 2 will be taken in each
case for symmetry reasons.

Case A. When Thick Plate with
Two Opposite Edges BA, CD Clamped and
the Other Opposite Edges BC, AD Simply Su- B
pported is Stressed by the Pressure (5.1). ‘ c

In this case it is convenient to take the
coordinate system I. The boundary condi-
tiong are

, m=2w, n:2n’> which is referred to co-

[

Fig. 3
¢: clamped edge.
s.8: simply supported

edge.
Uy — uu,l -+ u(),_r; - O y 7_)0 = 1)0’1 -+ vg,:; — O s g

AW,y _ 3Ws,s _Faw(,,g:o, at y= b,
oY oY Y

Wy = Wya Wy 3 =0
TI - T1,1+T1,3 =0 ’ S] = SJ,1+Sl,3: 0 y
G[ = G])g’]‘G],:;:O, Wy = 0, at X = _'ta. """ (5. 2b>
In the first place we shall determine the two basie quantities 8,
and ¥, observing the boundary conditions regarding u,, v, 7 and S,.

From the form of T, at ¢ = +a the following expression for %’/ can
be taken in ‘cage I,

1 v

A= 2hX, — 5 —1—1—%;@0 = X (4,sinhay-+C,ycoshay)sinaxw +
v ” ‘
+ 23 B,(acosh fasinh fr—axsinh fa- cosh gz)sinfpy , - (5. 3)
a="T", &4 = =2, s=2¢ .

2a - 2b

On inserting formula (5.3) into equation 6, :217 VX", we obtain the
!
expressions for #, and then for %,.

Hence, using these expressions, from formuls
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8 = Buy=€—(1+1) 2P g2 — 5,40
o ax o
and condition
=0, at y==£0,
X, can be written as
= 21D, a(1+v)(bcoshabsinh ay—ysinhabcosh ay) cosaw -+
+ 28]‘ B, ?li; [{ (uwl + —;«hﬂﬁ") sinhfa—(1+4-v) facosh ﬁa}- cosh px +
+ (1 4) Bsinhpa - @ sinh [a’x] SINBY, o (5.4)

in which D, is a coefficient to be determined from such relations that
C, = 2hsinhab-D, ,

A, —Zhé (1 - ’(6 +vh'a’y sinh ab + 3(14v) abceosh ab D,. (5.5)
Accordingly it results that
K = 5_," 4, 2h[ TR L {(6+ vh*a®)sinh ab-+ 3 (14 ) abcosh ab}v X
x sinhay—sinhab - ycosh ay] sinax-+ 2] B,2h(acosh fasinh Bz +
— Sj_nh ﬂaéogh ﬁx) Sin By y et (5. 6&)
6, =2 A, 2asinh absinhaysinax— 3 B,2f3sinh fasinh frsinfy ,
.......................................... (5. 6b)
o= DA, [{ —beoshab——— —7—3\ sinh ab} sinh ay -+ sinhab - ycosh ay] x
> < o )
X sinaw-- Z B, [ acosh fa — é (11“)) h*B sinh ﬁa}- sinh px +
—ginh (S’a . xcoshﬂ x] sin ﬁy s e (5. 60)

X =3 A, (L4-v)(abeoshabsinh ay —aysinhab -coshay) cos ax -+
+ 3B, [ {(u —1+ -éi @) sinh pa—(1+v) fa cosh Ba} cosh fz +

+ (1-v)Bsinh fa - xsinh ﬁx] sinfy, oo R ErES (b.6d)
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X, =34, “(3 —v)sinhab-- (1 v)abcosh ab} coshay—(L-+v)asinhab x
x ysinh ay]sin ar+3] Bs[ { ( 2+ %hﬂ) sinh fa —(1-+v) facosh ﬁa} X
x sinhpz+ (1 +v) fsinhfa-xcosh Bx] COSPY , e (5. Ge)

in which we replace D, and B, in the preceding formulae by A, and
2h B, respectively. Now we are left with the following two conditions
unsatisfied.

Sl :‘0 , at o = +a, o MR (5.7a)
v, =0, at y=+b. o (5. 7b)
By (4.72), (3.4) and (2.1b) of (I) we must have

S =8 +S11:;ajzz+ ﬂ: >t A2 [ 1,[ 6+ vhiad) X
l MUY Sway anay >‘ w 3(1+) \(6-+vh'a’)

x sinhab+3(1+4v) abcosh ab} coshay —sinh ab ( coshay +aysinh ay) ] X

x cosaw— 3 B, 2hB | (Bacosh fa—sinh fa) cosh Bz —Bsnih fa x
xmsinhﬁx}cosﬂw— Qﬁ—v—zo, at x=-tda., e (5. 8)
3% 3y

In the same way as before from (5.8) we get the relation:'

514, 2H(=1) e b sinb’ab  v(fa*—6) 2B )

b+ a's”) U8 (A+y) (7" +as?)]
— B,hB(2pa—sinh2pa) = (—1)"*'a,p,Q, for n=s,) (5.9)
=0, for n=s, I )
in which &=1, e;=¢6;=¢,="--+-- =2,
And by (56.7b), (5.6e), (4.5) and (4.3) there exists the formula
Bg:zz’*‘ 2 - ’ at y= b,
oYy

that is,
314, {(3—v)sinhabeoshab-+ (L+5) ab) sin av+- 3 Bs[{ (2 2h) x

X sinhfa—(1+v) facosh ﬁ’a\," sinh Az +(1+v) fsinhBa - 2 cosh /?x] X
¢ (_#1)3/ +Jﬁn(——1)'”“sinamx = (). e (5 10a)
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From (5.10a) another relation is obtained, which is given by

A, !(3-v)sinhab cosh ab+ (1+»)ab} + 51 B, (—1y~+ 2 Orsinh’fa
L N 3 (b a’s”)

X Lu(6 B a's (64 vIp) b

7/
= (—=1)™+! JM, for m=r, . ~
(=1) b (5.10Db)

=0, for m=r.

In the next place we shall determine the forms of basic quantities
0,, 71 and ¥. By the condition w,=0 along the boundary we may take
X in the formula (4.36) to be of the form

X =3 A, (beoshabsinhay—ysinhabeoshay)sinaz +
+ 2 B, (acoshfasinh fr—wsinh fucosh fr)sinfy, - (5.11)

in case I with »—=2¢, and s=2¢'. However, taking account of the
fact that by (4.86) of (I)

Gys=0, at = +a and hence G,, =0, at 2= +a.

and, further, G, is expressible in the form (2.10) of (I) by the use of

—J =

formula w,,= E X, it would be apparent that

B, = 0. e (5.12)
Therefore we see that
W, = %Z {ZA,. (beoshabsinhay—ysinh abcosh ay) sin ax + (va, y)}‘
et U

satisfies the conditions

w, =0 and G, =0, at r= ++a,

and when the condition 2" =0, at y=-+b is considered, sequence
{A,} reduces to
Am = (‘»—1)7“' T,rbn,/(ZQb_Sinh Zab) W e (5' 14)

Consequently we can readily determine the forms of #, and ¥ by
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means of the formula w“,:~~% hé 0‘ +{1-+v) 71, .
_ —E J . : .
0, = A, 2asinhabsinhaysinax , e (5. 15a)
(l—u) VA
v K J f 2 o s . N
1= i) T A, l(— beoshab + a—:;j h asmhab) sinhay -

,+‘ Sinh ab v ycosh a?]l} Sin a’x P R AR RN ] (5. 15b)

From (5.9), (5.10b) and (5.14) all coefficients in the expressions for
four basic quantities &,, %, 6, and 7; can be obtained, so the problem
in question may be said to have been solved virtually. By (5.6) we have

1

ZZXO
2 14y

z()o_}“_,A[ bcoshabHv(lJrl e

x ginhay -+sinhab - ¢y cosh astmax + Z B [ a cosh fa + 1T %
v

X (z ~%h2> Bsinhﬁaf sinh fz —sinh Ba.-xcosh{?x] sinfy. (5.16)

22\ o} |
(2+#"a")sinhab; x

By (5.15) we have for ¥

0 = 2]+ 6(21‘ 570 ~(1Ep 5 ]7‘ A,,Lz[{—(l —)beoshab -+ 2hasinhab-+

— Zg asinhab- z-f ginhay +(1+v)sinhab ycoshay] sinax .

Tor example, normal stress o, will be given by
G, = Gm.1+ﬂx,2+aw,i§ R R R R PR R PR PP (5. 18)
with
gy =2t 4, [—-’(1 +)ab eoshab + (#a’—2)vsinhab) sinhay +
sy’ v (1+y)

+ (L +v)asinhab - ycoshay] ginax— 3 B, (1f_ )[’(1+u)ﬂacoshﬁa +

.y (z _th’) #sinh fa } sinh px-—(1 +v)Bsinhfa - xcoshﬁ’x_, sin By,

tpa= T A,Laz[ —(1—) abcoshab-+ (2v-+2h%a* — (23 etz x

x sinh ab} sinhay+(1--v)asinhab -y cosh ayJ sinax,
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taking a,, from (4.25) of (I). We omit the solutions in the other three
cases than the above case, since we can proceed along quite a gimilar
way and needed descriptions are so lengthy.

Case B. When Thick Plate with

c
One Edge Clamped and Other Three Edges
Simply Supported is Stressed by the Pre-
55 58 gsure (5.1).
- We shall take the coordinate system I in
. ‘ . Fig. 2 for convenience’ sake, though it would be
Fig.

proper that theﬁcoordina’ce system III should be
referred to in this case, if the edge AB is clamped. The boundary
conditions are as follows:
Uy =0, v,=0, w,=0, 2N=0, at y=bh,
oY
T,=0, 8;=0, G;=0, w,=0, at x=-+a,
T.=0, S;=0, G.=0, w,=0, at y=-5.

At first we shall want to obtain the solutions of the first kind in
the same fashion as before. In view of the boundary conditions for 7
we may put X/ in the form

(5.19)

X" = 2y — % 9, =5 | A sinha(y+)+C. (y-+)coshay +
+ . (y+b)sinh ay } sinax + 3 B;(acosh fasinh fz —xsinh fa cosh pz) x
W SIMAYAD) . e e, (5. 20)
in which « -_;Z , B= % , r=2r and s=¢. It is obvious that re-
sultant forces T’s derived from (5.20) satisfy the required edge con-

ditions at the three edges. Then by the condition u(,:%(fl + J?ﬁ> —0
T

at y=>0 the expression for X, obtained from (5.20) yields the fol-
lowing relations:

J— 7

AT o
1+v)
_ B
(1+») t
C, = asinhabcoshab-C,, FE, =asinhabcoshab - E, . (5.21b)

{sinhab +(1+4v) abcoshab+ % vR’a® sinh ab} -

.

coshab+(1+v)absinhab + % vh*a® cosh ab} , (b.21a)
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Hereafter we shall drop primes over C, and E, on the right-hand sides
of equations (5.21) for simplification.
Now we may write for basic quantities 6,, ¥, and 7.

B, = i1L { S:(C, sinhay -+ F, coshay) a’sinh abeoshabsinax 4

— ?'Bsﬁsinhﬁasinhﬁxsin{}(y+b)} R (5. 223)
Vo= Llowe s e STUOUPPS TP STRP R (5. 22b)

e lz=0

A’ = 2 C, ’21_}: . (1 iu) [~ «{sinh ab+(1+v)abeosh ad -+ % vh*a®sinh ab} X

X sinha (y-+b) +asinhab coshab -{(1+v)(y+b) coshay —v (z~%h) X

x asinh ay}]sinax—k 2)3 E, 2k(]?+;5[_ lcoshab+(1+u)absmhab +

+ —é— vh*a® cosh ab} sinha (y+b) +asinhab coshab {(1 +v) (y+b)sinhay+

1
2h(1+v)L

+ v (z ~%hﬂ)‘8 sinh,@a,’sinhﬁx —(1+v)xsinhpa cosh[?x] sinB(y-+b).

(z ~ﬁh)acoshayf]s1nax+2B [f(1+u)acosh,8a+

And 27 (5.20) is by (5.21)

2 =%C, [ iy Isinhab-+-(1+v) abcoshab + _gwa sinhab) x

x sinha(y+b)+ % asinh2ab - (y+b) cosh ay] sinawx +
Z [ a+ cosh ab+(1+v)absinhad -»6) vh'a* cosh ab\

x sinha(y-+ b) +?a sinh2ab - (y+0b) sinh ay] sinax -+ 3 B, (acosh fa x

x sinh fx-—-xsinhBacoshfe) sinf(y+b), -ooovvvieeene (5. 23)
Now we must have three equations to determine three sequences of

coefficients {C,}, {E,} and {B,}. The condition 32:Ev0:??3+J§—v: 0,
, : Y

at y=0 requires that

[ZC it (2+—3-h°a")s1nhabcosh2ab+(1—»——ha)coshabx

>
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x sinh2ab +2 (1 -+ »)abcoshabeosh 2ab — 2(1 -+ 1) absinhabsinh 24b| -+
+ DB, o | (24 ) coshabeosh2ab-t (1 v~ L-Wa’) sinhab x
x sinh2ab+2 (1 +v)ab sinh abcosh2ab—2(1 -+ y)abcoshabsinhZab} ]sin ax +
+ 23 B, ~2—1—h— [{ 2ginhfa —(1+v)pacosh fa -~ %« vk’ ° sinh fBa } sinh fx +

+ (1+v)sinhpBa- fz cosh ﬁw] cos 208 = (—1)"*'J B, sin L ,
a

and equation (5.24) furnishes the relation
c, & (2+ 2 h*a*) sinhabeosh2ab+ (1—»— -2 ha’) coshabsinh 2ab -+
2 V73 3
+ 2(1+v) abcosh abcosh2ab —2(1 -+ v)absinh ab sinhZab} T
7, % {(2+  Wa*) coshabeosh2ab + (1—y— > Ia*) sinhabsinh 2ab-+
2 | 3 3
+ 2(1+») absinhabosh 2ab—2(1-+ v)ab cosh b sinh 2ab} +
+ B ( 1) 4l ‘nhzﬂa{——<2+%vhgﬁ>+ A+v)a’s’ )

s h(b"’ a’s”) (br+a,s)f
=(-1D»*2hJB,, for m=r,
(—1) B \ (5.25)
=0, for m=#1r, I
Next from the condition
Szz_af:}_{_/_/ Qagv :O’ a‘t y:—b,

ax 3y 3% 2Y

a‘.’.xll

~  and the second
%2y

term comes from (3.4), we obtain the relation among coefficients:

where the expression (5.23) is to be substituted in

c, ’(T%’;) (+ 3 (2ab—sinh2ab)coshab-+ (145 Ia’) sinhad +

+E, (T ){(1—2H) (2ab +sinh 2ab)sinhab + <1+%hﬂaﬂ> coshab} 4
p,(Z1)7e, 2ab°r*s’sinh’ Ba
(br +a’s?)
=(—1)""*"Qa,pB,, for m=r,
=0, for m#r,

+ 2

} (5. 26)



On the Thick Plate Problem II. 529
in which
g=1, ey=¢e,=¢=--=2,
Then we have to apply the last condition,

.y 2 s
0 g ap st ot
ax 3y 2% 3y

In order to consider this condition it would be appropriate to take the
coordinate system III as shown in Fig. 2. This condition can be re-
written into the following form, referred to coordinate system III.

S C, [w—:;— ----- {sinhab+ (1 +v) abcosh ab -+ F vh'a®sinh ab‘ coshay +

»

+ ——-sinh 2ab -‘cosha (y —b) -+ aysinh« (y —b)f] a*(~1y"+

2 E, [(1—) coshab+ (1 +v)absinhab + F vh*a®cosh ab] coshay +

+ % sinh 2ab 1 'sinha (y—b) +ay cosha (y_b)},] 2(—1)" +
+ 2B, ; B(2Ba —sinh28a)cos By = Qa,.B,c08B, 4 . oo (5. 27)
When we represent the left-hand side of equation (5.27) by Fourier

cosine series for range (0, 2b) and equate coefficients of similar terms
on both sides of the resulting equation, we obtain the required relation.

‘48 an r” sinh absinh 2ab 1 "
O (-1y s ) [y (L )
94 v) A+ (1)) G —a's?)
U () - SN E e |+

+ ZE (—1)"*%, an 7' coshabsinh 2ab

&r -+ a’s’) [(71;!—1))[(

(14 v) (1—(=1)) °r'— a's) B i
A—(=1))| — . (b"r’+as)] Bs;é._(zﬁa sinh28a)

— am‘BnQ y for n-=—3=8 y } (5. 28)
=0, for n#s,

ho o),

Consequently we can determine the coefficients {C,}, {£.} and {B.}
from (5.25), (5.26) and (5.28) by successive approximation.

In the next place we shall obtain solutions of the second kind.
The boundary conditions to be considered herein are relative to the
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quantities w,, el , G, and G.. Noting the condition w,=0 along the
oY

boundary, X in the formula w,= f]; { v(x,y)+ % (x,y) } can be written as
C .
X = { 2 A, (beoshabsinhay —ysinhabcosh ay) + 33 B, (bsinhabcoshay -+

— ycoshab sinhay) } sinax -+ ZCS {@cosh Pasinh fx —xsinh fo cosh fx) %

X sinf(y+b) OO O 5.29)

’

with a = ,72"” = S’; , r=2" and s=¢/, which refers, of course, to
v/ .
the coordinate system I in Fig. 2.
By the condition G,= 0 at x=-4a we have
Ca:O ..... ettt a e e ety E e e (5.30)

and, further, according to the condition G,=0, at y=—b the relation
between A, and B, is given by B, cosh®ab = A, -sinh*ab
so that we put

A, =cosh*abA. , B,=sinh%b B, IEEEEIEIERRERRIEIENEE (6.31)
and drop primes always in the sequel as before.
Finally, if we apply the condition 9; Z" =0, at 7/ b, it is easily seen
that
A, = (=1 20 b(si 1411) by for r=m,
(sinh 4ab—4ab) (5. 82)
=0, for r#m.

As a consequence we may write ¥ in the form
xX= A4, cosh ab - Y, + sinh’ ab ,, sina,,x , e (5. 33)

in- which _
Y, = bcosh ab-sinhay —ysinhabcoshay ,
Y, = bsinhab coshay —ycoshabsinhay. (¢=ua,,)

With the aid of formula wy = —7 % = — (1407 +126,] from (5.33)

we obtam

o= 7 Ly —F

A -/ A,,La sinh 2absinha (y-+b) smma”x (6. 34a)

1) I
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i = X2 aan s et (5.34Db)
o= zA + 6(?1+2)z”@1 = a +li> ;:* zAm[Y]cosh ab-+ Y,sinh’ab +

( )as1nh2ab -sinha (y-+ b)’(z ) h}] sinaz. --- (5. 84c)
—Y

From these basic quantities we can easily obtain the solutions to the
problem concerned. For instance, normal stress ¢, is given by

g, = (]‘m’1+(}‘z,?+ Gy rrrertertiresiieeiiiiiiiiie (5. 35)
where by (5.22¢) '
Gpy = ¥t }; 2h(12+ )[ s1nh ab+ (1+v)abcoshab -+
4+ (13, vhiatsinh ab!’ sinha (y+b)+ ? sinh 2ab 'l<1 + u) a(y-b) x
% coshay+ (2(1 +v) +va’ (%hg—zi) )sinh ay}-] sinag +
~ LB, W | - /coshab +(1-+») absinhab + é vl cosh ab) x
x sinha (y+b)+ - Asmh 2ad J2(1+u) +va® ( ffffff ~z")}v coshay] X
X sinax — ‘8[_’. "o, ({13+ )[f(l»k u\acosh[s’wru{? sinh fia - (z ——h)1
X sinh[n’x~xsmhﬁacoshﬁx] sinf(y+b), and by (5.34)
Opq = a,/, SR TR J Ama[sthab sinha(y+b) + (1 —v) x

(1+v) (1) k"
X -lcosh*ab ((ab cosh ab—2sinh ab) sinhay~dysinh ab-cosh ay) +

+ sinh®ab ((ab sinh ab—2cosh ab)coshay — aycoshabsinh ay) } +

+ a*sinh 2ab sinh a (y+b) - <2g Y ”‘—h“)] zsinax, (a=a,,).
For o,, the form (4.25) of (I) can be used .

Case C. When Thick Plate with
Two Adjacent kdges Clamped and the Other
Two Adjacent KEdges Simply Supported is
Loaded by the Pressure (5.1). ‘

At first we shall take the coordinate system



532 Kin-ichi HATA

I as shown in Fig. 2 for convenience’ sake. The boundary conditions
in this case are

Uy=Vy=1W, = oW, =0, at rz=ua, )
2x
-/ .
Ugy=Vy= Wy = o =0, at y=06, | ... (5. 36)
T Sj G1 wO:O, at r=—a,
T.=8,=G,=w,=0, at y=—b. J

Owing to the boundary condition for 7' at x=-—a and y=—b the
following form for X” can be taken

=3 { A, sinha(y+0b)+C, (y+b)coshay+ K, (y+b)sinh ay}- sina(z+a)+
+ 2 {BS sinh 3 (z+a) + D,(z+a) coshpx + F,(x+a) sinh,@x} X
¢ Sinﬂ(y-{-b) TR (5. 37)

. . T 8. oy s .
in which «a= »an, ﬁ:%, r=r" and s=¢. ¢ and ¢ are positive in-
a

tegers. Of course, we can adopt the expression (5.37), whether m and
n are even or odd integers. On substituting the expressions for 6,

and ¥, derived from (5.37) into the formula BI:E‘uO:Z—kJ? and
]

letting the boundary conditions #,=0, at y=0 be satisfied, we obtain
the relation among coefficients.

4, = ¥[C, Isinhab-+(1+») abcosh ab+ -2~ hia*sinhab} +
(1+v) 6
+ 1, {coshab-+(1-+») absinh ab + - coshab ,] , e (5. 38)
C, = asinh2ab-C, , E. = asinh2ab -F,

and from now on we shali delete the primes over C, and E, on the
right-hand sides of these equatlons Similarly by the condition v»,=0,
at x=a we have

B, = (112—») [D; ’ sinhBa + (1 +v)pacosh fa + Lhﬂﬂ‘l sinh ﬁa}. -+
+ F cosh Ba+(1+) BasmhﬁaJr—h A cosh ﬁa{J ------ (5. 39)

D, = pBsinh2pa-D;, F,=fsinh2pa-F; and drop the primes as be-
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foxfe. Accordingly the representation of 6, X,andX can be taken in
the forms -

9, = % _a*sinh2ab (C,sinhay-+ &, coshay)sin rxk(cv +a) +

-~ h
+5 @%}lgﬁﬂ (D,sinhfo + F,cosh fo)sinf(y-+b), - (5.40a)
Dy o= Ty s e (5. 40b)
1 =2C, 1 [ =2 smhalﬂ (1+4v)abcoshab -+ 2k’ smhabr X
= o L) 6

x sinha (y+ ( 5 W — )
x sinh 2ab - smhou] sina(x+a)+ 2 K, 1 [ —2 Icosh ab + (1 -+ v)ab x
=20 L4y

x ginhab + —g—lfa‘“'cosh ab" sinha(y+0) + a (y+b)sinh 2absinhay +

+ 2 <Ah —& ) a*sinh 2ab cosh ayJ sina(x+a) +

1+t 3
+ Zsj "o, [(1_2 ) lsmh,BoHr (1+v) Bacosh [Ba+—h 3 s1nhﬁa
= sinhf{z+a)+p(z+a) sinhZBa-cosh,Ba:Jr——— <»—37h*—z‘1) B x
+v
x ginh ‘ZS’asmhﬁ’x] sinfB(y-+b) +ZF o [(1 o lcosh Ba-+(L+v)pa x

x sinh o+ —%-hf/?lcosh [J’ar sinhB(x+a) +p(x+a)sinh 28a - sinh Bz +

v 1. AL : ’
+ . <?lz — z) p*sinh 28a coshﬁx]s1n/3(y+b) e e (5.40¢)

Then, using the expressions obtained above, quantities X, X, S;; and
S.1, which are necessary to the following ecalculation, are found to be

(—h)X, = [2(),.0( { — (sinhab + (L +v)abeoshab + —é-h%t2 sinhab ) sinha(y +b) +

+-5-sinh 2ab ( (242 féa) sinhey + (L-++)a (y-+ b)coshay) | +

+ 3 F { — (coshab +(14v) absinhab+ ,;_ Wa®cosh ab) sinha(y+b6) +
7 : . )
1

+ »-t—f-smh 2ab ( ( g-rh‘“’a“) coshay-+(1-+v)a(y+0b)sinh ay) }] X
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x cosa(@+a)+ [2 D, |~ (sinhfa-+ (1-+»)facosh fa-+ -2 Iifsinh fa) x
x coshﬁ(x+a)+—1—sinh2ﬂa(<v—1 +-2 W) coshfo+ (L+) A a-+0) x
X smhﬁx){ +§;FS[3‘ (cosh[i’a+(1+v)ﬂas1nh[3a+—~h,8 coshfa) x
« cosh 3 (z +a) +?sinh2{3a(<u—1 +»—fh°[a”)smh,8x+(1+ V) x

« (x—l—a)cosh{?m) }] sinﬁ(y+b) PSPPI (5.41a)

(—h) X, = [Z Coa)— (sinhab+ (1 +»)abcoshab +%hﬁa’lsinhab) x
x cosha(y+0b) +?sinh 2b ( (»—1 +_§~-~h9a2) coshay+ (1+v)a(y+b) x
x sinhay ) } + Z E.a|— <cosh ab+ (1 +v)absinhab+ %{ h*a® cosh ab) %
X cgsha (y+b)+ %~ sinh 2ab( (v-—l + _;7 hgaz) sinhay+ 1 +v)a x
% (y+Db)cosh ay) }]sin a(z+a)+ ; [Dsﬁ { — (sinllxﬂa + (1 +v)Bacosh fa +
. 2,,%-23-3 sinh fa) sinh B(z+-a)+ ;f sinh28a((2+ ;g W) sinh A +

+ (L +v)pr+a) coshﬂx) [ Ff f— (cosh[?a+(1 +v) fasinh fa +

S, =—8,,= 2% _ —2 z[c a*| — (sinhab+ (L +v)abcoshab+
' ' 3% 8y (1 +v)
Y oga o s (L+v) .
+ ?h a smhab> cosha(y+b)+ B sinh 2ab (coshay+a(y+b) X
x sinh ay> } + B, { — (cosh ab+ (1 +v)absinh ab+%h?azcoshab> X

« cosha (y+b)+ Qt’,’_)sinh 2ab (sinh ay+a(y + b)cosh ay) } —Icos a(x +a)+

(;i) | D (sinhpa-+ (1) pacosh fat & e sinha) x
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x coshj3(x+a) _|_(1—2H))

sinh 253a (cosh B+ A (x+a)sinh [?*v)

+ Fp] (cosh?a+(1+u)[3as1nh3a+»B—h * coshfa) cosh 3 (x+a) -+

+a + ) sinh 2Ba (smhﬂx + 3 (x +a)cosh /?:1;) ] coshB(y+0b). (b.41c)

Thus we can deal with the boundary conditions in regard to quantities
Uy, v, and S, S,, which are left unsatisfied, by letting the expressions
refer to the coordinate system II in Fig. 2 and be represented by
Fourier series for range (0, 2a) or (0, 2b).

From the condition Fu,= AI+J%wO, at 2=a, in which %, is
B

to be represented by (5.4la), it is found that

% €, A8 sinh absinh2ab | — (1+ i) + SO (14 1y L

=T+ @) (07 + a's”)
+s ,(:M< fi1 g LE2)ET
R 5 coshabsinh2ab 1+ )h Tt et )

X (—1+4(— 1)) +D{3f<1+Fh~[:’)s1nh/3a (1+)Bacosh fa +

+ (v 5 )coshﬁa sinh Zﬂa} + Fp { <1 +~:Th‘3/3‘l) cosh fa+ (1 +v) fa x

—3)

x sinhfa + (- g sinhpa sinhZ[?a}

=hla,, for s=mn, ( m = 2m/

=0, for s#mn. ”':2“,) (6. 42)

Similarly, using formula (5.41b), from the condition Ev,=¥,+J 2" =
Y
at y=0 we have the formula

C.a {(1 + A-h o’ ) sinhab—(1 +»)ab coshab + = 5 )coshabsthab} +
+ Ea{ (L+2-Ia®) coshab+(1-+») absinh ab + (”2 8)sinhab x
% sinh2abl + D, (—Mﬁ—smh /?ocsmhzl?aI (1 +-o B +
f 07+ @s%) s

}_(7];;7%'-]79)( +(—1) )} + 2 ((()q 71) brs )eoshﬁa sinh28a x

f(1+~~ ) + (“‘“)“S)(- +(-~1)")]

Or+a J
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= hJB,, for m=r, |

5.43
=0, for m#r. | ( )

Then by means of the condltlon S =

—an’ Qﬂzo, at = —a

oway ALY
which refers, needless to notice, to the coordinate system I, using
(5.41c), (3.4), we obtain the following relation:

s. br rsinhabsinh2ab v o500\, (L4+v)a’s
'C, (—1)e, 2 {— 1+ h®) 4 =722
; (—1ye 4a O+ a’s”) ( * 6 a) (b°r*+ a’s®) X

brr 7°coshabsinh2ab [ ERT
< (14 (— 1))I+‘2E( 1ye - Trran (1+6ha>+

(1+V)CI/S o 1Ns 2[_ YV ogs o\ 1 ‘
+@m(1 (—15)}+Dopr| (L4 -ha) sinhad +

(1;”’) cosh fa (sinh 20— Z[J’a)} + B p {“ (1 +%h2“2)COShab +

_a '2*“ Ysinh fa (sinh 28a-+26a) }

= (L) Qa,pB,, for n=s,
2 (5. 44)
=0, for n=s.
2t
Lastly from the condition S,= e ~-Q-.9”—_o at y=-0, referred
ax 3y EVED]
to the coordinate system I in Fig. 2, we have a similar relation
(1+v)

C,a { — ( I+ —é h‘-‘a’) sinh ab + coshab(sinh 2ab— 2ab) i +

+ Ea { ~ (1 2-#a?) coshab— @? sinh ab (sinh2ab+ 2ab)} +

_— ar § s1nh[?asmh2/3a[ P2 (A +»)br
+}:‘1Ds< e, a  Or+as) |\ <1+ hﬁ)+(b7‘ +a's”)

s (1”‘"(“"1>")J'+ZFS(“1) ar §° coshﬁas1nh2/?a

" 4b O +a's’)

A (g ) ¢ 0T gy
>‘l (l+‘67hﬂ>+(b‘z,rz+ ) (1 ( ) )j

- @ "' ”)Qa,ﬁn, fer m =7, ]

(5. 45)
=40, for mz=r. J

Once the relations as (5.42) to (5.45) are found, the expressions for sequ-
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ences of coefficients can be determined by the method of successive
approximation and accordingly solutions of the first kind to the whole
boundary value problem may be regarded as obtained.

In the next place we shall determine the forms of basgic functions
., X and ¥ as preparatory work to obtain solutions of the second
kind or basic parts of generalized plane stress solutions. First we
take the coordinate system I in Fig. 2 for convenience. From the

condition w,=0, at x=+a and at y=-=+b, ¥ in wo:_k—j]??-w(w,y), (4.36)

can be written in the form

X = (;;A,_y: +ZB,.Y§> sina(z+a) + (X C.X + 3 D, X.) sinf(y+) ,

in which
L STl gl B AG
a og B 26,1’ r, s=¢, (5. 46)
and Y, = b cosh ab sinh ay—y sinh ab cosh ay ,

Y, = b sinh ab cosh ay—1y cosh ab sinh ay ,
X, == @ cosh fa sinh fx—x sinh Ba cosh sz ,
X. = a sinh po cosh fz—2 cosh e sinh pz ,
in spite of what positive integers the suffixes m and » involved in

the loading function may take. Then the substitution for Gy, and G.,
in (2.10) of (I), for example,

33 2 - niAl
G = — D(wﬂ?ﬂ@ + 85 ppe 9 gy, D= 2ER
10 ay’

a a’ oy 3(1—w)’

from (5.46) by means of the formula wO,Z::f;ZZ and the application
i

of the boundary condition such that the resulting formulae G,. and G.,

vanish at the edges x— —a and y— —b respectively, yield the following
relations :

A, = cosh’ab- A, , B, = sinh®ab- A, , |
C, = cosh®fa-B, , D, = sinb*pa-B,. |

and we shall hereafter drop primes of A, and B, as before. Con-
sequently ¥ (5.46) can be furnished by

......... (5. 47)

x= 24, (cosh‘lab - Y+ sinh*ab - Y> sina (v +a) + 2 B, (coslf/?a X
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x X;-+sinh’a - X) SINB(Y4D) . e (5. 48)

Now we are left with the boundary conditions a—;@:0, at y=105;
.U

aawo 0, at z=a, that is to say, by the formula w,= 7}7 (X+v) in case
x
I (m=2m', n=2%"), which exclusively we are discussing in this section,
B —Bu8ina,, (@+a), at y=0; & _ —a,, sin B,(y+0), at x=a.
EY] e

And, if we let equations (5.49), into which the expression for % (5.48)

is to be substituted, be referred to the coordinate system II and be

expanded in Fourier series for range (0, 2a) and (0, 2b) in terms

sin ;ﬂix and sin%’é—y and the coefficients of like terms be equated in
o

the resulting equations, we find the following relations:

AL (4ab—sinhdab)+ ¥ B,(ZL) T 20t rs'sink’ 250
4 s a (0°r° +a’s’y

—B8,, for r=m,

5.5
=0, for 'raﬁm.} (6.50a)

}_,A< 1yt 2a’b*r’s sinh* 2ab +B, L (4‘?05 sinh43a)
p 7 (04 a’sy

= —a,, for n=s, ‘l

5. 50b
=0, for n#s.f (5.50b)

From these relations {A4,} and {B,} can be determined and hence it
may be said we have attained virtually the present purpose.

By virtue of the formula w,.,= —]—;‘ZZH—JPL @1+(1+v)x1, we get
the following basic functions:
6, = —5 J ‘ZA asinh2absinha(y-+0)sina (z+a) -+
(1—) k" 1
+ 2 B, fsinh2fasinh 3 (z-+a)sinB(y+0b) } y e (6. 51a)
A = [ 5, Wl & 2 (5. 51b)
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Vet 27V e,

6(1+v) & T z{}j A, ICOS}ﬁL‘(()' Y, +sinbab. Y, +

T B LR

+ (1%7) <(2(; P)z‘-' - h> a sinh 2ab sinha (y+ b)} sina(z+a) +

+ 2 B, {eosh”ﬁa X, +sinh*fa - X, + (L_u) <(26_V> h‘)

x B sinh 2fa - sinh 3 (+ a)}v sin ﬁ(y+b)] R TTARTEer (5. ble)

By means of the formulae (5.51) the solutions of the second kind can
be obtained with ease. Therefore, we get the solutions to the problem
in this section by superposing the three kinds of solutions. As an in-
stance, normal stress ¢, may be written by (5.4lc), (5.51) and (4.25)
of (I)

, _(TLI!()' {_0' [ R TR (5‘52)
in which
- 2;,’ =sc 262 [(.1 ,,,,, 2 ){smhab + (14 v) abeoshab +
- %hﬂa‘-’sinhab} i _” . (%—h“— z) a?} X

x sinh2ab - sinhay + a (¥ +b)sinh 2ab - cosh ay] sina (x+a) +
+ 27} E, ZC;L[(IHTZ;) {cosh ab+ (1 +v)absinh ab + —g‘h‘zoﬁ cosh ab} X
1

2 2\ 2t ] .
T V(?h —2 ) a sthabcoshava + a(y+0b) x

x sinh2ab - ginh ay] sina (x+a)— 1D

smh B +

Zh (1 u)

) v 1
+(1+ )ﬁacoshﬁa+ 6 h/?smhﬁaJ sinhp(x+a)+ (1 5

x f(*sinh2pa sinh Bz + B (x +a) sinh28a cosh ﬂx] sin 3 (y+b) +

(——h —2 ) ><

— S F ./3 [_“_3 {cosh/i’a +(1+v)pasinh pa + Ah B coshﬁa}

L e z> f*sinh2pacosh fa -+ B(w -+a) =

x sinhp(z-+ a)+(1 " ( 3

» sinh2ga sinh ' sing (y+b)
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E‘
P LA, b h'absinh ay + sinh®*ab - cogh
O, (1+ ) k‘/>7 a[a (cos absinh ay +sinh*ab - cos ay)
_-é_asthab yeosha(y+b)+ - _V>{v+a (2 Ve —h)} x
= ginh2ab - s1nha(y+b)]sma(x+a)+< B ) i‘ 2
s - 19 1 ] 2 ]
Bsﬁ[ﬁcosh fa - X, + pBsinh*fa - X, -+ (l—p){ 1+5 ( - Z—h >J‘ X

x sinh28a - sinh 3 (x -+ a)] sinf (y+ b) ,
0rs = :kfﬁ [(2;;[31 +a2)sinh 2Kk - sinh k(24 h) + (dvf + 322) khsinh k(z —h) -+

+ a3, { —khcosh2khsinhk(z-+h) + 2k°R cosh k(2 —h) +kz x

X ( sinh2kh - coshk(z+h) +2kh coshk(z—h) } ]sin a(x-+aysing, (y+0),
in which K=K, = D / (sinh* 2kh—4k°h*) ,

k = kmn = ’\/a‘;)m + ﬁ;ll

It will be needless to say that these expressions are referred to the
coordinate system I in Fig. 2 and owing to the property of the problem
under consideration the expressions and relations among coefficients
can be utilized in other cases than case I by making slightest alter-
ations.

o Case D. When Thick Plate with
One Edge Simply Supported and the Others
Clamped is Bent by the Pressure (5.1).

c 8.5
Algo in this case we can proceed quite
: similarly, so we shall give only a brief de-
scription of the process of calculations. At
Fig. 6

first we choose the coordinate system I and let
the edge xz—a be simply supported. We shall determine ©, and 7%,
by putting ¥” in the expression of the following form in view of the
boundary condition

T, = T]’l’l‘T],:g — 0 y at x=a¢ ;
V=3 <A ginhay -+ C,.ycoshay) sina(ac+a)+2 {Bssinh{?(x——a) +

»
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+ D, (x—a) cosh px -+ F' (x—a)sinh /S’x}r sinfy, e (b.53)
in which a="'7, 3=5" r—y and s=2¢.
20 2b

If we derive 6, and X%, from 7 (5.53) and substitute them in Fu,=—
E‘umJrli'um:)?,JrJﬂ and apply the condition wu,=0, at y= b, A,
o

and C, are found reaidly to be expressions of the forms

L= (1‘2{“'—11) % {(1 + %hzag) sinh ab 4 @ ;_ v) ab coshab} AL, 5,50
C, — —sginhab- 4. ,
and further, applying the condition
v, = Ev, s+ Ev, 5= X, +J;I;~O at v=—ua.
we see that
B, — ‘(IET)B[ B, { (L+-2 I sinh fa-+(1-+») facosh ,S’a} +
+C; { (142 1i6) cosh fa-+(1-+») fasin pal ], (5. 55)

D, = sinh2Ba - B;, F, = sinh28a-C; .

We shall delete dashes of 4., B, and C. below.
Then we may write for ¥, 6,, %, and 7

Y — ?..A oc[ ( +—h a‘) —~_sinhab+ab coshab(smhaer

(1+)

— gy sinhabd - cosh ay] sinm (x+a)+ 2 V

[ﬂ (x—a)sinh2Bacosh g -+

2
(L+v)!
. 1 Nt . i 2 P

x sinfy+ % Cr/; [,3(9: )sinh2Basinh fx + et <1 - 7B ) «

(1 + —gﬁhﬁ) sinhfa+(1+v)Ba cosh [?a ; sinh 3 (x—Aa,)] X

x cosh fa-+ (1 +»)fasinh fa! sinh ﬁ(xfa)] sinfy, oo (5. 562)
0, = %f [~~ A, asinhab - sinhaysina(z+a)+ 33 ‘{Bs fAsinh2fasinh fx -+
(3 » 3
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+ C,3sinh2pa - cosh ﬂx} sin [jy] R TEETETTLIPERITT PR (5. B6h)
Ao 22 Llamg 5 oeeeer e e (5. B6e)
X =3SA, 1777—7[ (2+v#"a®)sinhad + (1 +v) abcosh ocb‘ sinhay +
- "2h (l Fo)at.t
_(1+v)m/smhabcoshau]sma(era)+ 2B, Zh(ll [(1+v)[3 X

x (x—a)sinh2pacoshpr—2 { (1 + vvré—ﬁhg/}“’) sinh fa -+ (1 +v) facosh ﬁu}v X
X sihhﬁ (x—a)+v (—71 B — z) Asinh ZBasinhﬂx] sin By +

1
200
* cosh e +(1+v) fasinh ﬁaj- sinh(x—a)+v ( 5 I z‘~’> x

WA [(1 +v) B (x—a) sinh2fasinb gz -+ 2 ( ’(J) hzﬁﬂ) x

% ﬁ‘-’ SinhZ[_’-}a COSh‘Bx] sin /.?U L e (5 56d>
And the forms of ¥, and X, can be written as
(=M% =—hFEu,,= A, (—1-%”«) a (b cosh absinh ay—ysinhabcosh ay) X
x cosa(z+a)+ 26 B, [— { (1 + ’é h‘lﬂﬂ) sinh pa +(1+v) fa coshﬂa}. X
x coshp(x—a)+ % sinh 2fa { (u —1+ % hzﬁz) cosh B+ (1+ Q)E X
x (z—a) sinh ﬁx}'] sinfy + 2 C, [(’ (1 + 2 h“’{??) coshpa +
+ (1+v) ﬁasmh/ﬁ’ar coshpB(x—a) + - sthﬂa (u -1+ rr—’é—hfﬁ"’) X
x sinhpz+ (1 +v)p(x—a) eoshﬂxr] sinpy, - ERETRRRES (6. bTa)
(=)= —hEv, = 14, [ L1 (8—v)sinab+(1+») abcoshab) coshay -+
e -2‘_ ”)asmhab ysinh ayJ sina(x+a)+ Z B, [~ { (1 +~g~h‘~’[3‘3) X
x sinhfa +(1+-v) facosh ,Ba,» sinhp(x—a)+ (1 -}- o h‘lﬁ‘l) X

x sinh2pa- sinh fx + (—]1;1’) Bsinh2pa - (x —a)cosh /?cv] cos fy +
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+¥C, [ {(L+-5-7¢) cosh a-+ (1-+») fasinh o) sinh e —a) +

+(1+ %hﬁ) sinh 24a cosh e + (LZB) Bsinh2Ba- (x—a)sinh ﬁx] cos By
) S
.......................................... (5.57b)

Now we shall apply the three conditions left unsatisfied concerning
solutions of the first kind. Let the expressions for shearing force and
displacement on the middle plane be referred to the coordinate system
IV in Fig. 2 and the resulting expressions be expanded in Fourier
series. First, aecordmg to the boundary condition S, =S+ S ;=
—” + Qﬂ_o at x—a, which is referred to coordinate system I,
2% Y 2% 3Y
we obtain the relation among coefficients

s 4 4 (1Y e brisinbab [ v
T (br® +a’s?) VIR

1, 2b'rt
— S R _id
( Zkgha)Jr(b,u as)f

+ B {(1 = V)< + —h B )smh fBa +(sinh 280 —28a) cosh ﬁa} +

. [ (o4 P g . . _

+Cp l(1+ )( 5 g ) cosh Ba+ (sinh 25a + 25a) smhﬁaj
=(-1)"Qu,p., for n=s, ‘} (5. 58)
=0, for n+#s.

By the condition HFu,=%, +J—?_:Eu(x,y,0):0, at x=—-—a, referred to
x

the coordinate system I, we have the relation

st (L) 40*0*r*ssinh® ab YV pape)
2 4.(-1) . (br+as) +B{<1+6hﬁ)smhﬁa+

L= (L) pat - ~2— 3ginh 280 cosh{i’aJ +C, [(1 + %kﬁg‘l) cosh fa +
— (1 4v) Ba+ 5);—3 sinhZBa} sinh ,9@] =

= (—-1ha,J, for n=s, ] (5. 59)
=0, for wm#s. f

Finally from the conditions Evo—xq+J% =Fv(x,4,0)=0, at y=+b,

which are referred to the coordinate system I, we obtain similarly
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A, f3—v Sth“bJr(lJru)ab}Jr B, (— 1)’“2brsmhﬁasmh2m

"l 4 m {0’ +a’s”)
[ Y ogepe) . (LH0)@s(1+ (1))
X \ (1+ hﬁ)+ L I+ZSJC“‘X
y (—1)y+ b*rcoshﬁasth,BaI (1+_v_h.lﬂg)# (I +v)a’s* (1 +(—1)")
w (U +a’s”) 6 (b°r* +a’s”)
= h/?,,J, for m=r, I
oo (5. 60)

=0, for m=r., )

From the relation (5.58) to (5. 60) coefficients {A4,}, {B,} and {C,} can
be determined and so we have virtually obtained solutions of the first
kind. .In the next place we shall get the forms of basic functions 6,
Z; and Y. Proceeding according to the same way as in the foregoing

cases, the representation of X in the formula w,= v(oc y)+X‘ can

]4
easily be obtained. By noting the condition in regard to w, we can
take ¥ in the form

X =3 A, (bcoshabsinhay—ysinhabcoshay)sina (x+a) +

+ bE {BS (@cosh Bosinh fz—asinh Ba cosh 3x) + C, (¢ sinh fa cosh B +

. xcosh Ba, Sinh ﬁx) } Sin B’U P L R TRPEETRRPRTR (5' 61)
in which a="T0, B=T peyt, §=25.
20 2b

From the condition that bending moment G, vanishes at the edge
x=0a we get the relation

B, = cosh?fa-B;, C,=—sinh*fa-B;, s (5.62)

since G,;=0 at x=a and erase prime of B;. On applying the boundary
conditions that

Wo _ ) , at y=4b and Mo , at x=--a, that is,
2y Bx
87( ax 20+
i —B.sina,, (x+a), ol =(—1)"*"a,sing,y, respectively, which

are referred to the coordinate system I in Fig, 2, by letting all the
expressions be relative to the coordinate system IV in Fig. 2, it is
readily found that
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(2.ab sinh2ab) -+ 3B, (-=1)"*' 20°b*rs*sinh*28a

7 (b'r* -+ a’s%)’
= B o m=r 1 o
=0, for m=#*r, I

and

A ( 1‘)5 +18ab s sinhiab Bs}— 4dab—sinhdab
2 7 (0% + ofs?) 4<“ e

- (_1‘)”/.” dm ’ for §=n, l

5. 63b
=0, for sa=n. | (5. 63b)

Hence coefficients {A4,} and {B,} can be determined from (5.63) and
now we can consider the solutions of the second kind as having been
obtained. Though we shall not indicate the solutions to the whole
proeblem, we write basic quantities for reference.

E Jm E
1—) & (1—») & z

Iy =

{}] A, 2qsinhabsinhaysina(x+a) +

+ 3B, Asinh2pasinh B (x—a) smﬁy}» e (b, 64a)
e E (J5 K1 b
¥ = % 6y, =2 L e 5. 64b
) e TET 2 a0 ( :
. 2—vy — K 1
A = 2 P e — ) A, | Ibeoshab+—
AT <1+)zc*zZ [ (peosha d—v)
X <2§”z - Zhg) asinhab ! ; sinhay — ysinh abcosh ay] sina(x-+a) +
— K o 1 2—v , o .. 1
L — 2k hga
dt) k zZsB [cosh Ba a,cosh[a’aJr(l D)( 3 2 Zh)ﬁsm pa; X
x sinh fz—sinh®fa - as1nh[3’a+( 1 )(2—-* - 2h~)ﬁcosh[3a,
“V
% coshpz— %sinhZﬂa . xcoshﬁ(x~a)J sinfy. - “.ooo (B, 64c)

Though we used similar labels for coefficients in the solutions of the
first and second kinds, they are, needless to notice, essentially different.

Case E. When Thick Plate with One Hdge Free from Trac-
tions and the Other Edges Simply Supported is Bent by the Pressure
(G.1).
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£ Tirst we choose coordinate system [ and
l‘" — take the edge y=0 to be free from tractions.
So the boundary conditions at this edge are to

)
§:3 ‘ be represented by the following four conditions:
—_ oH.

S.§ Ti’:O! S_‘:O; G_,:O and leﬁamL =0,
Fig., 7 v
f: edge free from o (b. 65)
tractions. As we stated in the introduction of the

first report, to the order of accuracy of the procedure of Michell and
Love we are obliged to do with resultant forces and couples in order
to satisfy the boundary conditions and, further, to use Kirchhoff’s theo-
rem regarding the boundary conditions, if necessary, to the effect that
five conditions concerning 7', S, G, N and H can be reduced, as is well
known, to four by letting torsional couple H be merged into shearing

H

force N in such way that we let N be replaced by N-— a -, 8 being

a8
a length of the bounding curve. Incidentally, it seems to the author
that it is well-nigh impossible to satisfy the boundary conditions by
employing the method of attack described in this paper without ap-
plying this theorem.

Since the boundary conditions needed in this case to obtain the
solutions of the first kind are that 7 and S vanish at the boundary,
the solutions or the forms of ¥” are the same as in the case of
rectangular thick plate simply supported or as in the case of See. III,
and hence we omit this process of calculation here. '

Next we shall obtain the solutions of the second kind or basie
functions ,, ¥; and ¥’. First we take the coordinate system 1. We

.

=J (v+X) in the following

can write ¥ in the formula w,=w, ;+w, .= 7
x

form, discarding the terms of the type

Y D,(acosh fa sinh Bz —a sinh facosh fx) sing (y +0) ,

% =3 | A, sinha(y+b)+ B, (y+b)coshay+C,(y+b)sinhay| sinaz .

It is apparent that this expression yields w, which vanishes at the
boundary except at the edge y=0. Then we treat the condition
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N, §{~(N s+ N ) ——= ~(H A H.;)=0, aty=0, - (5.67)
in which by (2.10) of (I)

N, = “D'i Viwes, wWy,= ;{ X,
3y k! 7
—H, = H, ;= —D(1-v) CALT Ik Y Dh? e Viwy s,
2x3Y 10 2% 3Y

and by (4.84b), (4.35) of (I)

(5. 68a)

Nl,ﬁ:‘—“;'z?“aiy —H, 5 = H, %——1—?}“(2”4-1\8111}’12[612.%
B sy K

+ 2ulchsinh 2kh (cosh2kh — 1) + 4% (L-+» + » cosh2kh)} x

Y, = 2

x 2V —_Q PR UPPIRN (5. 68b)
aray 2% 3Y

The application of the condition of (5.67) leads to the result

4,(1—»)@cosh2ab+ B, a* {(1 ~»)2absinhab+ (3—v+5F k)

x cosh rxb} + C,.aﬂf(1~v)2qbcoshab+ ( ~u+8+ o )smh ab}

= (—-1)’”D'7/9n<p -+ amQ> , for m=r,

(5.69)
=0, for m=~r.

It is readily seen that bending moment G,=G,.+G,; vanishes at the
edges x=-+a according to the forms of ¥ (5.66), of G,, (210) of (I)
and of Gy, (4.36) of (I). From the condition G.=@G, s+ @G, .==0, at y=—>b
it is found that

B, = coshadb- B, , C, =sinhab- B, i (6.70)
with B, introduced anew. By the condition G,=G,.,+G,;=0, at y=0
we gel the relation

A, (1—v)asinh 2ab +B;,{ (2-+ 87 ¥ k2o sinh 2ab + 2.1 ~-u)abcosh2ab}*
vJ

Accordingly, from (5.69), (5.70) and (5.71) we obtain the expressions for
coeflicients :
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A, = — {z (1—v)abeosh2ab+ (2+ 52 pi?) sinhZab} By,

O N
B, = (1—») acoshab-sinh2ab- B,
C,, = (L—v)asinhab-sinh2xb. B,, , in which

s 2 ) k'l p .
Bm, = H - _ . _1 mt L (2 + ;}b ,
(1 —vya®(sinh4ad—4ab) (=1 DJ‘B <lc 25,8 )

for r=m,
A =B=C,=0, for r#m.

Thus solutions of the second kind are very simple. We indicate merely
the forms of @, ¥ and ¥’ below.

} (5.72)

O, = _E LTV%)? = E‘iB;,;ZaﬁsinhZabsinha(y+b)sin ar, (5:73a)
(1) & i
— K j _ L2 o7 .
= = = ¥ @ = = g rrrrerereereeeciaiaenaes 5_ 73b
T T @4y 2 ( )
- E j 1 z‘l hg 2
v - (I__U)%TB,,Lz[{a —)2ab cosh2ab + (2:+(2—») (L2, )x

x sinh 2=ab} sinha (y+0)—(1—v)asinh2ab- (y+0b)cosha(y+ b)] sinax.

.......................................... (5' 730)
Case F. When Thich Plate with One KEdge Free from
Tractions and the Other Edges Clamped is Bent by the Pressure

(6.1).
First we let the representations be referred to coordinate system
I in Fig. 2 for convenience’ sake and the edge
5 - y=b Dbe free from tractions, though we should
take coordinate system III in Fig. 2 from the
¢ ¢ beginning in accordance with the feature of
the problem in question.

We shall obtain solutions of the first kind.
Since boundary conditions to be considered here
are similar to those in case D, that is, case
where thick plate with one edge simply supported and the others
clamped is bent by the pressure (5.1), we can easily attain the object
to obtain basic funections 8, ¥, X only by interchanges of = and vy, a
and b, « and 3, r and s.

Hence, now we turn to the problem of obtaining the basic functions

C
Fig. 8
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@,, Z; and ¥’ associated with the solutions of the second kind. Boundary
conditions are as follows:

Wy = oW, =0, at e=*a; w,= aw"_O at y=-—0b;
ax 3Y
G, = N, waaHQ: ,oat YmDh . e (5. 74)
2

In view of the conditions concerning w, the representation of ¥ in the

formula wc,::kfl(v—k}?) can be of the form

I=3 {A,.sinha('y+b)+B,. (y+0b)coshay+C,(y+b)sinh oc'y} sin ax +
+ 3 D, (acosh fasinh fx —xsinh facosh pr) sin g (y+0) ,

in which

'r/T Sw : -
o = B==20 =2, §=8, @ e 5.75
2’ 1 20 © ‘ 5)
Trom the condition G.=0, at y=0 by means of the formula just written

and of G, (2.10) of (I) we readily get the relations
A, = {2 (1--)abeoshab + (24 %L 81 1) sinh ab} B +
— {2 (1—v)absinhab + (2 +- gg")hﬂa') cosh ab}

B, = (1 —v)a*sinh2abB,, C, =(1—v)a’sinh2a0C,, - (6. 76)
since G,,=0, at y=>, as seen from (4.36) of (I), in which B, and C.,
are introduced anew for convenience, and we shall delete primes
over B, and C, hereafter. Now we are left with three conditions

aﬂ:o, at v=+a; ?f‘ﬁ’:o, at y=-—>b;

2% 2%

N:.,ﬁ[_:':o, At Y=DB. e (5.77)
21

These are rewritten in the forms.

EB,\(~-—~].)"'(1‘>’[~~ -{2(1v—w)rxbeosh ab + ( 8% Yl ) sinh abl X

e,

x ginha(y+0)+ (1 —v)asinh2ab - (y+0b) cosha'y] +
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+ 3 C,.(—1)r'a2[ —(2(1—v) absinhab - (2 4—8‘g ¥ 1) cosh ab)
x sinha (y+b)+ (1 —v) asinh2ab - (y+ ) sinh ay] +
+ 2D %A(2ﬁa—sinh2ﬁa)sinﬁ(y+ b)= —a,,sing,(y+b), (b.78a)

EB,‘agl-— 12(1—v)abeoshab + (24-8+ ® Jea?) sinh ab) +

+ (L —»)sinh2ab - cosh ab] sinaz + 3 C,a* [ — '{2(1 —v)absinh ab+

+ (24 S‘g “1#6?) cosh ab} —(1—»)sinh2absinh ab] sinag -+
+ X D,(acoshBasinh fz —xsinh facosh fz) 8 =(—1)""*'A,sina,.a ,
.......................................... (5. 78b)

S (1) a| B, (2+8F Y ha) sinhab +(1 —») (sinh2ab —2ab) coshab! +
" l 5 f

+ G, —(2+ 8; Y1?a*) coshab + (1 —v) (sinh2ab + 2ab) sinhab}] X

X Sin“”JFEDs(“l)Sﬁg['{*(1'1)).3&605}1[3&4- (~29+8J: ’)hﬁﬁf) x
¢ - 5

x ginh [Ba} sinhBx+ (L —v) Bsinhfa - weosh Bx]

. m’ It .
= ;,(*-21537*[9_ ﬁn <% + aan ) Sinamx N (5' 780)
By letting equations (5.78) be expressed in terms of coordinates of
the reference system III in Fig. 2 and by the aid of Fourier expansions

the desired relations among coefficients are obtained as follows:

V‘( ) *3”7‘3 Slnh?db[B (2+8+ thaz) +- (1*‘/)267‘ ( T (—1)3)}><

)

- 2(0°r' + a’s”) 5 O'r*+a’s’)
x sinhab+C, \ (2+ §j——”h‘—’a‘3) (A=) 2671 (1) )1 cosh ab] +
5 (b7 +as?)
+ DS—; (20 —sinh2fa) = —a,, for mn=s, ) (5. 793)
=0, for n=*s,
84 v

B, a j(1 —) (sinh2ab —2ab) coshab + (2 + h‘“’aﬂ) sinh ab}r +
b
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+ G, | —(1—5)(sinh 2ab + 2ab) sinh ab + (2 +8:5£3h2a2) coshab! -+

+ 3D, (1) 8ab’rs® sinh® fa

e 7 (57 + @)’
=(—1Ly*+3,, for m=r,

} (6. 79b)
=0, for m#r,

(L—)a’ [B,, (248 ‘g ¥ o) sinhab -+ (1—»)(sinh2ab —2ab) coshab} -

+C (248 *2pga) cosh o+ (1 —»)(sinh2ab+ 2ab) sinh ab}] +

4_2Ds_(ﬂ 1) j‘jfmﬂysmh'[?a{ ( 2, +8f5{—u )+(l—) 20" ]

r+as) | O +a's?)
_(=DME S (D e .
D B ( I +a;, Q> , for m=r, (5.79¢)

=0, for m=r.

From these relations coefficients {B,}, {C,} and {D,} can be deter-
mined. We do not write the representations of basic functions.

(b). Some Remarks on Other Cases.

As it is bothersome to continue to discuss other conceivable cases
in the same detail as in the foregoing, though the descriptions up to
now may lack clarity, we shall explain only the gist of the process of
approach to problems. Of course, the process of calculation followed
in this paper itself is very simple. Therefore, the above examples will
be adequate enough to make this process comprehensible. We shall
be concerned with the remaining cases only for reference. In the
following ten cases, viz., from case G to case P, the bonndary con-
ditions are indicated in figures for brevity and expressions refer to
the coordinate system I in Fig. 2 and, needless to say, the pressure
of the type (5.1) is applied to the upper surface of the plate.

Casge G. It will be easily seen that
the solutions of the first kind are of the same
forms as iIn ecase C, since the bhoundary
conditions to be imposed upon the problem
of determining basic functions &, %, and %«
are similar to those in case C. Hence, we
have no need +to indicate the process of
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calculations renewedly here. Then, with a view to obtaining the
golutions of the second kind the representation of Z can be taken in
the form

% =3 | A, sinha(y—b) -+ B, (y—b)coshay+C, (y--b)sinhay} sina (e +a) +

P

8

+ 2 { D, (a cosh Basinh Bz —xsinh facosh px) + E, (asinh fa cosh f +

— geosh fa sinh ) sin B (Y40) v (5. 80)
in which a:,@z,, /9_—_—,51 , r=v¢, s=¢,
2a 2b

" and ¢ are positive integers. And by the application of the conditions
that G;, and G., vanish at the edges x=—a and y= —b respectively, five
sequences of coefficients in formula (5.80) can be readily reduced to
three sequences as in the foregoing cases, since G,; and G.; tend to
zero at the respective edges. Next these three sequences of coefficients
can be determined from the remaining conditions by the use of Fourier
expansions of equations derived from these conditions in coordinates
of the reference system II in Fig. 2 in a similar
manner as before.

C

$s £ Case H. On account of the simi-
larity between the boundary conditions in
this case and case B which are to be satisfied
in order to obtain the solutions of the first
kind we can utilize the solutions in the latter
case as they are. Then, for the form of X we can put

55
Fig. 10

X = }j {A (beoshabsinh ay—ysinh abeosh ay) + B, (bsinh abcoshay -+

—yeoshabsinhay)| sin a (v+a)+ 2 {C,sinh f(w+a)+D,(z+a) x

x cosh e+ B, (@-+a)sinhfz) sinf(y+b), (5.81)
in which a=1", [5‘:~S—”, r=1" and s=¢",
2a 20

By substituting this expression into the conditions G,,=0, at x=4a
e L + - &.7 Ev] »
and &,,=0, at y=-—b with the aid of formula w,, = A»}TX , five sequences
by

of coefficients in (5.81) are reduced to two sequences and these are
to be determined from the conditional equations
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¢ aw":o, at ¥y =>0 and N.-—a—H’:O, at r=a,
Y oY
5.$ + in the manner as explained above.

Case 1. ) Under similar conditions
in this case and case A to obtain the solu-
tions of the first kind, solutions to the latter
case are easily seen to be applicable to the
former case. Next X can be taken to be of the form

c
Fig. 11

X = 2 A, (beoshabsinhay—ysinhabeoshay) sina (x+a) +

e 25] .{Bssinh B(x+a)+ C(x+a)coshBx+ D, (x+a) sinhﬁx} sin By,

in which a="" 3=S" p—92 and s=¢.

2a 2b
By applying the conditions G,.=0, at x==+a, C, and D, can be merged
in {B,} and two sequences {4,} and {B,} can be determined from two
coniditional equations

oH,

-alg—‘?:O, at y=+b and N,—T= =0, at z=a,
3y Y
"and, needless to notice, the condition oWy =0, at y=-—b yields no ad-
Y
c ditional result for symmetry reasons.
Case J, Under similar load and con-
58 sy ditions applied to the plate to get solutions of
the first kind in this case and case B the
p solutions obtained in the latter are usable. In
. 12 order to obtain solutions of the second kind
Fig.

the following form of ¥ can be taken:

7 == 3 (A, sinha(y—b)+ B, (y—b)coshay+C, (y —b) sinh ay| sinaz,

2

. I B v
in which a=-"" L r=2,
2a

By (5.83) the condition G,.=0, at x=:ta is satisfied obviously and the
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condition G,,=0, at y==—> leads to a simple relation among A4,, B, and
C.. Then the remaining two conditions

MW,y

0, at y=b and N._,waH'*’
oY -

—Z=0, at y=-b
2%

serve to determine unknown coefficients.

Case K. For basic functions 6, and
C

7, we can manifestly make use of the forms of
. 4 the solutions in case A. Thus for ¥ we can set

L =3 A, (beosh absinh ay —ysinhab + coshay) x

® Sinax -+

Fig. 13 + 2 (B,sinh fz + C,z cosh fzx) sin By ,

.......................................... (5. 84)
in which a="", g= Z?; , r=2¢r" and s=2¢’, From three condition
W g, at y=—+b; N,_j@, —0, atx=-a
Y ay
¢ and G,.=0, at z=+a,
£ pa we can determine three sequences of coefficients
Case L. For 6, and 7, we can
s.5 take the forms of these basic functions in
Fig. 14 case B in view of the similar conditions
and load. Then ¥ can be taken to be of
the form

. . i St p
in which a=—", B="" p=2r and s=¢.
2a 20

Next the application of two conditions G,.=0, at z=a¢ and G.,=0, at
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y=—0 yields two simple relations between C, and D, and between A4,
and B, respectively. Hence, the remaining unknown sequences of
coefficients may be determined from the two conditional equations

W — 0, at y=0b and N, ~-~8H?~:0, at r=a.
2y 2y
From symmetry two conditions G,,=0, at x=—a and N, —»??:O, at
' Y
¢ x=—a lead to no additional result.
Case M. Solutions of the first
S5 5.S kind are of the same forms as in the case
' where plates are simply supported at the
Z edges. ¥ can be put in the following form:
Fig. 15 X = 33(A,sinhay-+ B, ycoshay) sinax, (5. 86)
in which a="T =9,
20

Condition G, ,=0, at x=+a is evidently fulfilled by (5.86) and from the
condition G,.,=0, at y==+b a simple relation between A, and B, is
obtained, therefore, they are determined easily

C

from thé condition N3~§~%:O, at y=+0b0. In
ax
N ) .= .
* this case series ¥ reduces to a single term.
Case N. For the forms of &, and %,
F we can utilize the solutions in case B. The
Fig. 16

representation of ¥ can be taken in the form.
% = 3|4, sinha(y—b)+ B, (y—b) coshay-+ . (y—b) sinh ay} x
x sina(z--a)+ 2 {Ds sinh3(x+a)+ F,(x+a) cosh fa +

+ Fs(x+a)sinhﬁx} SINB (U4D) , e (5.87)

rT

2a

in which a="%, B=""_ p=¢ and s=¢ .

2b
By applying the condition G,,=0, at z=:a, F, and I, can be ex-
pressed in terms of D, and by the condition G,.=0, at y=—b A, is
merged in B, and C,. Thus three unknown sequences of coefficients
are to be determined from the three conditions
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MWy, at y=b; N,—=0, at w=a; N, -y,
2y 3y 2x
C
at y=-—b,
f c Case O. The representations of
0, and ¥, are of the same forms as those
¥ in case C. X can be given by the following
Fig. 17 form :

¥ =3 { A, sinha(y—0)+ B, (y—b)coshay-+C,(y—b)sinh ay } sina(z+a) +

s

+ = { D,sinhp(x—a) + FE,(x—a)cosh fx + I, (x —a) sinh fz ; x

s

X SN (YD), e (5. 88)
in which a="TT, g= 5" poyl, s=¢
20 2b

By virtue of the conditions G,,=0, at x=—«a and G,,=0, at y=—b D,
is expressible in terms of K, F; and A4, in terms of B,, C, respectively.
Thus the remaining four sequences of coeflicients can be determined

from the following four conditions:

M — 0, at x=a; =0, at y=b;
2w 3y
¢ NI~LH‘:0, at =—a;
Y
§ f N_,—aH'Z:O, at y=—b.
Y
Case P. Plane stress solutions
£ to the problem are of the same forms as
Fig. 18 those in case B, The representation of ¥

can be the expression of the form

% = 1A, sinha(y—b) + B, (y—b)coshay + C,(y—b)sinh ay) sinaw +
+ 2 (D,sinh pz + F,x cosh px)sin B (y +b) ,

in which a= g” , ﬁ:é’é, r=2r and s=¢.
o
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I'ive sequences of coefficients in ¥ (5.89) are to be determined from
five conditions,

Gi.=0, at 2=a; G,,=0, at y=—>b;

oo _ 0, at y=b; N, _?,Hizoy at x=a; N2_?,,[,i;-f:0,
Y Y 2%
at y=-—-0>.
The conditions G,.=0, at x=—a and N1—?-H?:0, at x=-—a are, of
Y

course, unnecessary from symmetry reasons, As stated before, in the
above examples we took only case I (m=2m/, n=2n") for the sake of
simplification, where the sinusoidal pressure applied to the upper surface
of the plate i expressible in the form (5.1). Accopdingly, when we
take one of the other three cases, slight changes must be made in
the preceding expressions of this section. The needed modifications
may be readily feund, applying such procedures as explained in Secs.
III and IV. It is evident that modifieations are very simple, if the
solutions are obtained under circumstances that boundary conditions
to .be imposed on two opposite edges are not similar, that is, if the
expressions for ¥/ or ¥, referred to coordinate system I, are neither
even nor odd functions of % or y. At any rate, to the degree of
accuracy furnished by the procedure of Love, solutions of the first
and second kinds can be obtained to some extent separately; this fact
is of interest and serves to save laborious caleculations. Thus problems
of thick plate under variable normal load, though this section is con-
cerned with a sinusoidal normal load only, and various boundary con-
ditions may be treated readily, employing the method of Love, to say
nothing of the regret that we have to apply Kirchhoff’s four boundary
conditions. And yet other types of mixed boundary conditions than
those stated above are conceivable, confining ourselves to the problem
of rectangular thick plate.

{e). A Few Remarks upon Other Particular
Various Edge Conditions.

Herein it is not our purpose to discuss composite rectangular thick
plate problem, because a composite plate is composed of plates of
various thicknesses and elastic constants and we are under such re-
straints that we have to apply Kirchhoff’s eight conditions of continuity
at the joining lines of the composite plate, though this problem may
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be treated by resorting to the method to be briefly explained below
regarding the following complicated problems. Furthermore, we cannot
solve a problem of thick plate, whose thickness varies continuously, by
employing the procedure of Love., Hence, the situation in the vicinity
of the joining lines may be said to be severe.

In the next place problems of continuous rectangular thick plate®
under any variable load can be solved in a similar manner easily, if
continuous rectangular thick plates are defined as those which are
simply supported at all edges and intersecting lines which are perpen-
dicular to their edges. It appears that we cannot but treat each span
of continuous plate separately and, hence, we need one coordinate system
for each span. Now we take a case where a continuous plate has three

spans as shown in Fig. 19. The conditions

18 I at the intermediate lines to represent the
B = b5 A continuity of plate will be as follows:
on the line GH
o |—"" o} Fq—r1 Mo = Uy, Vo= oy, 1 ..... (5.908)
e lade |, To=T0, S=—8, | o
20, —pat 20, for the solutions of the first kind;
Fig. 19 W=, =0, 9:Wo _ 92Wp , e (5_ 90b)

ax o
.Gy = .G, for the solutions of the second kind.

on the line EF
o = sl , Vo = 5V, 2T1:3T1 .............................. (5 913)
oSi=—38, for the solutions of the first kind;

. oUW, W,
S0 = 50,=0, G =Gy, 35Wo — 25Wo [ PRI (5 91h)
ox 3

for the solutions of the second kind,

in which subscripts 1, 2, 3 are placed to the left of labels to indicate
that quantites represented by labels with these subsecripts refer to the
left, middle and right side span respectively. First, we expand the
intensity of load applied to each span in Fourier series in each coordi-
nate system and then obtain particular solutions for single sinusoidal
terms in double Fourier series by applying the calculating process
explained in the first report. If we proceed to calculate with a view
to obtaining the solutions of the first kind in the same manner as
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above concerning each portion of the plate, we are left with eight
sequences of coefficients undetermined after we apply the edge con-
ditions and four of those sequences belong to the middle span of plate
and these coefficients are to be determined from eight conditions at the
intermediate lines (5.90a), (5.91a). When we employ the foregoing
process of calculation to get the solutions of the second kind, all
coefficients can be determined from the conditions at the edges and
intermediate lines. So finally we obtain complete solutions to the
problem by combining three kinds of solutions as before.

We turn to casss where boundary conditions vary abruptly across
~ the intermediate points on the edges and

there exists no portion which is supported in 4% ",L‘Fg s

the interior of the bounding curve. If we 8 - A
investigate a problem as indicated in IFig. 20,
as an instance, we first divide the whole S$.§
domain into two rectangles by an intersecting
line through point F, -across which the c LF
boundary condition varies, and draw two DR P —
coordinate systems (%), @,»¥.). Then we
treat the two rectangles separately in the same
manner as in the preceding examples for a while and finally carry
out the continuation-process between the solutions relative to two
rectangles by means of the conditions that

for the solutions of the first kind

Yo = U, Uy = Ly, L= T,
© = =S, at .= 0 or at z,=a,, oo (b.92a)

for the solutions of the second kind

3W, _ 9,
Wy = Wy, = G = LG

ox, %2

Ny — %@:"— <3N1 — %@>, at ,=0 or at x,=a,, (5.92b)
Y

2

in which subscripts 1, 2 placed to the left of labels denote that the
labels belong to the left side compartment and right side one respec-
tively. Thus, when we undertake to get the solutions of the first kind,
four sequences of coefficeints, left unknown after we apply the edge
conditions, can be determined from (5.92a). Also the conditions (5.92b)
together with edge conditions serve to determine coefficients in the
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golutions of the second kind. Of course, the degree of accuracy of
the solutions in the vicinity of the intersecting line is inevitably the
same as near the boundary. And so in order to solve such a problem
as shown in Fig. 21, following the pro-
cedure of Love, we will have to draw
intersecting lines perpendicular to the
edges through intermediate points on the
C boundary ¥, G, I, across which the bounda-
1 - ry conditions vary suddenly. Therefore,
b we have six rectangular compartments

and we can proceed in the same manner

as above, applying conditions similar to

(6.92), but the computation will be very
laborious. Now we shall explain, for reference, the derivation of the
solutions to the problem shown in Fig. 20 in more detail. Let a given
intensity of load applied to the upper surface of compartments of plate
be expanded in double Fourier series in the coordinate systems (x,, #,),
(., ¥.) respectively. In the following we consider only a pair of single
terms

Fig., 21

Ipmn sin 1“m Ty Sin ‘qulyl » ‘_‘pmn Sin ﬂam xi Sin ‘_’Bn yi ’
. . mr nr mz nr (5.93)
in which My = s BT e, el = e WB, =
2a, 2b 2a, 2b

(m=2m', n="2n") For the purpose of obtaining the solutions of

the first kind we may put 7/ =2h y‘ﬁém‘l ’; %8, in the following
Rl Z

form :
o= A, {bcoshlocbsinhﬂ('yx—b)~(y,—b)sinh,a’bcosh]a(yl—b)} X

© X ginam 4 22 (Bssinh,fx, + Cx, coshfa, + Dy, sinb., ;) sinﬁ(@h—b),

in which W= , = , r=2r" and s=¢ .
For X we can put in view of the condition for 7
2 = DB, sinb o (y,—26) + F, (4, 2b) coshoay, + G, (y.—2b) sinh.ay,} x

x sinaw, + 3 H, sinh,pa, + I, cosh .8, + J.x,cosh 4z, +
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+ K Sinhofe | SIuBy , oo (5, 95)
in which  wa="%, 8=20 p=y/, s=¢ ,
2a, - 2b

We obtain two simple relations among F,., I, G, and among H, I,, J,,
K, from the conditional equations
=0, at =0 and w,=0, at x,=2a, respectively. Thus we can
determine four sequences of coefficients in (5.94) and five sequences
in (6.95) from five edge conditions

WSy=0, at y,=2b; S =0, atz,—=0; 4, =0, at z,=2a,;
D=0, at ¥,=0; 28, =0, at y,=2b,

and the conditions on the intermedite line (5.92a). Next in order to
get the solutions of the second kind we may set ;¥ and .X¥ in the fol-
lowing forms according to the conditions regarding ,w, and ;.

% =3 | A, sinh,a(y,—2b) + B, (. —2b)cosh,ay, +C, (y,—2b) sinh ay) x

»

x sin oz, + 3] { Dssinh,fx+ Ex, cosh .ﬁx1+.Fs:vlsinh.1[3xl}- sin,py, ,
in which

ld:~—g;, 1/3:.,;2,, =10, S=8, i (5_96)
1

and

(=3 [ G, {beosh.absinh.a (y,—b)— (4, b) sinh.abcosha (3. —D) | +

.

+ H, {b sinh.ab cosh.a (¥, —b) — (y. —b) cosh.absinh.a (y,—b) }]sin ST,

+ ? ~{I sinh,B(x,—2a.) +J, (x,—2a,) cosh,fBw, + K, (x,—2a,)sinh zﬁxz} X

X sin Qﬁyﬂ , e et e e e e e ety (5. 97)

. . rr Y /
in which ol =y =, r=y, s=¢.
2a,” 26’ ’

Two simple relations among A,, B, and C, are found from the con-
ditions ,G,=0, at y,—0 and ,G,=0, at y,=2b and one simple relation
among D,, F, and F', can be obtained from ,G,=0, at 2,=0. Further,
from the condition .G,=0, at y.=2b we easily get a simple relation
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between G, and H,. Accordingly, we can determine three sequences
of coefficients in (5.95) and four sequences in (b.97) from three edge
conditions

a'H‘~’:0, at 1,=0: 3Wa _

2% X,

, at x,=2a,;

1Nz -

3.,
Y-

=0, at =0, and the conditions on the intermediate line (5.92b).

As is readily understood, solutions obtained concerning one com-
partment of the plate do not hold in other compartments and, hence,
of course, we cannot write down solutions which are valid in the whole
domain. That is a matter of some regret. Yet it is manifest that,
if we apply the procedure described above, we may easily treat problems
of thick plates whose edge lines are parallel with or perpendicular to

55 $.S 8 M; A
s 7,747‘{ o - 3 T
c E E c | F . 1 55
L o
lc c ‘ - ‘ D
(@) )
Fig. 22

one coordinate axis and, further, whose domains are multiply-connected
or which have holes, for example, problems of plates which have such
forms as shown in Fig, 22. These situations are, needless to notice,
gimilar to those in the theory of thin plate. But their numerical
caleulation will be very troublesome, since for the determination of
solutions to the problem as indicated in Fig. 22b we must deal virtually
with eight thick plates. Here we only point out that even such in- .
tricate problems are not beyond the scope of the presented method
of obtaining solutions to the problem of moderately thick plate under
any variable load and various edge conditions. Additionally, though
this paper is not concerned with the problem of thick plate under
variable tangential load, we can obviously solve it in the same way
as in the case of variable normal load. Further, the discussion of plate,
whose bounding curve is such that it is convenient to refer expressions
to other cylinder coordinates than cartesian, shall be postponed to later
reports.
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Errata: In Eqgs. (214) of the first report the following alteration should be
made : ‘

v
1

4 —2 B¢ : ey
F—apy=F'+ @ 4 4= Tt F=W’0+®'”’a'v' ;o 92=0,

2 @
4—q 4—ua Sm
and Eq. (22.2) and A’afz on page 436 of the first report should be altered
respectively as follows:
/

Fye=— o

Py _ Ll — 1) £
2(1»1‘11)0'/12(1 wf, Ala—1)fz



