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strength of doublet

strength of source or sink

point or piezometric pressure

mean value of piezometric pressure

intensity of pressure

total discharge

UrUr

wr'uz’

Reynolds number

radial distance in cylindrical coordinates
mean velocity

components of veloeity in =, ¥ and 2z direction,
respectively

components of fluctuating velocity

coordinates (z sometimes means a function of % and y)
undisturbed velocity

complex potential
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displacement thickness of boundary layer
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period

strength of doublet, dynamic viscosity of fluid
kinematic viscosity of fluid

density of fluid

shear stress

velocity potential

stream funection
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Introduction

The analysis of flow behind an infinitely long flate plat is an old
and well known problem. As the geometry is simple in this case,
such analysis should eclarify the basic features of the mechanism of
wakes behind a sufficiently great variety of boundary shapes. The
theory of hodograph is important in mathematical analysis, but even
though it offers a useful tool for a study of free stream lines, it is
not enough to explain even the value of the drag coefficient for the
plate. Furthermore, it offers no clue to the behavior of the flow in
the wake. It is a well known fact that the actual value of the drag
coefficient of a flat plate normal to the flow is about 1.8. However,
its evaluation by the aid of the free-streamline theory gives 0.88.
Evidently this rather large discrepancy comes from insufficient
knowledge of the mechanism of the flow in a wake, particularly in
regard to the low pressure in the zone of separation.

The study of the flow behind a body was greatly advanced by
Karman’s analysis of the vortex trail. Later, the experimental work
by Fage and Johansen [1], [2] presented valuable information, and
recently a paper published by Hanin [3] represented a new achieve-
ment in this kind of study. The goal of Hanin’s theoretical study
was to adjust both the position of the generating point of the vortex
and the strength of the vortex so that the drag coefficient would agree
with the results of experiments. There is also a recent peport of
experimental work by Fomichev [4] about the turbulence behind a flat
plate in water moving with a free surface, which was reviewed by
M. V. Morkovin [5]. Also available is Roshiko’s paper [6] on the in-
fluence of a tail plate upon the drag and upon the pressure distribution
behind bluff bodies.

The present experimental work is an attempt to obtain the charaec-
teristics of stable eddy behind a flat plate mounted normally to the
general flow in a half plane. Flow past a plate that is fully surrounded
by fluid differs in several ways from flow past one that is in contact
with a boundary. First of all, the former may be considered to lie
in the path of essentially irrotational flow whereas the latter will be
immersed in a boundary layer of indefinite thickness. Secondly, the
flow in the wake of an isolated plate is free to pendulate about the
plane of symmetry, whereas in the vieinity of a longitudinal boundary
such pendulation is entirely prevented. The characteristics of the
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eddy presented in this paper refer to the pattern of mean flow, to
the pressure distribution, and to the distribution of turbulence.

Two kinds of Pitot cylinders were used for the measurements of
velocities, and the characteristics of a eylinder in parallel shear flow
were studied analytically. Pressure distributions were obtained with
a sharp-edged plate which was mounted parallel to the side walls of
the air tunnel., The reasonability of the velocity and pressure measure-
ments was shown by the wvalidity of the Bernoulli equation outside

the wake, and by the relation of continuity. The values of 1/177, /v—T,
Yw” , W', and ‘/<‘9_“/->2 were measured with a single hot wire for
ot

the characteristics of turbulence, of which the first four terms are
presented in this paper.

At first, in order to find the interference of the test section on
the size of the stable eddy, three kinds of ratios between the width
of the test plate and the height of the wind tunnel were investigated.
In this case, instead of changing the height of the tunnel, the number
of test plates was changed to yield a geometry equivalent to a change
in tunnel height. Finally, in order to approximate an infinite spacing,
the profile of the stable eddy was replaced with an imaginary Rankine
oval to indicate the stream-line form of the ceiling and the floor of
the tunnel. The actual results of the velocity measurements were
compared with the velocity distributions obtainded analytically for the
flow around the imaginary Rankine oval. Since it was noticed that
the magnitudes of the velocities in these two cases differ appreciably
when the point of observation moves downstream, two kinds of analytical
correction for the distributions of velocity and pressure were attempted.

In the last parts of this study, the forms of the momentum equation
and the energy equation of the mean flow, which are applicable for
the present investigation, are derived. The corrected results of velocity
and the pressure fields and the results of the turbulence measurement’
were substituted into the momentum equation, to obtain the drag of
the test plate. This result was compared with the drag obtained
directly by the integration of the pressure distribution over the surface
of the test plate. At the same time, the distributions of the significant
terms in the momentum equation and the energy equation of mean
flow are presented. The balance of momentum and the balance of
energy are also considered for the purpose of assuring the reasona-
bility of the experimental results as a whole.
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Experimental Equipment
1. Air tunnel.

All the experiments were carried out in one of the three air
tunnels of the Iowa Institute of Hydraulic Research, State University
of Towa in the U.S. A. This tunnel is of the recirculating type, the
flow being produced by a multi-vane type of radial-flow fan driven by
a 7.5-H.P. electric motor. Two sets of lattices are arranged at the
exit part of the fan to make uniform the flow in the tunnel. Guide
vanes are also arranged at three bends of the tunnel. The cross section
of the test section of the tunnel is 3 feet x 3 feet, and there are glass
side walls over its whole length of about 12 feet. A variable resistor
on the motor and three pivoted plates at the entrance of the fan
furnish the adjustment of the velocity in the tunnel.

The velocity of the undisturbed flow in the test section was deter-
mined by calibration in terms of the pressure difference between two
piezometer holes, one of them located about one foot downstream from
the end of the converging part of the entrance to the test section
and the other located farther upstream where the cross section is large.

2. Test plates.

The test plate wasg made of brass plate 1/4 inch in thickness, 3
inches in width, and 3 feet in length so that the span coincided with
the width of the tunnel. The plate was fixed with screws to the side
walls at both ends. The edges of the plate were given a 30 degree
bevel on the downgtream side. Piezometric holes 0.03 inch in diameter
were also arranged on the upper half of the test plate for the purpose
of measuring the pressure distribution, seven of them on the upstream
suface and one on the downstream.,

As will be seen in Fig. 1, the tail plate which corresponds to the
border of the half plane was made of an aluminum plate 1/16 inch in
thickness. It was screwed to the test plate at one end and secured
with four thin steel guy wires to the ceiling and the bottom of the
tunnel in order to eliminate undesirable vibration. Piezometer holes
0.04 inch in diameter were also arranged on the testing side to obtain
the pressure distribution on the surface. The length of the tail plate
was determined by trial, It might be worth mentioning that the length
of the stable eddy behind the plate is controlled by the length of the
tail plate to some degree, becoming equal to that of the tail plate
when the tail plate is short but not shorter than a certain length which
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was not determined in this study. The length of the tail plate used
was 30 1/4 inches, or 20 times the height of the test plate above the
tail plate. This was enough greater than the eddy length to ensure
the latter’s independence of it. The span of the tail plate was 3 feet,
The experiment was carried out on only the upper side of the tail plate.

3. Cylinders for the measurement of velocity.

a. 30.6° cylinder.

(1) Selection of the angle between two holes,

The Pitot-cylinder is used sometime for the measuremants of both
the magnitude and the direction of velocity. When two holes are made
on the surface of a cylinder at a properly selected angle, the angular
position of the eylinder when the pressures at these holes balance
provides a means of determining the direction of flow. At the same
time, once the cylinder has been calibrated, it is possible to measure
the magnitude of the velocity too. So far asg the phenomenon of separa-
tion of flow around a cylinder is recognized, the angle between the
holes must be selected so that they will not be located in the region
of separation, in order to maintain the directional sensitivity. In order
to decrease the error in estimating the magnitude of velocity, it is
also preferable to have a cylinder of small dimension with a small
angle between the holes. On the other hand, the angle should not be
so small that the directional sensitivity cannot be maintained.

As the first step, angles of 55.8° and 30.6° were selected arbitrarily
to find the sensitivity for the direction of flow. The diameter of the
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cylinder was 1/8 inch. The diameter of the holes on the cylinder was
0.015 inch, The results of the experiment which was carried out in
a uniform flow in the air tunnel are plotted in Fig. 2.

Fig. 2
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As a wedge is usually understood to be sensitive to the direction
of flow, the result of an experiment with 20° wedge is plotted in that
figure for comparison. The vertical axis 4dp/ifu; is the pressure differ-
ence between the two holes in dimensionless form. The horizontal
axis gives the angle of rotation of the cylinder and of the wedge
against the uniform flow. The dimension of the wedge which was
used for reference is shown in Fig. 3.

Fig. 3

207+
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The 80.6° cylinder was the one finally employed. As will be seen
in Fig, 8, the 30.6° cylinder has almost the same sensitivity to the
direction of flow as the wedge, and the accuracy of 0.2 degree was
experienced during the course of the present experiment.

(2) Calibration.

The calibration for the measurement of the velocity magnitude
was also carried out in a uniform flow in the air tunnel. A 6-inch
orifice in the tunnel was used to increase the velocity of the calibration.
The standard gage was a Prandtl-type Pitot tube which was known
to have a velocity coefficient of unity after a calibration with a flow
of water through a circular submerged orifice. At first, one hole of
the cylinder was set precisely in the upstream direction of the flow
with a protractor so that the stagnation pressure could be taken from
this hole. The pressure difference between the two holes wasg read
with a Wahlen type of gage which gives the accuracy of 0.001 inch
in an alcohol column. After that, the cylinder was rotated 30.6° so
that the other hole would be upstream. This procedure established
the proper angular location of the cylinder. The comparison between
this cylinder and a Prandtl-tube is shown in Fig. 4. Since the results
of the experiment fall on a straight line, the cylinder has a constant
value of the velocity coefficient.

Fig. 4
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b. 180° cylinder.

(1) Estimation of the velocity magnitude.

When the velocity gradient is steep, the measurement of the di-
rection of flow with the 80.6° cylinder becomes difficult, as will be
discussed later, and therefore in measuring the velocity in such a region
and in the wake, a 180° cylinder was used. When the direction of
flow is not of primary interest, the pressure difference between these
holes gives a fair indication of the magnitude of velocity even if the
angle between them is large. When the cylinder is mounted in the
tunnel so that one hole is precisely in the upstream direction, the other
hole will of course be directed downstream. Four different magnitudes
of velocity were used to find the effect of the Reynolds number, be-
cause the velocity in the wake of the test plate was known to change
from zero to a value higher than the uniform velocity far upstream.
The cylinder was rotated through various angles to the uniform flow,
and the pressure differences between the two holes were obtained as
in the case of the 30.6° cylinder. The results of the experiments are
plotted in Fig, 5, which shows that the effect of the Reynolds number
may be considered to be negligible within the range of the present
tests. If there were some device to find the direction of flow, the
magnitude of the velocity would also be obtainable with the aid of
this curve through the step method of correction if necessary. In the
preformance of the experiment, the cylinder was always supported in
the flow so that the line which passed the two holes on the cylinder
was parallel to the z axis-i.e., the axis of the tunnel test section.
When the flow is horizontal, the value of 4dp/(Pui/2) should be 1.74, as
will be found in Fig. 5. Accordingly, if the flow has a certain angle
a against the x axis, the correction factor for the horizontal component
of the velocity must be cosa v1.74/¢.

A series of values of ¢ and cos a y1.74/¢ against various values of
as obtained from this curve is tabulated in Table 1. Actually, the angle
a is small in the wake at almost every point except in the region
where the direction of flow changes from plus to minus or from minus
to plus. In this region, the accuracy of measurement becomes poor.

As the line of cosa y1.74/¢ values in Table 1 shows, when a is less
than 30 degrees, the correction is not important as far as the horizontal
component which is necessary to construct the flow pattern is con-
cerned.
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(2) Estimation of the direction of flow.

As described in the previous section, one hole in the cylinder was
directed upstream, the other hole then naturally being directed down-
stream, and the pressure difference between these holes was obtained.
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If the flow is assumed to be horizontal, the velocity coefficient of 1.74
will be available to find the magnitude of velocity, for the first step.
Since the stream function ¢ is obtainable through the integral §udy,
the integration of the velocity which will be obtained in this manner
makes it possible to estimate the approximate flow pattern corre-
sponding to the constant increments of discharge which determine
lines of constant stream funection. The tangents of these stream lines
at any point give the first approximation of the direction of flow, with
which the correction of the magnitude of velocity will be performed.
Again the integration of this corrected velocity gives the corrected
pattern, and the tangents of the stream lines will then give the second
approximation of the direction of flow,

4. Plate for the measurement of the pressure distribution.

Pressures were measured with a plate having a cross section similar
to that of the test plate but placed with its plane normal to those of
the test plate and tail plate. The width of this brass plate was b'/16
inches and the thickness 1/8 inch. Piezometric holes having a diameter
of 0.08 inch were drilled on one surface midway between the leading
and trailing edges. One end of the plate was fixed on the surface of
the tail plate and the other end was screwed to the ceiling of the
tunnel.

5. Turbulence measurements.

The values of V&, Vo7, Vw”® and Fig. 6
il . . Example of the hot-wire
w'v' were measured with a constant- calibration
temperature type of hot-wire anemo- volt
meter [7] using a single-hot-wire tech- 3o : /
nique. Tungsten wire of 0.00014-inch . /)
diameter was copper plated with CuSO, 25 2
before soldered onto a probe. When the g4 w/
copper was removed by etching with ! /
HNO, to produce 5 ohms of electric re- 15 ¢
sistance as indicated in the instruction 10 Vi
booklet [8], the, length of the acting part p/
of the wire was about 0.025 inch and the 5 #
total length of the wire was approxi- /

. . . . 0
mately 1/8 inch. The calibration of this 10 20 30 40 BO
hot wire was made in a uniform flow in velocity in £t/sec
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the tunnel by comparing with a standard Prandti-type Pitot-tube and
the chang of voltage necessary to keep the temperature of the wire
constant for various speeds of air was obtained. Through calibration
the characteristics of this hot-wire were found to be linear as intended.
As will be judged from the diameter of the tungsten wire, the hot
wires are very slender and so a number of wires were used after
calibrating each of them. One example of the results of their cali-
bration is shown in Fig. 6.

Experimental Procedure and Results

1. Primary measurement of velocity.

In order to find the effect of the tunnel (i. e., the constriction effect
of the test section) on the size of the stable eddy behind the plate,
three series of primary measurements were carried out. The geometry
when one plate iz mounted in the wind tunnel is shown schematically
in Fig. 7(a). In this ease, the ratio betwween H and b is

Hib =36/3 =12
The situation when two plates are mounted is shown in Fi, 7 (b).

Fig. 7 (a) Fig. 7 (b)

! 0.8 1

0.5H b — H

| . O,SHJ
b 3 H ————— e .*__.
E 0.5H

0.5H 1

}

77 : 7

Since the center line between two plates indicated by the broken
line in Fig. 7(b) corresponds to an imaginary tunnel wall, the ratio
between H and b is decreased by half in this case—namely, H/b=6.
The same concept ig applicable when four plates are mounted in the
tunnel; in this case, the value of H/b is 3.

Before starting the measurement, the proper length of the tail
plate had to be determined. It was rather easy to detect the end
of the eddy with the 180° cylinder. When the cylinder was moved
downstream, keeping its position near to the tail plate, the indication
of the pressure difference between the two holes on the gage reveals
the position of the end of the eddy clearly. Of course, the two holes
of the cylinder had to be kept in a horizontal plane, and the point
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where the pressure at the upstream and downstream holes balanced
was then the end of the eddy. A diagonal arrangement of pieces of
a light string on the tail plate also made it easy to detect the approxi-
mate end of the eddy by the eyes. As described before, the proper
length of the tail plate was decided by trial to be 30 inches or ten
times of b, When this length of the tail plate was employed, the eddy
pehind the test plate was about 8.12 times b, which was taken to
indicate that the tail plate was sufficiently long.
a. The case of one test plate (H/b=12).

(1) Measurement of velocity.

As described above, the 30.6° Pitot eylinder was used primarily
for the measurement outside the wake. The cylinder was set at the
point of obssrvation parallel to the test plate and rotated until the
pressure difference between the two holes became equal to zero. When
it was zero, the intersecting direction between the two holes corre-
sponded to the direction of flow, which was read on a protractor. The
next step was to rotate the cylinder 30.6°/2=15.8° in either direction
s0 that one hole would be exactly at the stagnation point on the
cylinder; the pressure difference between the two holes was then read.
For the purpose of assuring the proper measurement, the cylinder was
finally rotated 30.6° in the other direction so that the other hole would
be at the stagnation point. When the eylinder was located outside the
wake, these two angular pogitions of the cylinder gave almost the
identical pressure difference, but the difference became larger when
the eylinder went into the wake. When the difference was small, these
two pressure differences were averaged and the magnitude of the
velocity was estimated from the characteristics of the eylinder shown
in Fig. 4.

When the point of observation was in the wake, the 180° cylinder
wag used and the device described before was employed to estimate
the velocity at that point.

(2) Construction of the flow pattern.

The results of the velocity measurements were arranged to find
ufu, at a series of several vertical sections. After plotting u/u, against
y/b, the integration ¢ =" (u/u)dy was performed by Simpson’s method to
obtain a group of curves on ¢: y/b plane for the different values of
z/b. This plot yields the coordinates /b and y/b for different values
of the discharge integral—that is the coordinates of the stream-line.
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With the aid of these stream lines, the direction of the mean flow
inside the wake was obtained by drawing a tangent at the point
desired. The correction of the velocity was performed in the manner
explained above, wherever necessary. Integration of these corrected
distributions of u/u, then gave the corrected flow pattern. Actually.
this procedure of correction did not change the flow pattern very much.

The final form of the flow pattern obtained is shown in Fig, 8.

Distributions of ¢/u, are also presented in this figure for reference.
The points of maximum velocity are rather clear when z/b is small,
but they become quite vague as the point of observation is moved
downstream. The estimated points of the maximum velocity are also
indicated at each section, and they are connected with a smooth curve
which might be called the border of the wake, The results of velocity
measurements made with 30.6° cylinder and the 180° cylinder are in-
dicated separatedly by means of different symbols.

b. The cases of two plates (H/b=6) and four plates (a[f/b::3)'.

The same procedures as described in the preceding section were
repeated for the case in which two test plates were mounted in the
air tunnel. The final results are shown in Fig. 9. It will be clearly
geen that the length and the height of the profile of the stable eddy
are smaller in this case than before. This fact shows that the inter-
ferance of the tunmnel ceiling should not be overlooked., Close com-
parison of Figs. 8 and 9 will also reveal a change in the distribution
of velocity, which was accompanied by a rather appreciable change
in the pressure distribution in the field.

In this case, as it was possible to measure the velocity distribution
up to the imaginary tunnel wall already shown in Fig, 7, the continuity
relation can be examined. The schematic sketch of the situation is
shown in Fig. 10. The discharge can then be computed at the upstream
gection, where there is no disturbance, as 12 dimensionless units for
the tunnel as a whole, or 3 units for the field of each half plate. On
the other hand, the integration of the velocities actually measured gives
the discharge as shown in Table 2 at several vertical sections.

In this table, the estimated errors in discharge are also indicated.
The error will be seen to be about (—4~0.795) in gross. Actually, as
the thickness of the boundary layer at the floor of the air tunnel
should decrease at the section of the test plate, the error in discharge
will be lower than the figures in this table., This table shows that the
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Fig. 10
. S
va, ¥y/o=3
|
N
TABLE 2.
s |0 | 1| 2 |3 | 4| 5 6 7 8
Q 2951 | 2934 2.876] 2.868 2.871] 2906 | 2942 | 8020 | 302

Brroyin | 16 | —20 | —41 ’ —44 | —48 | —31| —19| o1 | 07

measurement of velocity was performed within reasonable limits of
error on the whole.

When four plates were mounted in the tunnel, the flow among
the plates was found to be asymmetrical with respect to the mid-
section between any two plates. Furthermore, the flow secemed to be
unstable, as any slight disturbance in the field changed the direction
of flow. This fact was detected by arranging pieces of light string
diagonally on the surface of the tail plates that correspond to the
boundary of the half plane. The inclination of the swinging strings
gave the approximate direction of flow. Since the flow wag asym-
metrie, the idea of the imaginary wall between two plates would not
be applicable in this case and the detailed measurement was not car-
ried out.

2. An approximation to infinite spacing (formation of the ceiling and the
floor of the air tunnel).

‘When a body is located in an infinite space, a noticeable distortion
of the stream lines extends rather far away from the body in com-
parison with the gize of the body. It is also a widely known fact
that the interaction of the wind-tunnel walls is sometimes appreciable.
Going back to the present study, it was of primary interest to in-
vestigate the characteristics of the flow downstream from a vertical
plate in a half plane. The preliminary experiments already described
revealed that the height of the tunmnel made an appreciable change
in the field, yet it was not determined whether the ratio H/b=12 was
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comparable to the infinite spacing. In order to realize the next step
of this approximation, a means of effecting a curvature corresponding
to a probable stream line at the boundaries of the air tunnel was
considered. As the present study is a two-dimensional one, consider-
ation of the ceiling and the floor of the tunnel would be sufficient.
The profile of the stable eddy for H/b=12 which was already shown
in Fig. 8 offered the shape of an equivalent imaginary body for this
purpose. This profile of the stable eddy was replaced with an imaginary
Rankine oval to compute conventionally the shape of the stream lines
at the ceiling and the floor of the air tunnel., The reason that a Rankine
oval was employed was simply that it was easy to handle the solution
of the velocity field. If the profile of the eddy is considered to be
the zero discharge line of the eddy pattern, one can easily estimate
the distortion of the stream line at any point in the field. In this case,
it was deemed proper to consider the displacement thickness of the
boundary layer in the tunnel, too. ‘

a. Estimation of an imaginary Rankine oval to replace the profile
of the stable eddy.

A Rankine oval in two dimensions is realized by combining a uni-
form flow with a paired source and sink of equal strength located at
(—1,0) and (1,0) respectively., The uniform flow is understood to be
from left to right, and the situation is shown schematically in Fig. 11.

Fig. 11

Uo 1
T 6;
@/

The complex potential of a source located at (—1,0) is

w, = —m log 2 = —m (log r,+10,) (1)
In the same way, the complex potential of a sink located at (1,0) is

w, = mlog z =m (log 7,+10,) (2)
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The complex potential of a uniform flow in the direction of positive
x is

Wy, = — U2 = —uy (T +1y) (8)
Accordingly, the stream function which passes an arbitrary point P

located outside the Rankine oval must be the sum of the imaginary
parts of KEgs. (1), (2), and (3):

& = —uy—mb,+mb,

or
Lo 9 C I R A (4)
Uy Uy z+1 x—1

The stream function ¢ must be zero on the surface of the Rankine
oval. Consequently, Kq. (4) gives

»uiy = —~tan'Y  4tan Y
m r+1 r—1
or
tan <ﬂy> = 27";’ (5)
m 4y —1

The length of the Rankine oval can be obtained by letting ¥ be very
small in Eq. (). Then, neglecting square and high powers of y, one
obtains

ST .
L=2,/145m . (6)
0
In the same way, the condition z =0 gives the expression of the width
of the oval B:

B— = tan —;

A T |
1 4

_ .. B B
Lﬁ2/1+*f44§— (7)

tan B

or

This is the relation between B and I of a Rankine oval. The next
step was to find the combination of B and I which will make the shape
of the Rankine oval practically identical with the profile of the stable
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eddy shown in Fig. 8. It is impossible to give the exact shape of the
eddy to the oval of course, and for convenience the Rankine oval which
passed the edge of the test plate and the point of the maximum height
of the stable eddy was used.

Now, taking B as a unit of length, the coordinate of the wupper
edge of the test plate was found to be (—1.404B, 0.187B) from the
eddy profile. Substitution of these coordinates into Kq. (6) gave

uy, 1 ta11‘1<»0'374B ) (8)

m 0.187 20078 —1

Substitution of Eq. (8) into Eq. (6) gave the relation between B and L
which was suitable for the approximation considered :

0.374 B
‘/ tan— 0.374 B

Accordingly, the combination of B and I. which satisfied both Egs. (7)
and (9) simultaneously had to be the values of B and L one is seeking
for. As it is difficult to solve these equations simultaneously, Egs. (7)
and (9) were computed separatedly for a certain series of B to obtain
the corresponding series of L. The results of this computation are

Fig, 12
Yo
Relation betwegen the 73*
B = length and the r_:\\
height of the @/ %
3t Rankine oval /T
|
A
/W i
s
2 v 4 ﬁ/‘ﬁ_
ey /@\} '
A
4% qon 200
9‘2 //’/
//
A L
1 o~ ;
L=2.308
{ B=0,785
? )
0 ' L
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plotted in Fig. 12, and the point of intersection of these two equations
was read as

L = 2308, B = 0,735

as indicated in this same figure.
It must’ be remembered that
these values of L and B were ex- Fig. 13
pressed by taking the unit length
as the = coordinate of the source
or sink. Xnowing that the width Scale in ineh
of the test plate is 3 inches, the
chief dimensions of the Rankine
oval could at once be obtained. The
results are shown schematicslly in

|
Fig. 13. . —IE ————— I '}
Substitution of B = 0.785, ob- 102 -+ 10.2—
tained from IMig. 13, into Eq. (8)
gave the expression of the strength
of the source and sink —namely, 25.58 — =

uy/m=6.08. Accordingly, the equa-
tion of the suitable Rankine oval was obtained from Eq. (5) as

2
— Y — tan(6.08 3) 1oy
r+y—1
or
F L
x =+ {—————Zy —y‘*’+112 (10)
tan (6.08 ¥) J
TaABLE 3

0.034 3.921 0.238 3.885 0.851 2.932
0.068 5.92 0.272 3.972 L1020 2052
0.102 5.916 0.306 5.86
0.136 3.915 0.340 3.84 L19 2.255
0.176 3.90 0.51 3.742 1835 0.204
0.204 3.895 0.68 3.58

As stated before, the x coordinate of source and sink is the unit length
in this equation. In other words, 1=10.2 inches. The results of com-
putations of Eq. (10) are tabulated in Table 8 after converting the unit
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length to the width of the test plate, and the comparison between the
imaginary Rankine oval and the eddy profile obtained in Fig. 8 is shown
in Fig. 15. It will be seen that the two shapes are very similar.

It i8 convenient to convert the chief dimensions into the a coordinate
of source or sink as unity in order to derive the equation of the
stream line at the ceiling of the air tunnel. The chief dimensions
are shown schematically in Fig. 16.

Fig. 16
4
_________ - R "“jo-__@
P [y
(x',g) U -1-594
&, 0

2308

From this figure, it is clear that tan6,=1765. Consequently,
0,= 1.062 radians and 0,= (x—1.062) radians for the stream line at the
ceiling of the tummel. Substitution of u,/m=6.08, 6,—=1.052 radians,
and the coordinates of P, (0, 1.765) into Eq. (4) gave the value of the
stream function at the ceiling of the tunnel as ¢/u,=—1594. The
locus of Pi(z, %) then gave the form of the stream line at the ceiling
of the tunnel. Substitution of ¢/u,=—1.594 into KEq. 4) yielded the
locus of Pi(x, 7). Accordingly, the equation of the form of the ceiling
of the air tunnel had to be

1594 = y+ 1 (tan-' Y —tan-' Y >
6.08 \ z+1 x—1

or

N 2y
T an (6.08(1594— )} -

1.765 =y =1.694

The results of the computation of this squation are plotted in Fig. 14.
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b. Estimation of the boundary-layer development at the ceiling of
the air tunnel.

At first, in order to estimate the boundary-layer thickness defined

by 9995 of the general velocity, the velocity distributions at four

vertical sections in the tunnel were measured with a Prandtl-Pitot

F/:?. 1
VELOCITY DisTRIBUTIONS iN THE BounDARY LAYER
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tube up to 0.4 inch from the ceiling. The results of the measurements
are shown in Fig. 17. The values of x to show the positions of obser-
vations were measured from a fixed point about 1 foot downstream
from the end of the bell inlet to the test section. The estimated
values of the boundary-layer thickness § are also indicated in this
figure. In order to estimate the constricting effect of the development
of the boundary layer, the displacement thickness of the boundary

layer §* defined by Sa(l —uji,) dy must be obtained. When one desires
0

to do so, it is necessary to find the velocity distribution near the surface
of the ceiling of the tunnel. As a matter of practice, it is difficult
to measure the velocity near the wall, therefore an approximate ex-
trapolating device was employed. The sketch of the end of the inlet
bell of the tunnel is shown in Fig. 18.

Fig. 18

A g7

B
a x*«-|
X

Even though the actual form of this part is AB as shown in TIig.
18, a flat plate A’B was imagined to replace the ceiling of the tunnel,
because many experimental meagurements of the boundary-layer thick-
ness for a flat plate are available:

b)) 6 0377 (12)

X ©+a  R¥

X is the distance from the leading edge of the imaginary palte, and
x is the distance from a fixed reference point in the tunnel. The
results of the estimation of the boundary-layer thickness § defined by
999% of the general flow velocity are plotted in Fig. 19 against distance
along the test section. By trial-and-error calculation, it was found that
a=>5.27 feet, so that the actual longitudinal variation of § fits fairly
well with values of 5 computed from Eg. (12). Equation (12) is

0.377 < v )i 8
T+a

(@+a)y \
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and the conditions of the experiment gave v=170x10"f#/sec and
u,=45.9 fi/sec. Accordingly, this equation resulted in

5=0.0508(z+a)" (13)

The results of computations of this equation with the value of ¢=5.27
feet are tabulated in Table 4 and indicated by a curve in Fig. 19. It
will be seen that the value of “a” or the length of the extending length
of the imaginary plate gives a fairly close approach for the develop-
ment of boundary layer in the tunnel, except at x—=10 feet. This
position is far downstream, and hence it was not considered dangerous
to use the variation of & shown in Table 4.

TaBLE 4.

x [t | (x+a)”’ 3 7from Eq. (13)
0 63.28 1.407

1.667 83.28 1.753

3.332 103.28 2.07

5.000 123.28 2.385

6.664 143.28 2.68

3.333 163.28 2.99

10.000 183.28 3.295

|

The Prandtl-Kdrmédn equation for the veloeity distribution in the
boundary-layer of a flat plate is

%o
oY
4 —B55+5.75 logiy —— — (14)
Ty
Vo
in which
. — 0.069 Pu;
"R 2
Accordingly,
w0717 575 1 0.1717 ugy 1
v " m <5.5+o.7o 00— > (15)

Fquation (15) was adapted for each section indicated in Fig. 17 and the
results are tabulated in Table 5. The equation of u/u, in Table 5 were
computed and the results are shown in Fig. 17 as broken lines. These
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5 inch Pig. 19
4 Variation of the Boundary-layer Thickness
along the Wind-tunnel L
8 f - 3) —— '
. 1
‘E’Q‘-‘E'T'&'Oﬁ i. -___,f’j
2 —7
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1
0 xft
2 . 6 8 10

lines were used for the extrapolation of the velocity distribution near
the ceiling of the air tunnel. As the velocity distributions in the
boundary-layer along the ceiling combined the experimental results and
the conventional empirical formulas, the displacement thickness of the
boundary-layer ¢* could be obtained for each section. The results of
the estimation of §* are indicated in Fig. 17 and the variation along

the tunnel test section is shown in Fig. 14.

TaBLE b Velocity distribution in the boundary-layer

Position ’I 1 ’; 2 3 4
— ‘
cft 0.708 1 2705 4.700 9.000
|
R 1.615% 10° 2.165 % 108 2,69 % 108 3.85 X 106
o 0.226 0.220 0.215 0.207
0 +0.2363 log 925y | +0.230 log 900y | +0.224810g 881y | +0.2164 log 848y

e¢. Formation of the ceiling and the floor of the air tunnel.

As already seen from the scatter of points in Ifig. 14, a certain
amount of error in computation of the stream line at the ceiling of
the tunnel was unavoidable. As shown in Fig. 14, the results of the
computation were connected with a smooth curve. The scale in Fig.
14 is distorted in the horizontal and vertical directions for convenience.
Now, the ceiling must be constructed by superposition of the shape
of the stream line and the variation of the displacement thickness of
the boundary-layer. This superposition was performed graphically with
the aid of Fig. 14. The vertical line which passes through the center
of the imaginary Rankine oval intersects the variation curve of the
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displacement thickness of the boundary-layer at point P as shown in
Fig. 14. A horizontal line which passes P is indicated as dot-dash line,
The stream line was displaced graphically, at each point along the
tunnel, by the magnitude of the vertical difference between this
horizontal line and the variation curve of the displacement thickness
of the boundary-layer.

As the test plate was mounted exactly at the midheight of the
tunnel, the floor of the tunnel was made exactly symmetrical with the
ceiling. The distances from the flat ceiling to the imaginary stream
line were read from Fig. 14, and transferred to wood templates which
posses the curve of the stream line. These templates supported a
flexible hardboard sheet of the same width as that of the tunnel, so
that the desired stream-line shape was obtained in the longitudinal
direction.

The ends of the hardboard at the entrance and at the end of the
test section of the air tunnel were smoothly connected with the fiat
ceiling and floor with proper curves. A piezometer hole 0.04 inch in
diameter was again arranged near the entrance of the test section
in order to obtain, as before, the, velocity of approach after calibration.

3. Measurements of the wake behind the plate in the stream-lined air tunnel.
a. Mean velocity distribution.

The procedures for the measurement of velocity and the con-
struction of the flow pattern were identical with those explained before.
The final results are shown in Fig. 20.

Comparison between Fig. 20 and Fig. 8 shows only a slight change
in the shape of the eddy profile. Accordingly as far as the size or
shape of the profile of the eddy is concerned, the device of replacing
the eddy profile with an imaginary Rankine oval may be understood
to be proper, for the purpose of realizing an approximation to an in-
finite spacing.

b. Pressure distribution.

The plate for the measurement of pressure distribution was care-
fully mounted parallel to the side walls, and the difference between
the pressure upstream and the pressure at the piezometer hole on this
plate was obtained. The experimental results at several sections are
plotted Fig. 21 as broken lines. As will be seen therefrom, the pressure
in the region under study is always lower than the pressure in the
general flow.
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Fig. 21
Pressure DisTRIBuTION DOWNSTREAM FROM
THE TEsST PLATE
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¢. Turbulence distribution.

(1) Measurement of Y
The single hot wire was supported vertically in zy plane. In this
case, the hot wire is sensitive to % and «/, but when u is large, the
error for «/ which will be caused by w’ is negligible. Actually, u is
small compared to « and w in some regions of the wake, and the
accuracy of the measurements of Y4”® becomes poor. Since there is
no way, at present, to measure the fluctuating components accurately
in such a region, the measurement was carried out conventionally.
When the hot wire is supported in this manner, the mean horizontal
velocity « is also measurable. The measurement of this component of
velocity agreed fairly well with the results obtained with cylinders.

The quantity Vu” can be computed from
VYt = 1,,,x AxB, (16)

in which I,,, is the reading of the root-mean-square value of the
fluctuating voltage, A is the slope of the voltage-velocity characteristics
of the hot wire, and B, is the attenuation factor.
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(@) Measurements of ¥ o and wv'.
When the single hot wire is supported at the angle of 60° against

the x axist in the zy plane, the reading of the root-mean-square of

the fluctuating voltage gives the clue to obtaining /Yo7 and w'. In

this case,

(Insx Ax B,), =V (u/ cos 60° 1 v sin 30°)
or
(I x Ax Bt =(0.866 V u ¥+ (0.5 Vo7 F+0.866wv  (17)

In the same way, when the hot wire is supported at the angle of 120°
to the z axis in the ay plane, one obtains

(Lymsx Ax B,y = (0.866 Y 4 Y+(0.5 V07 ¥ —0.366 v/  (18)
The sum of Egs. (17) and (18) gives
Ums < Ax BY ALy x Ax B} = 15 (VuP ¥ +05 (/7 )

or

Vo — 1/ 2 [ (Lt At BYA+(Ie x Ax BY—15 Vw7 ¥ (19)

Since Yu” is obtainable with Eq. 16, ¥ v” can be obtained with Eq. (19).
When Eq. (18) is subtracted from Eq. (17), 4/ can be obtained :

(Lyms % Ax B[ e x Ax B, = 17323/

or
P 1 ] 2 ‘ 2
Wy = 155 [ Tomsx Ak BYi— (Lax Ax B,); | (20)

() Measurement of Vi

The device for the measurement of ¥ v can also be used for the

measurement of Yw” . In this case, the single hot wire must be sup-
ported in the xz plane so that the hot wire makes 60° and 120° angles

with the x axis. Then the same expression for ¥V w” as in Eq. (19) can

be obtained ; since Y is already known, Yw? can be evaluated.
The results of measurements are plotted on Figs. 22, 23, 24, and
25 for several vertical sections.
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Discussion of Results
1. Mean flow.

It may be worth-while to compare the experimental results to find
the influence of the tunnel boundaries upon the eddy. The points of
the maximum velocity at several vertical sections which were obtained
in Figs. 8, 9, and 20 are plotted on Fig. 26. The results of Fig. 20
are marked with H/b=c. As will be seen Fig. 26, when the height
of the air tunnel is small, the vertical distance from the tail plate
to the point of maximum velocity moves. If the border of a wake is
understood to be the line which connects the points of maximum
velocity at ecach vertical section behind the test plate, the fact de-
scribed above means that the height of the tunnel has an influence
on the shape of the wake. The comparison of y/b for H/b—co and for
Hb=12 at z/b=8 will show that the effect of H/b becomes quite ap-
preciable with distance downstream. The expansion of the border of
the wake also be seen in these plots as well as in Figs. 8, 9, and 20.

The magnitudes of the maximum velocity at these points are also
plotted in Fig, 26. It can be clearly seen that the constriction effect
causes an increase in velocity in the field behind the test plate. It
will also be seen that the maximum velocity in this region always
appears at the section x/b=25 instead of at the edge of the test plate.
Moreover, it will be noted that the magnitude of the maximum velocity
changes along the border of the wake. This fact means that the
pressure in the wake should not be understood to be constant as is
assumed in the free-streamline theory. The estimation of the location
of the points of the maximum velocity becomes difficult when z/b is
large, because the border of the wake becomes vague in accordance
with the increase of z/b.

Fig. 27 is presented in order to clarify the effect of the limited
height of the tunnel upon the size of the eddy. The estimated length
L and the maximum height B,.. of the stable eddy obtained in Figs.
8, 9, and 20 are plotted in this figure. The values B../b—=1.36 and
Lp=8.43 correspond to the size of eddy in the stream-lined tunnel
shown in Fig. 20. As described before, the variation of Bp., and L
between the stable eddies shown in Figs. 8 and 20 is small, and judging
from the plotting of Fig, 27 it may be understood that B,../0=1.86 and
L/b=8.43 give a fair indication of the size of a stable eddy behind
a vertical plate in a half plane in contact with a boundary. The
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effect of H/b on the size of the stable eddy will also be clearly seen
in Fig. 27.

The combination of the velocity measurement and the pressure
measurement gives the variation of the total head in the field behind
the plate. The results for several vertical sections are shown in Fig, 28,

As will be seen in this figure, the total head begins to decrease
at the border of the wake, and the smaller the value of x/b, the larger
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the gradient of the total head. When «/b is small, the total head
attains practically a constant value, as do also the pressure variations
already shown in Fig. 21, As will further be seen in Fig. 28, the total
head is practically unity outside the wake in a dimensionless expres-
sion. Since the reasonability of the velocity measurement has already
been shown, this fact means that the pressure measurement was also
properly performed.

It is also seen that the total head and the pressure both increase
with x/b. This fact may be caused by the decrease of the velocity at
the border of the wake and by the mixing process of the flow behind
the plate. The total head, as shown in Fig. 28, decreases rapidly in
the wake although it begins to increase at a position near the tail plate.
This phenomenon may be caused by a backward flow within the eddy.
The same behavior is seen in the pressure distribution in Fig. 21.

The distributions of the horizontal component and the vertical
component of velocity were also estimated and they are shown in Figs.
29 and 30.

As already explained, the estimation of the direction of flow was
performed in two ways——one directly with the 30.6° cylinder and the
other with the 180° cylinder by successive approximation. The direction
of flow near the border of the wake had previously been determined
by Fage and Johansen [2] for a flat plate without tail plate, using the
device of the shielding effect of a cylinder against a hot wire. As a
cylinder was used in the present experimental work, the author at-
tempted to compare the workability of the 30.6° cylinder with the
results they obtained. The experiment was performed in the parallel
test section before inserting the stream-line ceiling and floor, without
tail plate, and it was found that the evaluation with 30.6° cylinder
agreed fairly well with the Fage and Johansen result., This was one
reason why the cylinders were used in the present study. They had
to employ an extrapolating method for the estimation of the direction
of flow inside the border of the wake, where the 30.6° cylinder did not
work. This fact can be seen quite easily. After determining the
direction of flow by the pressure balance between the two holes, the
velocity head should be obtainable by setting the two holes in turn
at the stagnation point on the cylinder. These two readings did not
agree when the cylinder wag located in the region of steep velocity
gradient. Furthermore, the duplicate measurement with the 180°
cylinder showed that use of the 30.6° cylinder gave smaller values of
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a than that indicated by the 180° cylinder in the region of shear flow.
A possible cause of the error in this kind of instrumentation when
used in shear flow will be discussed analytically in the Appendix.

2. Correction of the velocity distribution and of the pressure distribution.

As the ceiling and the floor of the test section were formed accord-
ing to the shape of a streamline caused by flow around a Rankine
oval, if the shape of the boundaries was correct, the actual results of
the velocity measurements must be identical with those which one can
obtain analytically for the flow around the imaginary Rankine oval.
The latter resulted from a combination of an imaginary source, sink,
and uniform flow. The complex potentials of the source, sink, and
uniform flow are w,= —m log z,;, w,=m log %,, and w,=~ —uz, respectively.
Accordingly, the velocity components which will be derived from these
complex potentials must be

ma, ML,
U == e Uy
T+ Y 21+ Ys
m mY-
v = Y Yo

wityi @ty
Herein 2z, and y;, are the distance from the source to an arbitrary
point, and »., ¥, are the corresponding distance from the sink. Since

the strengths of the imaginary source and sink were selected to be
mfu,—6.08, the dimensionless forms of these equations are

w o loom L&y (21)
Uy 6.08 xi+; 6.08 22+ 3
v _ oy 1 % (22)
Uy 6.08 xi+v; 6.08 22+
oo (Y (Y 23
Uy 14 <70> +<v—o> (23)

It is quite obvious that these equations would not be applicable exactly
for the flow inside the wake, but for convenience the computations
were carried out in the range 2=<y<4. The results of the computations
and the results of the actual measurements are listed in Table 6 for
the purpose of comparison.

A close inspection of this table will show that the differences
among the analytical values and the experimental values are very small
when the position of observation is near the test plate and that they
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TaAELB 6.

(Figures in parentheses are interpolated)

j wlb =0 E wlb = 1.0

@b = 2.0 /b= 3.0 i /b = 4.0
!

y/bl Eq.(28) 1Expeu-| Eq.(28) ‘ Exper. ' ) | Exper. | Eq. (28) ‘ Exper. | Eq.(23) ‘EX]’)B!‘.

35 1054 | (L07) 1.102 | (L.12) 1.138 | (L.16) 1.154 | (L.17) 1158 | (1.19)
30| 1085 | 1063 | 1.120 1.033 | 1162 | 1180 1181 | 1,198 | 1184 | 1.217
25| 1.056 1062 | 1144 | 114 1197 | 1.196 1212 | 1.226 | 1213 1.232
2.0| 1053 1.063 | 1185 1.178 1.238 | 1.225 1244 | 1249 | 1243 | 1.265

}
| Ea
4.0 1.052 1.07 1.089 1.108 1.119 [ 1.139 1135 | 1.161 | 1.1387 1.17
I
| B
\
|
\
i

| ab=50 | afb=60 afb=70 | alb=80
/b | Eq. (23) ! Exper. | Eq.(28) %Expel q. (23) lE . i
40| 1128 | 1158 1072] 1.151 1072@ 114 | 1030‘ 1.110
35| 1148 | (L17) | 1.080 i (1L16) | 1081 | (1.14) i 1.034 | (1.10)
30| 1171 | 1204 | 1080 117 | 1091 | 1142 | 1025 = 1108
25| 1207 | 122 | 1105 | 1197 | 1105 | 1.155 i 1015 | 1113
20| 1248 | 1242 | 1128 | 12 | 1128 | 1152 110

0.991 |

become larger and larger as it moves downstream. In all cases, the
experimental values are higher than the analytical values. These facts
show that there must be some throttling effect on the air. In order
to estimate the displacement thickness of the wake, measurements of
velocity distributions at two vertical sections far downstream from
the test plate were added. The variation of the displacement thickness
of the wake in the longitudinal direction is shown in the upper half
of Fig. 31. The shaded part of the imaginary Rankine oval was taken
into consideration in the estimation of the tunnel shape. The displace-
ment thickness of the wake was computed for the following equation:

i uN g Y

=)y (24)
Herein § represents the value of y where the maximum velocity was
first observed. 'The remasining part of the displacement thickness of
the wake after dedueting the area occupied by the Rankine oval must
1so be taken care of, which can be done by replacing it with a proper
distribution of doublets.

In order to clarify the situation, a schematic representation is given

in Fig. 83. The head forms shown correspond to a body in a flow,
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Figure 23 (A) shows the case for which the spacing is infinite. On the
other hand, the interference of the wind tunnel wall will be investi-
gated by means of an infinite series of images of the body as shown

in Fig. 33 (B).

The purpose of the present study is to investigate the case shown
in Fig. 83 (A), but actually it was the field shown in Fig. 33 (B) that

Fig. 33

g (A)

was measured, because only the up-
stream portion—i. e,, the stable eddy
—was used in designing the form of
the ceiling and the floor of the tunnel.
In other words, the head forms shown
in Fig. 33 correspond to the remaining
part of the displacement thickness of
the wake to be considered. At first,
the field shown in Fig, 33 (B) will be
considered.

Generally, the complex potential
of gource located on the ¥ axis at equal
distance 2 is

wW;=¢ [10gz+1og (z—1id)+1og (z+142)
+log (z— 2id) +log (z+ 244) + 1

An addition of a constant or con-
stants to this equation does not change
the flow pattern in this field, Con-
sequently,

w; = ¢ [log,z+log, (z—id)+1og, (2 +4) +log, (e —2i1) + log, (e +2i2) + - |

+ ¢[log, = —log, #~log, 47~ ]

— clog,| ™ (1+ 2.
clog{ : <1+ .

—clog,| ™ I
g[l

n=1

= ¢log,sinh %%

2

/z'_.

(1

)t
i)

4

5]

(25)

When these sources located on the y axis are replaced with doublets,
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the complex potential of these doublets can be obtained by differ-
entiating Hq. (25) with respect to z:

d . T2 e 72
w, = —— (¢ log, sinh —) = " coth
dz < g A A A

Accordingly, when the doublets are distributed on the z axis and on
straight lines which are parallel to the x-axis with a spacing of 1, so
that the strength at z=t, ¢+, t+2 and so on is M®), the complex
potential of this distribution of doublets must be

Wy = %ﬁ M () coth '—Tw dit (26)

Here (z,%) are the coordinates of a doublet element, and ¢ and b are
limits of the location of the distribution of doublets. The separation
of the imaginary and real parts of Eq. (26) gives

0 sinh 22D, (f*t)
¢s = RLS M @) dt
cosh 2P(@—t) _ o 2y
@ x /{
s .. 2r
x| S v
fy=——\ M@ dt
A cogh 27 @1 cos 27Y
143 /2 /{

When a parallel uniform flow w,= —uz is added to above equation, one
obtains

> sinh 221
¢ = —~uom+M§ m (t) A at
A cosh 2R _ o 2m Y
a@ x 2
» . 2m :
¢ = —uy+ ﬂlg m () S dt
! . cosh 27 %ci_ cos%l y

in which M@=u,m{). Conssquently, the velocity in this field must
be, in dimensionless form,

. 2m (x —1t) 27
4o 902 0 1 cosh——}——cos—ry
e 1_7 m (£) o (o) . dt @7
Uy : B o (X — T ’
Lcosh——x———— cosT y}



256 Mikio ARIE

» .1 2m (x—1)
e —2/{-7{& ot smh———/z | s1nT Y L 8
to [coshgﬂ—(f-i — COSZT“T y]

— [ V. 29
/() (o) (@9)
Next, the field of the distribution of doublets in one row on the

real axis shown in Fig. 33 (A) will be considered. The complex potential

for a point doublet is w5:éi:¢5+i¢5. Accordingly,

)
7 L)
Pt s 4y
and

Y
gy = — =7
&y

When the doublets are distributed from z=a to z=b with the strength
of p=um() at z=¢,

By = ~JEM>Ldt

« @t +y?
When a uniform flow is superposed upon this field,
© omb)y )
= =l +j Mdt} 30
¢ [‘y « @—tF+y #0)
Hence, the velocity which will be induced by this stream function is
W:Lﬁ =y g 31
o " ot 4T 81)
Vs § m() - YE=D g (32
Uy ) [(CE t) +y] )
s LIAY Vs Y 3

If deju, represents the error which will be caused by the part of
the imaginary Rankine oval, and if 4e./u, represedis the error caused
by the other part of the displacement thickness of the wake, the total
error which may be introduced by the whole is approximately (de,+
deg)fu,.  As the tunnel was formed so that 4de/u,—0, the possible error
included in the results of experiment is de,ju,. If c¢j/u, represents the
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local velocity which one is interested to measure, the actual measure-
ment was (¢+de,)/u, instead of cju,. As obtained above, (c+4e,)/u,
corresponds to ¢, /u, in Eq. (29), and ¢fu, corresponds to ¢,/u, in Eq. (33).
Consequently,

etde,  Ca
wy U

C _ Cg

e U

g (34)
¢+ de, Ca
or
L gl (35)
0 0

Since (¢ + de.)/u, was the quantily actually measured, including the error
of the tunnel interference, Fq. (35) means that K is the correction
factor for velocity. In order to obtain K defined by Eg. (34), m (f) must
first be found.

The stream function ¢ given in Fq. (30) gives an imaginary stream
line which will be caused by an imaginary body corresponding to the
displacement thickness of the wake remaining after deducting the
part of the Rankine oval desceribed before. If y(x) represents the
difference of the ordinates between the imaginary Rankine oval and
the displacement of the wake, y(x) must be the ordinate of the im-
aginary body to determine the value of m(f) signifying the strength
of the distributed doublets. Sinece the stream function is zero on the
imaginary body, Fq. (30) gives

jb m (£) y(x)

\WYNL) gy = —
o (= +y v

This is an integral equation of the Fredholm type of the first kind.
As a first approximation, agsume that m()=m(x). Then,

_ w) o
>L - i = —y@)

O+

or

m (x) Ltan“‘t?zag—]b = —y (@)

@
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When (h—wx) is large compared to ¥ (x), the above equation gives

m ()= oy y@) (36)
T optanm P gn- ’_L/’__((I})
2 y (@) T

By inspection of Fig. 31, the quantity “a” was selected to be z/b=3,
and the value of y(z) and the values of m(x) computed with Kq. (36)
are shown in Table 7 for a series of values of z/b.

TapLE 7.
x/b 3 4 ] 5 6 7 7.2 7.4
y/b 0 0.0564 0.0726 0.0837 0.2267 0.303 0418
m (x) 0 —0.0183 | —0.0234 | — 0.0269 | — 0.0785 | — 0.0988 | — 0.1371
x/b 7.6 7.8 8 8.6 15 19
2lb 0.663 0.975 0.9395 0.807 0.6412 0.6738
m () — 0.2212 | — 0.325 — 0.311 — 0,264 — 0.2065 | — 0.2168

x/b=19 is large enough for the computation of Egs. (29) and (33).
The variation of y(x) will be seen in the upper half of Fig. 31 and
the variation of m (x) in tihe lower half.

Since it was found that it would be better to employ the whole
region of the displacement thickness of the wake in determining the
form of the ceiling and the floor of the air tunmnel, the distribution of
m(x) in this case is also shown in Fig, 31, for the purpose of future
reference. The shaded part corresponds to the portion of the imaginary
Rankine oval which was used in this study. The accuracy with regard
to the beginning point of the distribution of doublets is discussed in
the paper of L. Landweber [9]. As shown in Fig. 33 (A), the beginning
point is recommended to be half of the radius of curvature (a=r,/2)
of the head form, If the head part of the Rankine oval is congidered
for this purpose, the mathematical expression for the radius of curva-
ture for the imaginary Rankine oval which was used in this study is

eosa 1 sina\* |, .3
p = [(sina sina 608) +x] B
[(eee— L~ SIY 4 126ateosa (S50 L L)
A\gina sinz 6.08 sin®a sin*a  6.08

+4° (13,164 2 cos a) ]
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in which a=6.08y. This equation can be obtained from Eq. (10Y. The
evaluation of this equation for y=0 gives ¢/b==0.566. Referring to Fig.
14, this value seems to be too small for practical purposes, and so a
proper radius of curvature was estimated to be 2/6=0.79. If £/b=0.79
is employed, the distribution of doublets begins at x/b=0.242 as shown
in Fig. 31. This distribution of doublets may be helpful for the ex-
trapolation of velocity distribution at the section where /b is large.

As only part of the displacement thickness of the wake, execluding
the region of the imaginary Rankine oval, was used in the present
study, the radius of curvature at x/6=3.0 was understood to be zero,
and the distribution of the doublets was started from that point. After
computing Eqgs. (29) and (83), the correction factor K was computed by
Eq. (34), the results of which are plotted in Fig. 34,

Fi14. 34
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Both the border of the wake where the maximum velocity appears
and the profile of the eddy are indicated in this figure, in order to
show the probable percentage at these positions., When the actual
results of measurement of velocity are multiplied by K as read in Fig.
34, the approximate corrections can be performed according to Hq.
(35). Actually, this device of correction is applicable only for the
magnitude of velocity, because the value of u is usually much larger
than », as will be seen in Figs. 29 and 30. Since the contribution of
v to the magnitude of the velocity is very small, the correction of the
direction of flow was not performed in this study.

As this device of correction is applicable outside the wake where
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the Bernoulli equation is valid, the pressure distribution ecan be cor-
rected simultaneously by the following relation:

o4 g <i> (37)
~1—Pu§’; Yo
2

The results of the velocity corrections are shown in Table 8 for
convenience in comparing with Table 6. The results of velocity calcula-
tions obtained from the flow around the imaginary Rankine oval are
repeated in this table.

TaBLE 8.
wf/b=0 1 /b= 1.0 b= 2.0
) i o T et
/b Hq. (23) Corrected t Eq. (23) \‘ Corrected Eq. (23) Corrected
cluo | ¢l ! clu
4.0 1.052 1.058 1.089 | 1.089 1.119 1.116
35 1.054 1.053 1102 1100 | 1138 1.187
3.0 1055 1.047 1.120 1.113 1.162 1.158
2.5 1.056 1.036 1.144 1.120 1.197 1.177
2.0 1.053 1.049 1.185 1.158 1.238 1.207
wfb= 8.0 /b= 4.0 /b = 5.0
ulb Eq. (23) Corrected Eq. (23) Corrected Eq. (23) Corrected
¢l ¢l clua
4.0 1.136 1.134 1.137 1.131 1.128 1.125
3.5 1.154 1.144 1.158 1.159 1.148 1.185
3.0 1.181 1171 1.184 1.186 1.171 1.170
2.5 1.212 1.200 1.213 1.210 1.207 1.186
2.0 5 1.244 1 1.221 i 1.243 1.226 1.248 1.210
x/b = 6.0 x/b="17.0 x/b =8.0
b Eq. (23) Corrected Eq. (23) Corrected Eq. (23) Corrected
el cfuo ¢fuo
4.0 ‘ 1.072 1.111 1.072 1.094 1.030 1.060
3.5 1.082 1.121 1.081 1.095 1.034 1.051
3.0 1.090 1.131 1.091 1.100 1.025 1.061
2.5 1.105 1.159 1.105 1.114 1.015 1.070
2.0 1.128 1.161 1.128 1.118 0.991 1.058
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A close inspection of Table 8 wiil show that the corrected velocities
and the results estimated from Eq. (23) agree fairly well outside the
wake. When «/b is large, the difference between these two estimations
seems to increase. This means that Eq. (23) must be replaced by Eq.
(83) when the point of observation is in the downstream region. Still,
the difference is only a few percent. It should be understood that
the computations of velocity were very carefully performed. The
results shown in Table 8 are plotted in Fig. 20, and they are connected
with velocity-distribution curves. The same device of correction was
performed for wu/u, and the results are shown in Fig, 29, As the
magnitude v/u, was usually small, correction of the latter does not make
much difference.

The correction of the pressure distribution was performed at the
same time in the region outside and a short distance inside the wake
where the velocity correction was significant. The corrections of ve-
locity and pressure well ingide the wake, however, were quite different,
since the assumption of irrotational flow could no longer be made.
The Navier-Stokes equation in tensor notation is

Oy 4y P 1 BP 4 5 (B4 2 39)
ot 2%, o oy 8%y \ 3%, O,

Since the continuity relation gives su,/sx,=0, the second term on the
right-hand side of this equation becomes

Y

3 < BU; 4 By > —y OUs

2%, \ 3T, O B0,
Accordingly,
By g gy P 1 OP ) B (39)
ot A%y P ox; DL LI,

When the relations w,=U,+u;, and P=P+p are substituted, this equ-
ation becomes

2 (U U u) 2 Uy = — 2 2T, 2 (Ut
ot oxy; g 2%, A
(40)

U and P represent, of course, the mean velocity and the mean pie-
zometric pressure, respectively; « and p’ are the fluctuating components

of U and P, respectively. Since u;=0, aU,/sz,=0,. _?,7:‘/4 =0, and p'=0,

2,
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when a time average of Eq. (40) is considered, one obtains

LU%“‘ U'/C a[];—}—uk_a}L: _lwap + p— a;[]i._

at AT 2%, P ax; AT 13Tz

(41)

This iz the Reynolds equation. In the case of a two dimensional flow,
Eq. (41) leads to the following equations:

BU gy B gy AU gy B gy W 1 OP < “+_3_u>
ot X 3y o Y e ox ¢ (42)
BV gy B gy B gy B gy 01 AP u<i'"2+i?{>
ot ax 2y 2% Y P 3y ax® 3y

When the flow is steady, the terms su/at and sv/at vanish. As the
pressure distribution was measured along a vertical section in the
present experimental work, consideration of the second of HKqs. (42) is
sufficient. Since au//ax+av//ay=0,

; 7 72 7 7
w v 4 N __ 2 u/v/+av _v/au_v/av

2 3y  ow B o 2y
a4
— 2 u/v/+av
2% Y

Accordingly, the second of Kgs. (42) becomes

o 2 2 i
L AP B e, (a”n a”(,)u_a_lﬁ”_ (483)
© 3y oy Y 2% K- Ay ax

With 6 as the vertical distance from the tail plate to the border of
the wake where the maximum velocity appears, integration of Iq. (43)
across the wake from ¢ to § gives

D 2 D 9 . 3 : 2, 2 P
D= D g [ 2 (204 200 2 gy (4
P2 P2 I S ax® Y ax A

The symbols without suffix correspond to the values at an arbitrary
point ¥ in the wake, and the suffix 1 means the values at the border

of the wake y=5. The quantity v is practically zero. Differenti-
ation of KEq. (44) yields

AP +ody+ M = APP’+v1Av1
+J Av)+d L <a~A‘2’)_ aAv aAuv]d
2% oz
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Since

aldv) _ _ a(du) [w a(du)Tz a(du) 5 (duy)

3y ox AL 2w %

the foregoing equation becomes

ip +vdv-+ A;]Tl :Af_ + v]A]?h“D( a/-lu adul )
e P % 3r

3" 2 3 Al
Jrj Lu adv | Auai—uikdzj adu'v ]d'y
s BT i ax” T

When dynamical similarity is assumed, one has

K =1-K
du = K'u
M = 2K "
Ay, = Ky,
' = 2K W'
Accordingly, since f%l: —(uduy +v,4v,),
AP Kl 20— (-2
P \ \ox ax
- JOLZua—v— v AV 42 a“/”/.:\ dy!
" 3 o’ 8w J

When this equation is transformed into a dimensionless form,

JP = ~2K’[ﬁ+ + QZ+~1,3<%> ﬁii%l
Tre Lt ) TR
3 Z)_,>
U,

CREE

R R RIC
(44)

In this equation, B=bu,/v. This is the relation which gives the ma-
gnitude of the pressure correction in the wake, K being the correction
factor already shown in Fig. 34, As will be seen in Lq. (44), the most
important term to govern the magnitude of correction of the pressure
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is the relative velocity at the border of the wake, which is larger than
unity. Consequently, in order to evaluate Eq. (44) the terms which
are small compared to unity can be neglected. As the Reynolds number
ub/v was 5.52x 10* for the condition of the experiment (as may be seen
from the preceding plottings of the experimental results), the terms
which are divided by R are very small compared to ujju;. Fig. 3b is
shown for the computation of

[2rtday)
s ()
. b

Fig. 35
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In the vertical axis uav/ax indicates the value of (u/u,)a(v/uy)/3(x/b). The
border of the wake is shown for convenience of integration in Fig. 35.
The results of the correction of the pressure distribution with the
aid of Kq. (44) are all plotted in Fig. 21 as full lines. Evidently, the
magnitude of the correction increases with distance downstream, the
interference of the air-tunnel boundaries eventually becoming very

significant. '

3. Estimation of the Drag Coeflicient of the Test Plate.

The drag acting on the test plate can be obtained by the integra-
tion of the pressure distribution on the surface of the plate. The
results of the measurement of the pressure distribution and the cor-
rected results are plotted in Fig. 36. The pressure distribution on
the surface of the tail plate is also shown in this figure for reference.
On the other hand, one can also estimate the drag of the plate by con-
sidering the change in momentum flux between two vertical sections
located upstream and downstream from the plate.

a. Integration of the pressure distribution on the surfaces of
the test plate.
The integration of the pressure distribution on the surfaces of
the test plate shown in Fig. 36 gives

{ XT"Z’ d (%)J = 0.409
upstrean

— Py
o 2
and
0.5
A g <JL> = —0.281
1 9 b
5 lDuo downstream
s 2 :
Consequently, the drag coefficient for half width of the test plate is
DIA 409 +0.281 = 0.690 (45)
7:%3

in which D/A is the force per unit area exerted by the flow upon the
plate. The pressure on the downstream surface of the test plate was
measured at only one piezometer hole; however, as will be seen in
Fig. 21, the pressure distribution immediately behind the plate is
practically constant, and so the estimation of the force on the down-



266 Mikio ARIE
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stream surface of the test plate may be considered reasonable. In
the case of a flat plate without a tail plate, which was investigated
by Fage and Johansen [1].

r ]{)/A 7 = 0.75
L Pl
2 _jupstream
%&Aif — —1.38
—2-— Puﬁ vﬂo\vustre}lm

Compared with the results observed in the present study, it can be
said that the tail plate caused a slight increase in the force acting
on the upstream surface of the test plate and a rather remarkable
alleviation of the low pressure immediately behind the test plate. The
latter effect of a tail plate coincides with the results presented by
Hanin [8] for bluff bodies. ‘

b. Estimation of the drag on the test plate by the momentum

principle.

It was shown in Table 8 that the corrected velocity distribution
outside the wake coincided practically with the velocity distribution
around the imaginary Rankine oval which was used for the formation
of the test section profile. Sinece the validity of the Bernoulli equation
outside the wake had already been checked, it was considered reason-
able to exptrapolate the velocity and pressure distribution, in the region
where y/b was larger than 4.0, in accordance with the analytical values
for the flow around the imaginary Rankine oval.

A volume integration of the Reynolds equation obtained in Hgq.
(41) gives

P j U, da+ijk andaJr.oyu;‘ OUs (i — _jélidm-#jjf]z_ ds
ot %, ;. 2%, DX,

(46)

Generally, Green’s theorem states that

j 9G 4o j n,GdS

2T,

in which #n, are the direction cosines of a unit normal vector at sur-
face element dS and the positive direction of the normal is understood
to be outward from the surface; G is a function of z,y, and z. Ac-
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cordingly, Eq. (46) takes the form

Pj aU, dcu-l*Pj'l’L,lf U, dS+ Pj”au/c% dsS = — j’”ipds*kﬁjnk aU, ds
L,

at
(46Y
Since S(an/at)dazo for a steady flow, this equation becomes
p Xn,cU,cUidSJernkmdS — jn Pds+,,j‘nk oU, Las

This is the general equation of momentum for steady flow. When a
vertical section far upstream from the test plate is considered, n, =
(—1,0,0), and at the section right at the upstream of the test plate
n,=(1, 0,0). Consequently, when these two sections are considered for
the first step, one obtains

o

—pj uﬁderPY

10) o

Py, dy+ ,jj LLT RN

u;,pdyﬁf P.dy— j

v

P,dy— j

w{’\‘
FEI

(48)
in which the fact that the turbulence is practically zero is applied.
Herein P, is the pressure far upstream and P, and u,, are the pres
sure and horizontal component of velocity just upstream from the test
plate. In the same way, the application of Fq. (47) at a section just
downstream from the test plate and an arbitrary section behind the
plate gives

) o —

——Pj\buglowudy‘l_pj‘ uzdy+pj :[:L/—Zdy

5 0 0

k3
- J‘ ) (10\\udy + j
0

in. which Piywn 2nd Ugen are the terms for the section just downstream
from the test plate, and P and u are the terms for the arbitrary
section farther downstream. Since the sections just upstream and
downstream from the test plate are identical,

3

_Sib Pnpdy —_ prd()\\'lldy

2 ]

" g T ou
downdy— j‘ P dy j‘ uﬁ d + /jj ~,
0 ol

lQ‘Q‘
w0l

>0

uup dy P j llO\\ n dy

19] o
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If it is assumed that

b

D — Jlg Pup dy—‘ S\ Pdo\vndy

[

L% o

it will be seen that D is nothing but the force acting on the half of
the test plate per unit length. When Kqgs. (48) and (49) are added,
taking those relations into consideration, one obtains

L j (o —u")dy ’Fj (Po“P)dy~Pj ideJr/xj 2% dy = D

A dimensionless form of this equation is

0

Lo-ma() | Bta )

0 )

_ §mﬁd <U> + L (of (77’1:;) d <ﬂ> - __p_ (50)
ou;", b R:Oa<—?j—> Uu; ’

in which R=bu,/v.

In order to compute this equation, the section z/b=2.0 was selected
arbitrarily. The extrapolation of u and P—P, with the aid of the
potential flow around the imaginary Rankine oval, is shown in Fig. 32.
The integral of 4P/Pu;/2) in this figure must be multiplied by 1/2 before
substituting into Hgq. (50). On the other hand, there is no multiplying
factor for the integral of (1—*/u3). Consequently, the quatity dp must
decay more quickly than (1—’/4;). In order to take care of this fact,
dpfPui/2) was integrated from y/b=0 to y/b=230, and (1—uw’/u;) was
integrated from y/b=0 to y/b—50. These upper limits of integration
may be sufficient practically to replace the limit of infinity. It was
shown already that the term divided by R is very small. The results
of integration are hence as follows:

(=2 (3) =L 0o () = -

j‘:%%;ﬁ ¢ <%> = {;0%;—13 d (%) — 1522
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[aay)=[a(p) oo
Accordingly,

DA

~l—— ou;
2

= 2(1.522—1.147—0.027)= 0.696 ‘ (51)

It will be seen that the numerical values in Egs. (45) and (b1)
agree fairly well.

4. Momentum distribution and momentum balance.

The momentum equation has already been shown in the form of
Eq. (46 in the previous section. The physical meanings of the terms
in Eq. (46Y are self-evident from their forms:

—gt-jpuid?u‘ ; rate of local change of momentum in the region
one is concerned,

ankUkUidS ; rate of outflow of momentum on the surface of the
region considered,

jﬂnﬂ};@T;dS ; total Reynolds stresses on the surface of the region
considered, '

~jniPdS ; total pressure acting on the surface of the region
considered,

H jn, 2, cZS:,uJLUZ'dS ; total viscous shear stresses on the sur-
axk 21

face of the region of fluid considered.

Consequently, the meanings of the terms in the left-hand side of
Eq. (50) that was derived from Eq. (46Y can also be clarified as follows:

a

Kl_ Z) d(%) ; rate of outflow of momentum on the surface of

the region considered,

j%_ﬂ d <%> ; total pressure acting on the surface of the re-
Uy
gion considered,
—j"i d <%> ; total Reynolds stresses acting on the surface of
Up

the region considered,
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1 a(%) y ; total viscous shear stresses acting on the sur-
e o/ gl Y
R L<£> <b face of the region considered.
b

For the purposes of determining the drag acting on the plate and
of demonstrating the reasonability of the measurement performed in
the present study, the relation between the drag acting on the test
plate and the momentum change was explained in the preceding section.
Application of the same process for each section downstream from the
test plate as was done at the section of x/b=2 yields the distributions
of the significant terms in the momentum equation. The results of the
computations of these terms are shown in Fig. 88, and are algo tabulated
in Table 9 for the purpose of verifying once again that the estimation
of the drag acting on the test plate was reasonably performed.

Fig. 38
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Ag will be seen in Fig. 38, the most important terms in the
momentum equation are the total pressure acting on the surface of
the region considered and the rate of outflow of momentum from the
gsurface of the certain volume of the moving fluid. The former increases
rapidly at the section where the test plate is located and increases
gradually to the maximum value of about 1.7 at around 2/6—=4.0. Then
it begins to decrease to the value of the drag of the plate, that is
0.69, at the section far downstream from the plate. It will also be
gseen that the distance of x/6=8.0, which means 16 times the height
of the plate on a half plane is still insufficient for the estimation of
the drag by the measurements of only the pressure and velocity even
for the simple form of the testing body. The latter traces almost
the same tendency with the former, and its value continues to be
positive quite far away from the body, since the effect of the wake
does not decay very easily. The significance of the contribution of
the total Reynolds stresses for the accuracy of a few per cent in
estimating the drag acting on the test plate, which increases with
distance from the body at least to the section of x/6=8.0, is also clarified
in Fig. 88. Since the decay of the once generated turbulence is very
slow, it can be concluded that it is recommendable to perform the
measurement of « for the estimation of the drag of a body in addition
to the measurements of the velocity and pressure distributions even
if a considerably long distance from the body is taken for the measure-
ments. This object can be easily attained with the hot-wire technique
already described above. It can also be said that the measurement
of the drag of a body that accompanies the measurement of # can
be done with a comparatively short test section of the tunnel without
any danger.

As was already explained before, the order of the viscous shear,
that is the order of 107% is much smaller than the other terms, and
80 the values at the each section are not presented in Table 9. The
mean value of the drag which was obtained with the data available

at each section is shown at the end of Table 9. The value of ~—/=

0.698 agrees fairly well with the direct estimation of the drag by the
integration of the pressure, that was explained in the previous section,
with only the difference of a residual value. As will be seen in the
column of the drag, several repetitions of measurement must be re-
commended at the same section or at different sections for the purpose
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of measuring the drag of a body, in order to eiiminate the unavoidable
experimental errors.

TaBrLE O
wlb 10 | 20 | 30 | 40 | 50 | 60 | 7o | 80
. 9 \ !
S(l—%g)d(%) ~0.049 | 1147 | —1.255 —1301 —1.147 |—0.855  —0.495 | —0.101
0
|
— |
S( E’;f’)d(;f) 1296 | 1522 | 1.665 | 1691 | 1569 | 1267 0889 | 0.524
0 !
u? Y : ;
(Y 0016 | 0027 | 0045 0047 | 0060 | 0.054| 0052 | 0.064
0 |
|
DA
- 0.662 | 0696 | 0.730 0686 | 0704| 0716| 0684 | 0712
407/40,/2 ‘
DIA 5590
Mean of oz~ 8 = 0.698

One can easily obtain the diagram of the momentum balance of
the mean flow in x-direction, which is shown in Fig. 39, with the results
shown in Table 9. The subtraction of M, and the addition of M, to
the term of the total pressure acting on the surface of the region of
the moving fluid give the drag M, acting on the test plate. The fact
that the points of M, were obtained on a horizontal line means that
the measurements in this study had been properly performed and that

the momentum at each section is balanced. The curves of j;’p‘z d <%>

U
and j%d(%)—]l/_fj must be asymptotic to the straight line of M, as
)

z/b becomes large. The distribution of shear force which was omitted
in Table 9 is shown in Fig. 40. The order of the shear force was 10-°
according to the results of the present experimental data, as has already
been stated above. The scattering of the points indicates the difficulty
of the estimation. An evident fact one can see in this figure is that
the sign of the shear force, or the direction of the shear force, changes
somewhere around x/6=5-2. It may be said that a kind of confusion
of shear force must be expected around this point. Consequently,
smoke pictures across a flat plate that are available in literatures
reveal the disappearance of the stream line that passes the edge of
the flat plate.
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5. Energy distribution and the energy balance of the mean fllow behind
the test plate.
The kinetic energy of a certain volume of a moving fluid can be
expressed by

p
L=\ uu,ds
j2uzu,d
::%jwﬁmmm+wma (52)

Consequently, the mean value of the kinetic energy over a certain
period of time is

B = Si PUU, da + j—‘o_ wu, da
2 2

=T+

in which

T = J% U,U,dz ; kinetic energy due to the mean veloeity,
T’:jm;w upt,d@ ; kinetic energy due to the fluctuating velocity.

On the other hand, the rate of the external work done by the external
forces acting on the moving fluid must be the sum of the change of
the kinetic energy with resqect to time and the internal work done
by the internal forces. Consequently,

" adr
7 (53)
W, and W, in this equation mean the rate of the external work done
and the rate of the internal work done, respectively. The external
forces acting on the surface of the certain volume of the fluid are

pressure and shear forces, and they can be expressed with
Oo = — D0+ Tan (64)
in which
Tar = "@Zﬁ%) ; shear forces acting on the surface, (5b)

_ {0, when ¢=ck

1, when 1=k ; Kronecker delta.

s
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Accordingly, the rate of the work done by the external forces can be
obtained as follows:

W, = [aimkuidS

= j(—pﬁm + r4r) N U, AS

= (~pniuzdS+ y/x <—%~+ au")%,iu%-dS
. 3, e,
The relation §,m,=n, is taken into consideration in the above process.
Dividing the terms wu,, u, and p in this relation into their average
values and fluctuating values, one obtains the following equation when
their average over a certain period of time is taken:

W,— —§<P+ﬁ><m+ﬁz>md8

+ )r/f [—a (Ut u)+ -2 (U, +a;>] (U, +u;)dS
_ O%; 2%,
EU%' 4+ LU/»

= —jPUi’nidS +;lj< o o *)nﬁUzdS

—jﬁ nydS + 2 j <39";- + ai"i) w, 1, dS (56)
2,  aw,

In other words, the external work done can be understood to be sup-
plied from two parts of motion. Namely,

~SPUmZ.dS+ #Kj @:+1U@> nUdS = W (57)
is the rate of work done due to the mean forces, and
—-j'mnz.dm p [(ﬂ, N 1&) w, mydS — W (58)
JNax,

is the rate of work done due to the f{iluctuating forces acting on the
surface of the volume of the fluid in which one is interested.
Consequently,

We=W+W (59)

On the other hand, the rate of the change of the kinetic energy with
respect to time is
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dE 3K 1)
= + u/c I
dt ot 2Ty
= ijﬁfu A -+ ji U (o) dez
at 2 2 axk.

Introducing the relations wu,— U, +u; and u,—U,+u; in the above equa-
tion, and taking the average over a certain period of time again, one
obtains

a8 (0 y s +j-»~(U,c P U+ U2 ) d
dt at 2 X %,

a (e i, , , 2 .
+ j*uiuidw + j i <uk ——Ua; + 1y o uiUi + u, e uiui) da@
atJ 2 2 22, B, ATz

=2t [ U Uiy dS
b= o
L AT

~ r—«+5—'-nk(Uu4u + Ugiyu; +ug;) dS
it 2

a1 Y - 7 —
EY
ot

+ jp W, UmnadS + j% 1, dS (60)

Since E=T+17' as was shown in Hq. (b2),
af __ dT' | dr’

61
dt Tt dt (61)
The combination of Fgs. (60) and (61) gives
mf+ww:v— —— FUmdS + \— U n,dS
at tar T e i U g T
+ AT qu U, dS + 5'2* T, 1, dS (62)

The Navier-Stokes equation is

clu ; a1,
_ P, U
dt o, 20,8%,

Multiplication of u, to both sides of this equation gives

L M _ — @ (puq)-{—;ﬂ% ahuﬁ.,n_
2 dt %, XLy
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Introducing the relations u,=U,+u; and p=P+p into this equation,
and taking the average over a certain period of time, and operating
by a volume integration, one obtains

d j d jto T 7
UUNd& + —— uu,) di
g ) g7 Udmd g |y () as
_dr ,ar
At dt
- _jﬁ,(PUd)da—j‘ (pu)du—F/lj ”L“j T g
AT, a2, R ax& BX,2T;,
Consequently,
a1’ : ——
ar . ar _ PUAS—\n. v/
dt 7 jnzP aS jnzp u,dS
+/1JU d@ +/1J U 63)
Bxkaxk ”"xkaxk

On the other hand, Eq. (56) gives

o

Substituting the above relation into Eq. (63), one obtains

ar | dl" _ g 2U, | aU, : o AN
— =W,— j iy PN U, dS — j E
dt - di g <9xk Pm) o < s, | ams > S

+/1jU,Z U, da 4+ p (ub
8L, .

ds (64)

X LATy,

When the relations already obtained in Eqgs. (53) and (56) are taken into
consideration, the average value of the internal work done W, due
to the internal forces can be obtained from Kgq. (64).

Namely,
W.=p ((—ZU—%# aU’“) UmndS ‘F/lj(a—u;;‘l” °u75> u NS
JNox, ax, L, 8w,
U,
"" U 3 d - E du
#f 3,5, e U S ams ax,pxk ‘

The combination of the second and the fourth terms in the right-hand
side of Fq. (64) can be computed as follows:
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_#Kfz@. G fc)Un,dSﬂljU Ui gz

3%, 2x, 0%y
=42 (u. oUs 1 1, aU’“>d +u U, FUe gz
s, oLy, ox; 3T ;%7
- M/IKEU.@?EMFUZ. #Us 4 3U: 38U g7, U Y + ¢ 0.2V 4z
2%, 2%, OLBX, BT, BT, AT,BT, E
=y [(ﬁ “U/c> s dz (65)
Noax, 2z,/ 2z,

In the same way, the combination of the third and the fifth telms in
the right-hand side of Eq. (64) gives

_—7, .—-,—T’ ,; 7 P 3 /
(2 Y 1Sk e [y T = g (S 2 ) P g

aa/;c Ie] 037, o axﬁxk axk ax‘,; 6".’17;(

(66)

and as was already shown in Eq. (59), the external work done was
divided into two parts for the convenience of consideration. Sub-
stituting Fags. (65), (66), and (59) into Eq. (64), one obtains

9T AT R-ag%a—mf—(]idm—/xj'( L au;> s g
dt  dt ax, 2w,/ o 8%,  em,/ o,

(67)

Thig is the energy equation including the mean motion and the turbu-
lence. In order to obtain this result, %, which is the combined velocity
of the mean velocity and the turbulent velocity, was multiplied to
both sides of the Navier-Stokes equation. When U, is multiplied to
the same equation, the energy equation of the mean flow can be ob-
tained easily. Now, multiplying U, to both sides of Eq. (39), and taking
the average over a certain period of time, one obtains

b a2 U2  pyu, B — 2 (Ut U, 2 Us

2 A% 5% 20, BT,
Accordingly,

P2 wuy+ L 2 ouuyeUu P = -2

The volume integration of this equation with respect to the volume
of the fluid with which one is concerned gives
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J(*(UU)d +jp AUUY) g +ij w, Y e
at 2 2T, Xy,
~ j (PU)du+,,jU Ui gz (68)
(‘x kaaxk

The third term in the left-hand side of this equation can be rewritten
as follows:

jPUi ul S g Sp O (U u)yda— jpu;u;. Us 4z
3%, %, Lx
Uz d,.

3%,

= jPUm,CMdS fPu Uy

Therefore, Kq. (68) results in the following form when the relation
given in Hq. (57) is taken into consideration:

ol | j‘_p_ Qn, U dS + JPUM;C Wi, dS— J'D L U, 4
at 2 20
afék 3%, Py

The combination of the second and the third terms in the right-hand
gide of Eq. (69) can be computed as follows:

o j <£+ 3Uk> UpndS + p fUi Ui gz
3%, B, 2% ,3%;,

=2 [U(E’U aU\}a ape U 2V d
3%, 3, ax) 30,50,

| 202t 20 g —p[U BV 2T Va4 (U, 2V o

2.\ 8%, A, BXT;  BwHPT 9%, 8%,
= g [ 202Uy 20 g (70)

Substitution of Kq. (70) into Eq. (69) gives

£+ inlnkdeS—}— j‘pUk%LMdS_ j‘o u;uk 0U¢ d%
at 2 o
U, aU, , aU,
"o, <axk 81, > (71)

This is the energy equation of the mean flow of a certain volume of
the moving fluid. Since the expressions of aT/at and W are already
obtained, elimination of these terms in the above equation gives the
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general form of the energy equation of the mean flow. Namely,

SPUn dS+4Un</U 2U) gg— ijin,ca.’;&;ds

2%, Xy /

j‘ Qdwm +“ QQ’}’LkdeS—jpm/c axbd +:"j‘OU<an+i@£>da

89X, \ 8%, A,
(72)
One can also derive the energy equation of turbulence by subtraction

of Eq. (72) from Kq. (67), or by multiplying wu; to the Navier-Stokes
equation,
The physical meanings of each term in Eq. (72) are :

2t

r

—JPUmidS ; rate of work done by mean pressure acting
on the surface of the volume of the fluid
one is concerned,

/lijk<LUi+a—U’c>dS; rate of work done by mean viscous shear
BT, 2%,

stresses on the surface of the volume of the

fluid,

ijUmkMdS ; rate of work done due to Reynolds stresses
~ on the surface of the volume of the flnid,
o j—— dz ; rate of local change of mean energy in the
volume of fluid, and this term must be zero
when the flow is understood to be steady,
{% On, U, dS ; rate of convection of mean energy on the

. surface of the volume of fluid,
SPu u’”%% da : rate of work done due to Reynolds stresses

%

in the volume of fluid, or production of the
turbulent energy,

7al,  ; .
#5& <£¢+LU’”> da ; rate of work done by mean viscous stresses
ax,\ax, B

in the volume of fluid, or dissipation of
energy due to mean motion.

One must note that a two-dimensional flow is under consideration
in the present study, and as a result, the surface integration in Eq.



282 Mikio ARIE

(72) becomes a single integration and the volume integration means a
double integration. When the certain volume of the moving fluid,
that was considered in the present discussion, is taken as the region
between two vertical sections at x/b=-—co and z/b=% which extends
from the boundary of the half plane to y/b=oco, Kq. (72) becomes as
follows: (U is replaced by u hereafter for simplicity)
riz’wug(_l)u.,dw r% @ (+ 1)udy+rp[u(+ 1w +o (4 1ywe’ | dy

: v Tes U BU 7 AU s BV
~j j P[u"ﬂJru’v’iJru’v”—ﬂLv’“i} dy dx
e 2y e oY

N

- —XmP(,un(— D)y + j'ipu( +1)dy+ ,jj‘”[u@ﬂ +2)(+1)
0 20

0 0 3T

+v<,—afi +2Y >(+1)]dz/—/x§“ j[“ <9~7’i+37>+ oV (a” + 8’“)
20 Y o |20 \ 23X 2% 20 \ 2% 2Y

+9l<3_“ +_a_?i> Lo <ﬂ+i”>J dyda (73)
sy \ay ax/ sy \ay oy

The equation of continuity in two-dimensional case is

U, o _
s Ay
and so,
2yt
3y %
Consequently,
WPy Py 2V P B (2 .9%2+W(ﬂ+_a”>
o 2y 2y Y 20 3x oYy

At the same time, the application of the equation of continuity gives

(P PYL B (N DY DU 30y (50 )

2 \ox  ax ar \ax 3y sy \sy sx/ 2y \ay oy
=2 <37“>‘+2< oY >“+z v 9_“+<ﬂ>“+<i%>‘
3w 8y 3x Ay Ao Y

=g (Y (20 By
ar 3 8y

Accordingly, KEq. (73) results
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r% Wy + j'wpouf, dy = rPudy + S‘”_; Qudy + rp (™ + o) dy
0 0 4] 0 0
B jw. jw‘o [(wa_v/“) U +u wv /( v +°7'H1>:I dydq;_aﬁjm[z'u?y’ + v(@—}—a_u):!dy
o 0 3% ox 2Y 0 cx oL Y
wuf [Ta(22y+(2 9’“” dydh 74
f) )4 C) (G gy | duas (T4)

In order to change this equation into a dimensionless form, one has to

divide both sides of this equation by %Puib:
a5 refaga(y)
=2 o)+ ()~ [ (S
d
+

a

ST GO S

- ST ) ()
L[ ey (e ey

Dividing the terms in this equation into two parts upstream and down-
stream of the test plate, one obtains the folowing relation:

[aly ool ma el [0 20 (Gl v (ot 2y e
L G G ) 1%

2 (4 )+ [N 2 (e o ()

J wP—v” aufu, 4_2777 (B, eufuy\| dyde

[ U ax/b U ( ax/b 2y/b >] b

[T 2 (e ey o)

) Lél ( ;b;//%g) +< a?a)://z " :y% ) ] = (76)
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The physical meanings of the terms in this equation can be under-
stood by reference to the meanings of the terms in Eq. (72). The left-
hand side of Eq. (76) represents the terms which appear in the region
upstream and the right-hand side represents those which appear in
the region downstream from the normal plate in contact with the
boundary. When the terms in this equation are computed with the
data obtained in the experiment, the distribution of the significant
terms that appear in the energy equation of the mean flow across the
plate can be obtained. Looking at the integration in the vertical
gsection, one may see that the upper limit of the integration extends
to an infinity, and that the performance of the computation is meaning-
less, since the energy integration up to y=infinity becomes infinity.
Consequently, the terms were integrated to the upper limit of y/b=50
which was already employed for the computation of the drag acting
on the plate and that was found to be large enough to avoid the in-
fluence of the existence of the test plate. When the pressure is
measured with reference to the pressure at a point far upstream
from the plate in the manner employed in the present experiment,
the term of pressure in the left-hand side of Eq. (76) vanishes and the
pressure in the right-hand side becomes the pressure difference be-
tween the pressure at the point interested in and that of the point
far upstream. Since the flow was uniform in z-direction and there
was no turbulence at the point far upstream, the only term that

0
remains at that point is S‘ dy, and the integration of this term must
0

be 50. Consequently, the result of integration of the right-hand side
must also be 50 so far as the measurements are reasonably performed.
In other words, this is a good point at which one can check the accuracy
of measurements as a whole as well as the comparison between the
two ways of estimating the drag already described above. It may
be worth-while to note here that all the measurements were carried
out up to y/b—4.0 because of the dimension of the wind tunnel, and
that the terms of pressure and velocity were extrapolated in an
analytical way that was already employed in the section on estimation
of the drag. Still, as will be seen in PFigs. 22, 23, 24, and 25, it can
be judged that the measurement of turbulence and the estimations
of the velocity gradients were obtained to the extent of sufficient
vertical distance, since the value of turbulence is sufficiently small
when y/b>4.0 and since the reasonability of extrapolating the velocity
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by the aid of the flow around the imaginary Rankine oval and the
imaginary potential flow caused by the distribution of doublets were
already established by the validity of Bernoulli equation in the region
where y/b>4.0. The results of computation of each term in Eq. (76)
are plotted in Fig. 41 to show their distributions behind the test plate
to the distance z/b=8 where the standing eddy almost ends. Fig.
41(B) shows the distribution of the rate of convection of mean energy
that is the most important term in the energy equation. Since the
flow is accelerated at first behind the plate, this term increases rather
rapidly and it reaches the maximum value of about 52.85 somewhere
at around x/6=8. After that the flow is decelerated and this term
begins to decrease to the value of the general flow. The rate of work
done due to the mean pressure is shown in Fig., 41(A). Since the
existence of a plate causes pressure drop in the region behind the
plate, the value of this term is always negative. This term reaches
the minimum value of —3 at around z/b—38 again, since the flow is
accelerated at first. This term must be always negative even at the
point sufficiently far downstream from the plate, since the drag acting
on the plate causes a pressure drop. The rate of work done by
Reynolds stresses, that is shown in Fig. 41(C), reaches to about —0.10
and it must be destined to decrease with the distance from the plate.
Fig. 41 (D) shows the work done by the Reynolds stresses in the volume
of the moving fluid which means the production of the turbulent energy.
It can be seen that the maximum production of the turbulent energy
occurs at around z/b=>5. Since the decay of the once generated turbu-
lence is slow, the production of this energy continues at a considerable
distance. Fig. 41(E) shows the distribution of the rate of work done
by mean viscous stresses in the volume of the moving fluid, that is
the dissipation of energy. Its value is maximum at the section where
the test plate is located. Still, its order iz 10™% This term has the
tendency to increase further with the distance from the plate. The
rate of work done due to the mean viscous stresses on the surface of
the fluid volume ig shown in Fig. 41(F). The sign of this term changes
because the direction of acceleration changes. The order of this term
was 107°,

All the terms computed in the energy equation are tabulated in
Table 10 to explain the results shown in Fig. 41 and to show the
energy balance that is shown in Fig. 42. The most important terms
are indicated in Fig. 42, and the energy balance among them is shown
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TaprE 10 Results of the Energy Balance of the Mean Flow
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in the manner already explained. The value of E, must be equal to
"FE which is fifty in this case. As will be seen in Table 10, their values
for several vertical sections agree with only a slight difference which
can be excused as the experimental errors.

Conclusions

The foregoing experimental study of flow past a normal plate in
contact with a boundary, which was realized in an air tunnel by placing
a tail plate at the midsection of the test plate on the downstream
side, permits the following conclusions to be drawn:

1. The stable eddy behind a plate in contact with a boundary is
some 3.6 times as long as the mean eddy pattern in the pendulating
wake behind a plate that is far from a boundary. Elimination of the
pendulation also results in a considerable decrease of the maximum
velocity in the wake, with a corresponding alleviation of the pronounced
pressure drop that otherwise occurs. As a result, the drag coefficient
is reduced from 0.9 to 0.7 with respect to the half width of the plate.

2. Although the drag of a body is usually calculated from measure-
ments of the momentum change between sections of uniform flow far
upstream and far downstream from the body, measurements of ve-
locity, pressure, and turbulence properly performed at sections of non-
uniform flow near the body can also be used satisfactorily for this
purpose.

3. The Pitot cylinder should not be used without correction in
regions of pronounced velocity gradient, since its indications of both
the direction and the magnitude of the velocity will then not be
reliable. .

4, In making air-tunnel studies of this sort, constriction effects
should not be overlooked, especially in the region downstream from
the body. It appears that a distribution of doublets along the tunnel
permits a fairly good estimate to be made of the shape of tunnel
boundaries that will simulate the conditions of unconfined flow.

5. Distributions of momentum and energies of the mean flow
behind a normal slate in contact with a boundary on half plane, that
cause the main difference from the flow over a plate far away from
boundary, were shown in detail.
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APPENDIX

Pressure Distribution around a Cylinder in

Parallel Shear Flow

‘ The measurement of velocity in the present experimental study
was performed with Pitot cylinders. As stated before, a certain dis-
crepancy was noticed, in the estimation of the direction of flow, between
the results obtained with the 30.6° cylinder and those with the 180°
eylinder. It is hence worth-while to clarify the characteristics of flow
around a cylinder in the region of a steep velocity gradient.

This kind of study was first done by v. Sanden [10], and recently
Tsien [11] has reported on a theoretical analysis of the same kind of
problem. They attempted to investigate the performance of bodies
near the surface of the ground. Sanden’s study handled a numerical
calculation for a wedge-shaped body, and Tsien was primarily interested
in finding the aerodynamic forces in a shear flow, for which exact
expressions for the pressure distribution in the neighborhood of the
body were not required and hence were not given. If one attempts,
however, to find the pressure on the surface of a cylinder or in the
vieinity of a cylinder, he can not neglect any term in the solution.
When a two-dimensional parallel shear flow is assumed, the exact
solution of this problem is not difficult to obtain.

The velocity is assumed to have a constant gradient, as shown in
Tig. 43. Then the velocity of the undisturbed flow at y may be ex-
pressed as

Fig. 43
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U= u, <1+K-%> (77)

The stream function of this undisturbed flow is
o = \Ud!/
= U <y+ ~I~{;\1L> +constant
2¢

If it is understood that ¢,=0 at y=0, the constant in this equation
must be zero. Therefore,

o =y [y + K- 78
Po = U (y 20> (78)
If ¢, expresses the stream function of the disturbed flow due to the
existence of a cylinder in the field, the total stream function is
&= oty (79)

If a non-viscous fluid is assumed, the vorticity is constant everywhere
in the field. Accordingly,

v constant

3 Y

Using the boundary conditions far away from the ceylinder, one obtains

w aw . K
La— =y,
2% 2y c
Consequently,
L uoﬁ (80)
2r 3y ¢

Velocity components at any point in the field are

w=2% = _32 (81)
8y %
Substitution of Kq. (81) into Eq. (80) gives

2 2 K
2 (ot dn) -2 (ot i) = Uy
ax’ 3y’ ¢

or

TR T (82)
2% 3Y
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This equation must be solved to find the stream function of the dis-
turbed flow. In cylindrical coordinates, the equation becomes

XTI ST I ST (83)

art o ar r? o

If R(r) and @ (0) are the functions of only #.and 0, respectively, and
if it is assumed for the solution of Eq. (83) that ¢, = R(r)&(f), then

3 __gdl Y _ IR

’

ar dr ar’ dr® (84)
o pd P pdE
Y ag ' o dg*

Substituting Eq. (84) into KEq. (83), one obtoins
[ 1 < +i dR>1 1 a9
IR r odr /S © d6°

Since R and # are functions of r and 6, respectively, each of the two
terms in this equation must be a constant and their sum must be zero.
Consequently, if m is an arbitrary constant, then

1 #e_ .
o ar (85)

and

(L (s L any

The general solution of Hq. (85) is

= m? (86)

o

® = A cos mf+ B sin ml (87)
Upon rewriting, KEq. (86) becomes
¢R 1 dR_R

) = 0 28
dr® r dr e " (88)

If R=r* is assumed, then —ddﬁ irt=* and %— —R(/l Dr*2  And so,
r
Eq. (88) gives
AQ—=D)rt =24t 2Pyt 2 = ()

or
= +m

Accordingly, the general solution of Kq. (88) is
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R = Crm+ Dy~ (89)
Using Egs. (87) and (89), one can obtain the general solution of the
Laplace equation given by Eq. (82)-—namely :

Py = 20":‘, (Cor™ +D,r™(A,, cos mb+B,, sin mb) (90)

The coefficients in this equation must still be determined. On the
surface of the cylinder, it is necessary that the radial component of
the undisturbed velocity which can be introduced by ¢, and the radial
velocity which comes from ¢, be equal in magnitude and opposite in
direction, so that the radial velocity on the surface of the cylinder is
zero, The horizontal component of the undisturbed flow on the surface
of the cylinder can be obtained by substituting y=(c/2)sind nto Eq.
(7). That is

U = U, <1 +£sin 0>
2
Hence the radial component is
U, = u0<1+ % sin 6‘) cos 8

On the other hand, the radial component which comes from ¢, is

Consequently,
<% ‘38_5‘/;‘>=L = —y (eos 0+ %f—sin 20) (91)

From Kq. (90),

1 sy Y (Cor™ '+ D, — A, sinm0 + B,, cos m0)
r ad ,

‘Whence

(22 =yl (s) )™

x §—A,, sin mf+ B,, cos m@} m

—~ N

Accordingly,
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— Uy (cos 0+ % sin 20)

- ; { ~AnCn <N%> m—ISin mi— A, D, (‘é‘) i sinmd

+8B,C, <§>m_lcos ml+ B,D,, < _ZQ >

~m—-1 1
cosmll m

J

When m=1, comparing the coefficients of cosf and sinf, one obtains

gy = B,CI+BIDI<K%)“, AC,—A,D, %}: 0
For m=2, comparing the coeflficients of sin 20 and cos 26, one obtains

K ¢ c\? ¢ ¢\
ol an{g)-an(g)"}. meg) e (g o
The other terms for m=0,3,4,5, .-, are all zero. At a point far away
from the eylinder, there is no disturbance from the cylinder. This
means that when r=co and 6=n, a¢,/rad is zero. For m=1, one obtains
B,C,=0 in this case. In the same way, when r=co and 0=nr/4, ap,/rad
must be zero again; and for m=2, one obtains A4.,C.=0. Now, six
relations were obtained for the determination of the coefficients. Using
these relations, one can find C,=0, 4,=0, C;=0, B:=0, B,D,;= —u,(c/2),
and A.D,=Ku,(c/2Y/8. The substitutions of these values of the coeffici-
ents into Eq. (90) gives

dr = —Uy (é) Si;‘ 0 + %f <%>3cos 20 (92)

Accordingly, the stream funection for the total flow is

)sino +£<£sin%9 +—2 cos 2@)] 98)
2 \e¢ 32r*

2

c

This result is identical with the equation given by Tsien. Kuler’s
equations of motion are

H_}_%:uﬂ_‘_vﬂ’ _i

P ax 2% Yy P

P, L,

Yy ax 3y

QD

Q2

Substitution into these equations of the expressions for velocity given
in Eq. (81) yields

1o __ ¢ & _%1< A >+ﬂﬁ+ézi<9iﬁ>

e ax® BxaYy ox a3y BY ax \3xay/ ax’ 3y sLx 8x \3Y
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and

9

_L§P:§E@@+2ﬂjL@W>“%D§¢_j£j%?”>
P 8y ay® 2% 2y oy \2x'/ 3T3Ysrsy or Y \Ardy

The sum of these two equations gives

%J%zzﬁyéﬂ_Cfﬂﬁ

| ax® ay?

23y / |
in which
3 v
- +dy, - =0, 0 = U + K2,

= St ax3y 4 )<y 2e )

_a‘/_,}i:uo<1+_lg.y> , 8_(],/}(,:0’ Ej.;(pq":(], a}/_i:uo:K

29y ¢ 2 20’ 2y ¢
Accordingly,

Lpp =[P 0 (), Ku, 541 (94)

p |22 a9 373y e ax’

This is the Laplace equation for the pressure, which must be solved
to obtain the pressure distribution in the field. Tsien’s paper gives
a solution, but it is not clearly applicable to the determination of the
pressure in the vicinity of the cylinder.

Upon rewriting KEq. (90), one obtaing

= 2 {AmDm (z* +y’3)_%b’cos (m tan"%)

2

+ B,,D,, (2" + yz)—%sill <m tan™" ﬁ)}
T

in which the relations A4,C,—0 and B,C,=0 are employed. It may
seem awkward that the general expressions of coefficients are used in
this equation, but these expressions are convenient for further com-
putation. Since

o <‘tan“ i) —
ax x x2+y‘2
then
_m2
(AmDm { —ma@*+y) 2 cos <m tan™* l) 1
x
! et . ’
L‘Ib‘ = Z{ +m(x‘3 +’LJ2) 2 ysm(mtan” _?{) ]
ax £23 i T
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f A fone1 Y
+BmD7,Ll—mx(rc’+y‘) 2 gin <m tan —)

mA2

—m(e*+y?)" ycos(m tan™! />} J
/-

=)

m

{A,,LDW —my T D cog f cos ml +r " Pmr sin f sin mﬁ} }

+ BmD,,L{ mr Py cos 6 sin ml — Py sin 6 cos mo }

-

o { A,.D,,(cosb cosmf— sin 0 sin mb)
kg2

+B,.D,.(cosd sinmf+sinf cos mr‘?)}

=2 " {A,D,, cos (mf+0)+ B,,D,, sin (mf + 0)} (95)

In the same way, one can obtain

a _

{ A,.D, sin(ml+0)—B,D, cos(mb+ ﬁ)} (96)
ay - ,',.m+l

Of _ yymmtL) ¢4 D, sin(md +20)—B,D, cos(m+20)}  (97)
313Y s ‘

7 VML) (4D, cos(mb+20)+ B,D,sin(mi+20)}  (98)
axd - TWLT_

PP YD) (4D, cos(mf+20)— B,D, sin (mf+-20)} (99)

ayz —~ 7,.m+2
Accordingly,
P o [ AD.cosss+ 2 5D, singd| (100)
o 8y Ka 7’
and
( 3‘9/114)2 - [ﬁ A,D,sin46— 2 B,D, cos 30] (101)
axsy 7t 7’

Substitution of Egs. (100), (101), and (98) into Eq. (94) gives, after multi-
plication by 7,

L(Ta FD |y 2P 4 BD >
e ar® ar o

:[36

+u(,K Z@n +1)
c - ,),'7714

—(BlDl) + A D, B,Dsing

{A4,,D,,c08(m0 +20)+ B,,D.,sin(md + 20)}] (102)
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This equation is non-homogeneous, and for such equations it is usually
difficult to obtain the general solution. Nevertheless, the general
solution of this equatior% is the sum of two special solutions, one of
which can be obtained by equating the right-hand side to be zero,
and the other of which must be obtained without equating the right-
hand side to zero. The first special solution is easily obtainable in
the manner already employed to find Eq. (90). An inspection of Eq.
(102), for assuming a proper form of the second special solution, will
give the following clues:

1. when the special solution is assumed properly, as will be seen
in the left-hand side of FKq. (102), even if the terms are operated by
&far® and afer, r* and r are multiplied, respectively, after operation.
The operation of 5%/a0* does not change the powers of r. Consequently,
the form of the special solution must have the same powers of r as
the right-hand side of Kq. (102).

2. The operation of 2*/26* does mnot change the forms inside the
sine and cosine, but the coefficients in front of the sine and cosine
change. Therefore, it is reasonable to assume the following form as
the special solution of Kq. (102), when the right-hand side remains:

b — [—{g}_—-}— @y _ aj"i.sin ﬁ]
e TR o J

1 W SV 00 { 4D, cos (q0+20)+ B,D, sin (g0 +26)} + constant
c T rtt .

(103)
If it is understood that the reference pressure is the pressure at a point
far away from -the cylinder, the constant which avppears at the last
of this equation is zero. From Eq. (103), one obtains

” Fp 2[_ { 42izz+ 204%_ 305“45111 0}
" r r

e art

4 %K yalg +q1>b[, {A,D, cos(qo+20)+ B,D, sin (g6 + 2@)}}
¢ = 7

r ep :2[—["6a1+“4af—ﬁ5a’*sinﬁl
e ar | ot 7 d f

— KN = 4,0, cos (g0 +29)+ B,D, sin (g6 +20)] |
e T . - 5]
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1 3273 = 2[— ff“i;sinf)1
YA {7 J
UK 1 —(g+27 . ;
+ Lot W20 4,1, cos (¢ +20)+ B, D, sin (a0 + 2@)”

c 77

The sum of these three equations gives

fi&+,ﬁal+_l_ G 2[~ f36“1+@~24aﬂsjnﬁl
P oart P ar P Lot J
8BS b (44 14)( 4,D, cos(q0 +20)+ B,D, sin (g + 20)}]
c = or
(104)
By comparing Kgs. (102) and (104), one can obtain
4 = (ADY, = %(BIDIY, a, = A,D, B,D,
m=q, b, = —_%
Accordingly, one special solution of Hq. (102) is
2 —of (L pyr+ L BDYy—- Y 4D, BD)
P l: lr”(““) 47‘4<11) e T
~ Kuyyn 2 { 4D, cos {0+ 20) + B,D,.sin (m0 + 20)}} (105)
¢ m 4r™

The other special solution, v-hich can be obtained by equating the
right-hand side of Rq. (102) to zero, is at once

% = D& +8,r " a, cosml + B, sinmb) (106)
Consequently, the general solution of Eq. (102) is the sum of Eq. (105)
and (106): :

1

1 .
L = 2[‘" {-TT(A-:DJ‘}‘ZTT

0 (-B1D1)2_~ ﬂﬁ‘q A'ZDz : BlDll'

f

_ Ku, Y {An D 08 (14 20) + B, D, sin (1 + ze)}]
C pooy T7ﬂo

+ 2"+ 3,77 ™) (1, cos mf + 5, sin mb) (107)

m

Next, ¢, %., a, and §3,, must be evaluated. Euler’s equation of motion
for steady flow is
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N S o 4, B (108)
P &x ex oY

As 2z is a function of 7 and 6,

1op _ 1 apoar, 1 apald (109)
o ox P ar sx g 38 sz

and

N cosh, a0 _ _ sind

3r ax 7

(110)
Performing the operationg a/sr and a/a¢ upon Eq. (107), one obtains:

=z~ {%?(Azpw A B0y~ =250 4.p, B

P ar J
+ K {A,,LDm cos (mb +26)+ B,,D,, sin(mf +26)
¢ ~ 4,',m +1
+ 2 m(e T =8, ) (@, cosmlb + 3, sin mb) (111)

e

1 ai_z"COSHAD B.D,
o a6 o

+2 m(cmrm + 8,7 (—a, sinmb + j3,, cos mo) (112)

£22

Since it is assumed that p=0 at r=oco, ¢, must be zero in HEgs. (111)
and (112). By substituting Egs. (110), (111), and (112) into Eq. (109) one
can obtain

Fl) op f 6 S D+ —(BlDl)}cos0—~ —(s1n20)A ,D,-B.D,
o
N Kuo { A,,D,, cos(mf +38)+ B,,D,, sin(mé +30)}
¢ po z,rm+1
_ Ku, { A,.D, cos(mb+0)+B,.D,, sin{mb +6)
¢ 2,’.m+1

—A,.D,, cos(mf~+86)—B,,D,,sin (mf + 36}

Z} » m

- Z‘ et { a,, sinmb + f3,, cos m@} sind (113)

{am cosmf+ B, sin m@} cos 0
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On the other hand, use of Eqs, (78), (81) (95), (96) and (99) results in

U = o 'a—(’yllo+(/}1>
oY oY

=u, (1+KY L)+ z e AuDsin(md +0)~B,D,, cos(mf+0)}

v = <¢o +¢)
[od
— Z e {AmDm cos (mf + (i) + BmDm sin(m7+ 6)}
oU — !7 1_;
ar BRI

= Y1 m L) (4D, sin(n6+20)— B,.D,, cos(mb +26)}
r 72

mn
BU _ 8%, n Y
2Y ay2 ay*

2 m Wjj L) (4,1, cos(m +20)+ B,D,, sin(md +-20)}

Accordingly

ERTRLANIRCLE

B 2y

w 212 "L {4, sin (b -+ 26)—B,D,, cos(m +20)}

+ UKy m

- [{ (m+1A,,D,, sin(mb +20)—(m+1)B,,D,, cos(mf + 26)} sing
c po— ,’,.’I)L+4
+ A,D;, c08(md +0)+ B,D,, sin(m + @)]
— 12 (ADycos0+ 8 4D, BD,sin20— 2 (BDYeost  (114)
T e r’

Substituting Eqs. (113) and (114) into Eq. (108) and simplifying then yields

E ;%fi’; {oc,n cos (mf +0)-+ B, sin (mb + 6)}

e

— oy Y UML) (4D, sin(m+20)— BoD, cos (md +20))
~ 1,.m+
4 K u K 2 mim +2)

27,.m+1 {A Dm cos (mﬁ + 0) + Bm,-Dm Sin (mﬁ + 0)}
c m
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Noticing that only 4,D, and B,D, are the terms which remain in the
right-hand side of this equation, it can be expanded as follows:

L tg.mcos 20 -8 sin 20} + 2 (9.0, cos 30 + 9.6 5in 30
r r

+ »%— {z93a3 cos 49 + 9,5, sin 40} EE

_ { 8K 4 D, cos20+ 34K B,D,sin20)
2¢ 2¢ J

+ i@ { 2u,A.Dysin 30— 2u,B,.D, cos 36
’

2

+ §;‘“—K A.D,cos 30 8“"KB D, sin 30 }

C - Ze
+ % {6u0A.2D2 sin 40 —6u,B,D, cos 40
7
152“°K A,D, cos 46 + 152“0K B,D,sind0} + ...
C e

By comparing the coefficients in both sides of this equation, it is found
that

=0, o= ~E (Y, o= () 4R (2,

9fs = 0, gmy =0, 9P = b ( 2) (115)

These are all the terms which have values, the others all being zero.
Consequently, the solution of Eq. (102) can be obtained by substitution
of Eq. (115), and the values of 4,D, and B,D; into Eq. (107):

2o B L ()20 o)
Igz‘ { = u<—;> cos 46 —7} (£ e Vsin 30} - §E‘2_G§ <%>2sin 6
+ % {u <E> cos 20+ ”fcf _2> cos?ﬁ} L K’“o<2 Vsin30
This equation can be rewritten in dimensionless form :
D RO e

2
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- K<;> cos4(i+£<g>gsin 30

4er? cr
3K< )smﬁ—#z(;fcosz&
4 2[; ( 'y zK (-%>3sin8(i (116)

This is the general expression for the pressure in the field of the shear
flow around a cylinder.

Since r=¢/2 on the surface of the cylinder, Fq. (116) becomes
Y <1+£)+Ksinﬁ+ <£—4)sin‘3(i—4Ksin“6~K‘3sin‘*ﬁ
1 pu 16 2

2 (117)

The results of Eqgs. (116) and (117) were obtained by solving the
equation generally. One can also obtain these results without going
into the detail of computation when the Bernoulli equation is applied.

When the stream line which passes an arbitrary point (r, 6) in the
field is identical with the stream line which passes (—oe, y), the fol-
lowing relation can be obtained from Egs. (78) and (93):

2 / 2 2 3 K
y+ Ky _ (T~C—>sin6 +£<L si110+i0 c0320>
Zc 4y 2 Ve 32r*
The velocity at (—eo, ) is given by Fq.(77). Consequently, when the

pressure at (—co, y) is taken as reference, the total head along this
gtream line must be

gPH — % pus (1 +K%>2

1

4T>s1p F+£2{—<;~sm~0+ 57 cos 20)}]

(118)
Since the stream function is already shown in Hq. (93), the velocity

components at an arbitrary point (r, ) can be found easily, and the
velocity at that point can be calculated. The velocity components are

3
1 oap _ ¢ gin 20)}
3273

U, = — L = u(,l:<l 407" >cos()+[((fsm6cosﬁ—
U, = 3’-{— [<1+ e >Sln0+K<— gin® 60— E;z% cos 20>:|

r a0
c



Characteristics of Two-dimensional Flow behind a Normal Plate in Contact 303
with a Boundary on Half Plane

Accordingly, the square of the velocity at an arbitrary point (r, 6) is

Q= UL+ uy

= u; [l »L cos 20+ 47 {{Lsin‘zﬁ— CLK,;.(3 sin® 0 cos* 0 —sin'f)
27 6 & 1677
6 3 1 -
Lﬂ—kzﬁﬂsin 0—4@8111 36— Ko sind cos 20+£c~_sin (7J (119
32r' ¢ 16¢° 2r 64

Since the pressure can be found by

_4dp w__l_<ng~_1_ pq2>
L opug L opuz 2
2 0 2 0

the substitution of Eqgs. (118) and (119) into this equation gives the same
result as Eq. (116), but it is necessary to employ a special device to
obtain the simple forms of coefficients as are given in Fq. (116).

In the same way, the result of KEq. (117) can be obtained easily.
The stream function which constructs the surface of the cylinder will
be given by putting r=c¢/2 and 6=nr in Kq. (93), for convenience, since
the surface of the cylinder is the same stream line without regard
to the value of 4. Namely,

-1

= 16 Keu, (120)

4
The stream line far upstream from the cylinder which is destined to
pass the surface of the cylinder must be given by equating Eq. (120)
and Eq. (78). Consequently,

w(y+o o) = ‘116" Keu, (121)

This relation gives the value of ¥ which determines the location of the
stream line at the point upstream which passes tne surface of the
cylinder. HEgq. (121) gives

¢ C‘.’ CZ
= 4./ 122
==ty L4 (122)
Substitution of Eq. (122) into Eq. (78) gives
U = ‘j:uo]/ 1+£§i (123)

Since the pressure at r—oo is understood to be zero, the total head
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along the stream line which passes the surface of the cylinder is
o1,
gPH — 5 Py 4+

On the other hand, the velocity on the surface of the eylinder can be
obtained by introducing r=¢/2 into ay/ar, since the velocity is tangential
on the surface. KEq. (93) gives

a_{ = u{(l +4L> sin0+—é{— <2£~Sin2 0— 12;3 cos 2(‘7)}

Consequently, the Velocity' on the surface of the eylinder is

g = [2 sin 6+ K sin’0 —%] (124)

Since geH :%Puﬁ <1+_§;>, the pressure distribution on the surface

of the cylinder is

P :<1+ Kb)~<231n H+Ksin’ﬁ7-£):
1 o 8 4

— P,

2

which gives the same result as Eq. (117). In other words, the results
of Egs. (116) and (117) were verified.

Obviously, when K=0 (in other words when the cylinder is located
in a uniform flow) in kKq. (117), the pressure distribution on the sur-
face of the cylinder is pffu;/2)=1-—48in*d, which is a familiar equation
in hydrodynamics. The point of the maximum pressure can be ob-
tained by differentiating Eq. (117) with regard to # and equating the
derivative to zero:

K+(K*—8)sinf—12 Ksin’0—4 K’sin® = 0 (125)

On the other hand, the stagnation point can be obtained from the
condition (3¢/or),... = 0. Using Kq. (93), one obtains

Ksin0+2sin 6— &

=) 126
: (126)
which gives
o1 K ' .
Slnﬁ—f< 1y 14 5 ) (127)

Since the absolute value of this quantity is always smaller than unity,
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there are always stagnation points on the surface of the cylinder. As
the condition given by KEq. (126) satisfies Eq. (125), the point of the
maximum pressure on the surface of a cylinder and the stagnation
point are identical.

The results of the numerical eomputations of Eq. (117) in the range
of 90°<A=<270° are shown in Fig. 44. The effect of a velocity gradient
on the pressure distribution of a cylinder will be clearly seen. In
order to clarify the probable error in the estimations of velocity by
means of a cylinder, a part of Fig. 44 was plotted to a larger scale
as shown in Fig. 45. The movement of the stagnation points will be
evident from this figure. The points of the maximum pressure were
obtained with Iq. (126).

When the angle between the two holes in a cylinder is known,
one can easily estimate the probable errors in the measurement of
the direction of flow, with the aid of Fig. 45. Fig. 46(a) shows the
movement of the stagnation point and the probable error in deter-
mining the direction of flow with the 30.6° cylinder which was used
in the present experimental study. As will be seen, the error in the
direction of flow is always negative, and this tendency coincides with
the results which were already detected by the measurements with
180° and 30.6° eylinders, as described above. Figure 46 (b) shows the
probable error in the magnitude of velocity as measured with the 30.6°
eylinder. Since there are two holes in the eylinder, it has two possible
angular positions for the measurement of the velocity magnitude.
Curves I and III correspond to these two cases, and Curve II shows
the probable error when the two readings of the two angular positions
are averaged for the estimation of the magnitude of the velocity.

As a calibration of a Pitot cylinder is required even for the
measurement of uniform flow, the results obtained in Fig. 46 are not
applicable to the determination of corrections. This study is intended
instead to explain the performance of a cylinder in shear flow, and to
provide a guide for the selection of the dimension of a Pitot eylinder.
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