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    In this p. aper some remarks on the solutions of

in three-dimensions caused in isotropic and anisotropic elastic

stated for the sake of con'tinuity with the earlier papersi)

with thiek plate problem.

and A, E. :H. L.pve to a problem of thiek plate is, strictly
that for a moderately thick p]ate,' and so, if one employs

one eannot but apply the redueed boundary

the resultant £orces and couples or displacements and their
on the middle plane of ehe plate. Also one must apply in

tangential force on the cylindrical surface o£ the plate.
paper the author says that in view of this defieiency of
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                                            problems for stresses
                                                      solids are
                                                      associatect
                       As aforementioned 'in the introduction of the

seeond of these two papers, the method of solutions due to J. H. Michell

                                                      speaking,
                                                   this method,
                                        eonditions xepresented by
                                                     derivat2ves

                                                     the case o£
     dge con.ditions Kirehhoff's theorem on torsional couple and vertical

                                                 In the previous
                                                    aecuracy of



130 Kin-ichi E[ATA

this method of solution to the three-dimensional problems, it will be

pextinent to indieate the t'orms of solutions in the higher degree of

accuracy to be £urnished by the theory o£ the fust order, that is, the
soltttions to be applicable to a sufficient!y thick plate problem under

general boundary eonditions, and in a later report this eomplete solution

of the problem will be presented.

    In the present paper, solutionsfor a rectangu}ar plate of suMcient

thiekn.ess or a short eolumn of square cross-section, which are to be

referred to the reetangular cartesian eeordinates, are obtained by both

the procedures due to J. H. Miehell!) and J. Boussinesq"' in the case of

isotropy. By the way, the author diseusses various modes of approach
to the three-dimensional stress problems and asserts that most methods

of solution to the three-dimensional problems for isotropic elastie solids

should be equivalent to J. Boussinesq's method and thereby he extends
the methods analogous to H. Neuber's").

    J. H. Michell5' says that the method of extension of his solution
for a moderately thick, isotropic, elastic plate to anisotropic soli'ct is

perfectly obvious, but it seems to the present author that he does
mean by his "anisotropie solid" an anisotropie solid possessing elastic

symmetry equivaient to that of a crystal of the hexagonal system.
And yet even for a moderately thiek plate possessing transverse isotropy,

if the axis of elastic symmetry lies in the middle plane o£ the plate,
this extension would be impossible. In ･the present report the author

extends to aeolotropic or orthotropic solid his solutions obtained by the

method of series, referyed to above, for .a suMeiently thick, isotropie

plate.

    So far there have been published a number of analytieal treatments

for plane stress or strain prob]ems in the theory o£ anisotropic eiastieity,
but investigations on three-dimensional problems for aeolotropic media

seem comparatively £ew, and yet a mode of attaek in the case of
aeolotropy, corresponding to J. Boussinesq's approach or H. Neuber's,
is deemed not known. Though it will seldom be necessa. ry to deal with

the aeoiotropic elasticity problems whieh require twenty-one indepen-

dent elastie constants, materials of construction which are essentially

orthotropie or are to be regarded as such from the macroscopie view-
point, will be numerous, Henee, it would be desirable that a general
method of solution to the three-dimensional problem for ortho'tropie or

anisotropie so]id is derived, and the extensive studies on its application

are undertaken.
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   This paper exeludes the case o£ c'urvilinear anisotxopy or orthotropy
as fo'und in Love's textbook on elasticity6', It wili be inevitable to be

content with investigating the cases, in which the so-called elastic

constants are constant in true sense of the word or are not £unteions
of positional eoordinates with the exeeption of the case of eurvilinear

orthotropy relevant, for instanee, to spherical or cylindrieal coordinates.

   A. S. Lodge" has recently shown that problems for generally ani-

sotropic elastic solids can be trans£ormed into those for isotropic ones
by the use of an appropriate linear transformation of coordinates, or
aMne transformation, imposing specific conditions upon e]astic eonstants.

When these conditions £or the validity of his method can be satisfied,
his result serves to facilitate ealeulations, but, needless to say, trans-

formation of any sueh kind without any rest.rictions upon elastic constants

would be unattainable and such restrictions will be evidently undesira-

ble. He has mox'eover extended the solutions for the case of transverse

isotropy obtained by H. A. ElliottS', and these extended solutions seem

to the present author more notieeable, though Lodge says that this

result wi]l be applicable to a wider class o£ pyoblems but whether his
extended solutions are eompletely general or no is not known. By
applyin.g the general method oE soiution for anisotropie solids to be

derived in this paper, the solutions due to A. S. Lodge ean be ver2fied

tobecompletelygeneral. ItistobeaddedthatJ.H.Michell9)presented
in 1901 perfectly general solutions for transverse]y isotropic solids, but

the forms of his solutions may be said to be awkward and rather hard
to apply in practice. The subjeet of tiransversely isotropic solids is

thought noticeable and it seems most aecessible to us, so that pro"blems

associated with transverse isotropy will be t.reated at some iength.

   The main purpose of this paper is to describe the general methods

of solution to the elastieity problems £or sufliciently thiek plate, whieh
is subjected to surface traetions, in eases of both isotropy and aeolotropy

under homogeneity restraint within the asgumptions of the infinitesimal

theory of elastieity for the sake of continuity with the author's earlier

papers. Most notations to be used throughout this paper are Love'$
or are self-explaining and so, if not neeessary, no pains will be taken

to explain the implicatio'ns of notations in detail.
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    EZ. G-enera! Method o'f Solution to the Three-Dimensional
             Problems for Anisotropic Elastic Solids.

    The writer will take here and th-roughout this paper the reetangular

eartesian eoordinate system sueh that stress-strain relation or strain

energy funetion, refe]7red to this system, can be expressed as simply

as possible by eonsidering every deg]ree of e]astic symmetry, and no-

tations for elastic eonstants wi!1 be the same as Love'si"). Now let a

homogeneous, general}y aeolotropie, elastic solid in the absenee of volume

force be considered within the seope of the infinitesimal theory of
elastiety. Then needed stress-strain relations or the geneyalized Hoo-

ke's law in matrix notation are of the fol}owing forms:

          ax CllelD-C13C14C15Cl6 ex
          ov cL,-JCL,-.cL,sc24cL)b･c.}f; evr

          a. = c･ll c32 c3-, C31 C33 C?,s . ez , (2.1)
          ;'g.-:li:I'1.:Ii:glilc,llgg: llg:

          T.y.) kc("c6,,c63c(i4c6sc{iG rxtr

in whieh c., (T, s=1, 2, 3･･･, 6), are the elastie constants of the anisotropic

solid and have symmetry relations of the type

         Crs=Csr (2･ 2)
Hence the solid possesses twenty-one independent elastic constants.
As is well known, the relations (2.1) are equivalent to the fiollowing.

              aW oW oW aW         ox== Jav=u fgx= rrgyz= f              oe. aey ae. ory.
                             T..=aW,T･.,-=aVV, (2.3)
                                  a7'.. er.y

inwhich e,,..aU,ey..,aV,e.,..a2V,
                ox oy a2
         rgy. ... o"ZV + eV , r..= OU-+ aZV , r.y= aV + aU , (2.4)

                                            ax oy                              az ex               ay oz

and W in (2. 3) is a homogeneous quadratie function of strains containing

the above 21 constants and of the form.
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         2 W :=: ci,eg + c.,,,eZ + c33e;' + c.n7'2.. + essr;'. + Ca6?'ts'y +

             + 2cii,e.ey + 2ci3e.e. + 2c,i,segye. -I- 2cds7'y.r.. + 2c,i6rgy.r.gy +

             + 2c;,-6r...r.gy + 2ci4e.ry, + 2cise.r.. + 2cJ,e,,7".v +

             +2c,)4eyrv.+2ceseyr..+2e2Gey7'.y+2c34e.ry.+

             +2c,:,e.r?f.+2c36e.?'.yi (2. 5)

The styess-equations oi" equilibrium are

          aO'a; le J{2!tl!x-yn+ arxr .,,, o,

          ox oy az
          ar.y+aa. +reL,yte .. o, (2. 6)
                ey az          ox

          or.. + acry. + Oapt ,= o.

          ax ay az
Since there is little prospect oE obtaining solutions if one unclertakes

to solve these equations direetly with the aid ofi the eonditions o£
compatibility, a start will be made from the displacement-equations

of equilibrium. In the subsequent, extensive use o£ the operational
method will be made'in orde]r to faeilitate mueh the process of eal-

culation. By inse]rtin.g the expressions £or strains (2.4) in equations

(2.6), one obtains the equations o£ equilibrium of the forms

         AJiu+Amv+Ai3zo == O, (2.7a)
         A,,u+A,,v+A,,zv == O, (2.7b)
         A,}ize+A:i,,v+A33zv=O, (2.7e)
in whieh the operators A,., (T, s==1, 2, 3) possess the symmetry property,

narriely

and are

 /lrs = Asr,

expressed as

All =:: (Cm C6fs, Cs:,', C5fi, C15, C16) (-alaT-,

A2? = (cGti, cLie, C-, CLi4, C46, CL,(i) (bQx'-,

A3-, -- (Css, C.N, C33, C34, C3:), C45) ( oax ,

aZ' -illl,T)2,

8J`' 8z)2,

.a-ey, oo,)P,

(2. 8)

C2. 9)
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         An = (e]6, cL}6, c,is) -} (e46+c2s), {Im (ca,i+ess), -il= (cJ2+c66)) ×

                            ' ×(aOx'oSy'aaz)2,･

                  '                                 '         A"i = (eis, cgfi, c/-,･J, {l- (c3fi+c.is), Ll}- (ei3+cbs), '}(eig+cti6)) ×

                                  ×(aax' aay' ea2)2,

         A,,:i -h (cs6, e,)4, c3i, -ul{2T <e,)3+c4.J), liL (cis+csa), -li- (css+e"6)) ×

                                  ×(aam, aOy, oaz)2,

wherein symbolie representation implies a formula sueh that

         (a",d2LJ,d3s,els:,al3i,ali2)(aax, oOy, oOz)2=

          =d" ag. +al,,T(?i'L.+d,,, a"..+2el,, a2 +2cl,ilL.QL' .+2el,,. e2 ".

              ax-                    oy- ez"                                   oyaz                                           oxoz axoy
                                                      (2. 10)

It appears self-evident that the operators construeted with differentia]

coefficients only, referred to rectangular eartesian coordinates, have

the commutative property or are subjeet to the £undamental laws o£
ordinary algebra. Now, by m-u'!tiplying equations (2.7b), (2.7e) with
Ai3 and Ai2 respeetively and subtracting, one obtains

         (Ai3A2.-Ai.,Aa3)v+(Ai3n!3-Ai2A33)w=O, (2.11a)

and similarly, by Jnultiplying (2.7a), (2.7c) wjth A2.3 and At2 respectively

and subtracting and thus eliminating v, it results that

         (Ai,A,,,- Ai!Ai3) u+(Ai3A,3-Ai,A33) zv == e.

Accordingly the desired relations can be arrived at

         riu == rL'v == r3w,

 in which

         ri == A"A23-Ai2Ai3,

         -L' = A2,.A]3- AJ21C123 ,

         r3 == A33nm-A13A23.

Since for the present the general case is being

obliged to put for the displacements

treated,

(2. 11 b)

(2. 12)

(2. 13)

one will be
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         u=r2r3¢,v==rir3¢,zv==ri72¢, (2.14)
inwhich ¢ii.¢(x,y,z),
from the relations (2.12), though one should obviously be eautious to

utilize equations (2.12) to deduce the forms o£ solutions. Next one
must look for the basic partial differential equation to be satisfied by

function ¢. When the expressions for displaeements (2.14) in equation
of equilibrium (2.7a) are inserted, this equation becomes

         AmAi3[AiiA!2A3･s+2A23Ai3Ai2ltAii(A2s)2+

                        igA!L,(ArD"'-A33(Aig)']]gS=:O. (2･15)

This differential equation is of the 10-th order, and, by considering the

general property of boundary value problem in three-dimepsions, it is

readily inferred that the differential equation satisfied by funetion ¢
is to be of ehe 6-th order. Further, solutions oE the equations

         niL･¢==O, A,,¢==O (2.16)
will be easily seen to be trivial, by observ2ng the torm oE equation
(2.7a). Also from other equations of (2.7), the same operatoir as in the

braee of equation (2.15) are obtained. Consequently, the basie partial

differential equation to be satisfied by ¢ is found to be of the form.

        [AiiA]2A23-'2AL)3AriAi2-Aii(A!3)2igAL,2(Aia)2igA33(Am)2}¢=uO. (2.17)

The operator in the brace of this equation is a homogeneous funetion

of operators ---Q--b O･and a ofdegree 6,and,ifthisoperatoreanbe

            ax ay oz
resolved into three factors of degree 2 with real eoeflieients, analytieal

treatment will be much faeilitated, but such cases are likely to be
few, if any. For definiteness let the case be considered, wherein sueh

resolution as stated above ean be per£ormed. Using symbolic repre-
sentation <2.10), one may write

  [AllAnA33 + 2A2-.At.'iAi2- Aii(AQ3)'2- A2g(Ais)?- A33(AiL,)Vl ¢ =

   == (a", a]L,, ai3, -ll}-ai4, -l}-ais, -li-a,,) ( aab, , oOy , --i;}t7)L'×

    × (a,,b ct.]L,, a.ir, -li-a.,4, -li-a,,s, ia,,,) ( oax , -a-ay , aaz )i'×

    k (a3i, a3L･, a3t-], -}at3o -ll-a3s, -ll-a,,,,) ( 8. , aay ,･ -1}Oi--)L'¢ =:: o, (2, is)
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and hence one has

         ¢= ¢i+9SL･+91n･ (2. 19)
in which

         (aii, ''', '"L, -l}-ai･i, ･-･, ･･･)(eOx , oOy , aOz )2¢, == o,

         (aw, ･･･, ･･･, -ll- at4, ･･v･･) ( aa. , -oatT, -a-Oz )2gs.i = o,

         (a,,, -･･, ･･･, -l}-(x,,, ･･･, t-･) ( oOx , aay , -･-sa,z )2¢,, = e.

The solutions for displacements (2. 14), together with the basie differentiai

equation (2,17), can be taken in all cases of aeolotropy, perhaps, with

the exception of the case of transverse isotropy, It may be said that
the method. of solution,' derived above for the aeoiotropic elasticity

problem, corresponds to J. Bouss2nesq's or }I. Neuber's approaeh to the

three-dimensional isotropie elasticity problems. If the resolution with

yeal coefficients as aforementioned cannot be carried out, it will be

troublesome to treat equation (2.17), and the above result, referred
to other coordinates than rectangular eartesian, may be too intrieate to

be utilized in pxactice. And yet the resolution or £actoring in 'this case
cannot be enforced as it can be in a two-dimensional orthotropic elasticity

theory. At any xate it will be rather difficult to obtain a reasonably

correet factoring with real coeflieients, if it is possible, taking aceount

of the fact thae va}ues o£ elastie consta'nts are, of couyse, determined
to within some errors. Though the author is assured that the above

result is useful, its form may be awkwa±-d and so it will be desirable
to seek a more convenient one.

              g3. Generai Solutions for Orthotropic
                         Elastic Solids.

    As a matter of faet the problem eoncerning a material with higher

degree of aeolotropy as found iii certain crystals may be insignifieant

and may be exclucted, and at most the solids with orthotropic or or-

thorhombic symmetry or transverse isotropy will be worth noting. For
an orthotropie elastic body stress-strain relations (2.1) reduce to

         o. =:: cJj e. I- cmey + cl3e.,

         ay =:: Cl,,e.+C,).,etr+C.i3e., (3.1)
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         a. =d Clf,i e. + C2sey + C:l:l e. t

        Ty.==c"ry., T..=cti:;T..! Txy=c6ar.y.

Aceordingly operators in the foregoing seetion are much simplifi
From fomnulae (,2.9) one has

        A"=cii OL' +ca6 O! +cssmeL' ,

                              i)                 o                       o               ax- sy oz-
                Oo                             a.)                a"                      O-         Aee = C66 ox2 + CL'P' az/2 + C'H ez2 '

        A3ti :=:: cr,s a2. +c" o2.+c:i3 e!., (3.2)

               ox- av oz,"
                oo                                         o         Ans= ai O" , A:3 =:= a2 a" , Ai., ==:afi a" ,

                           oxoz                                       oxoy               oyoz
in whieh

                     o (3. 3)        qi=(cee+c"), a"=(ci3+css), a3=(Cm+C6f;).

From (2,13) and (3.2) there are obtained

        ri = ,e2,, rh, r2 - -,-tt"5-,-･ q-;, r3 =- ,.a,O,y r:;),

in which

        rle =: (c]iai-a""a3) aai2 + ai(c6fi a//2 +essttzlkL),

                       o ,]o        r2. = (c.,llaL'-aia") aSi, + a2(Ctms8iT. +C" aai2 ),

                       n .] O        I-3. = (c,,a:i-aia2) oOi, +ati(CsjsOi,i.-+C- oaii,,).

For convenience' sake one puts

        l-;r}, =Aff. I"M2.･ == All,, l"krL'. -- Afl,,

in which

          A = ai a2 a3,

               ･ v" oo         aiiiii =u (elii, el,)2', tti", aL]:, el3t, am) ( oai, , zilyl'r.i, eOzl.} )"

                                            oo                                  eo        qL'R, == (ell, e,,, e3,,, e,3, e:ii, e,e) ( aea';,, , oay', , oai2 )",

                                    '" O L]         a3ff, == (f]i, f22, fzz, f2ti, f3i, fii') ( oOi. , oai2 ' eOi.) )

'

2

,

(3. 4)

(3. 5)

(3. 6)

(3.7)

137

ed.
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wherein
                                 '
       el" = cssc66, cl22=c.l4(c2,,- ailli[II"} ) , cilr,: ==: c"(c?,3- .tcltai.r'..) ,

     2 al.,, = (c,,2- akg3-) (e.,3- crk 2)+c"2, 2cl,3i=e,,(cx,--a-ha3i) +c."cbs,

                                                         '
     2el,, :== e,,(c,,--akg3) -g- c" c,,,, (3.sa)

       eti =csr,(c"- aiii!l[3), e,,,)==:c"c6fs, e33=css(cr,3--!i･E-il.li.2...),

     2e23 =c66(c33- ats2)+c"css, 2er,i==(c"- a;¥3) (c3s- akg2)+c.::,r,

     2e12=c-(ell-q:l[r')+csrcfiG,
                                                      (3. 8b)

                                                      '       fn --- cft6(cn- agg3), f2!==c6{i(c!,,- ahg:i>, f33=c."css,

     2f?3 ,., css(c".,.- {g"')+cuc6s, 2f31,=c-(cll- a£¥3)+cssc(s6,

     2f,,. :::: (e,,- ats3) (c,,,- akZ")+cz-,. (3.sc)

The implications of symbolic representations in (3. 7) are similar to those

in (2.10), but for caution's sake it is indicated that

     (eln, cil2-e, clF,r3, cls3, cl3i, eli!) ( ia}i.2 , o/"`.. , oOzgg )2

    . = alii oai4 +dL'L' eOi4 +dt'3t3 aOil +2clL'3oy?iz2 +2cl3iix9gz, +2dieox?5`y, .

                                                       (3. 9)

Now, i£ ¢ is written in place of a3¢ , which is evidently permissi-

                              oxoyaz
ble, £rom (2.14) and (3. 4) the expressions for displacements are obtained

    u=-eDMI"}T3.¢,v=oOyI"h-r't7¢,zv=ae,I"hr2.¢, (3.10)

or, by substituting the expressions (3.6) in these formulae and writing

¢IA in 'stead of ¢, which is likewise pescmissible, one gets

     u= Da. a,¢, v= ill,¢, zv= oO, fl,¢, (3.11)
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The basic differential equation to be satisfied by function ¢, appearing
in (3,1!) or (3.10), can be found from (2.17) and (3.2), namely

             a6                        D6                                  a6     t                + Coo C.lg C66                          + czz e4g effs                                     +      cli c:,-,-, c66
            Ox6                  - ayfi                                  azG

         +Icllc22c3:+2ci,icssc{s6+2aia2a3-cllc,,3(c23+2cN)+

         -- c!2 cJ3 (cio, + 2csb-Cp.gCi2 (Cn + 2e66)] ax?Dai,azE +

         + [c,,,?c"ess+c,],,c･i3c66-c,,3e6s (C,,?,+2C44)} ay?gz,, +

         +[e:l,le-c66+c,,,,ca,lcss,-c,iacsr,(c?s+2C44)}oz?gy,7-+

         +[clic"ctis+ciic･3zc66-ci:ic66(ci:+2css)}ovflllllz..+

         + [c33cbsc66+c"cs3e44-csp,c.14(cl!l+2css)] az?gx..- +

         + [el1C-e6G+CnC2!C,hs-CJ2CJ5 (Ci2+2C66)l sx?gy2 +

         +Ic2.ic:;sc6G-{-cfic,].ici.i--cne,.;(cn+2e,,)loy?g･x,,1.¢=O. (3,12)

The above solutions of displacement-equations of equilibTium regarding

oxthotropic elastie solids are manifestly eompletely general exeept for

certain eases of the class o£ orthotropic solids. For orthorhombic solids
the resolution of the operaeor in the bracket of equation (3.12) in the

three real factors of degree two will be easily performed, if possible,

since the operator eoneerned is virtually considered as that o£ degree
3, though that is needless to say.

   In addition the above solutions ean be derived in somewhat different

way. When one puts for displacements

             Out' ov' awt         ZL == ex'V== oy, ZV ==: oz ,, (3･13)

and integrates the reduced equations (2,11a) and (2.11b) with respect

to x and y respectively, he obtains the relation formulae similar to
(2. 12),

         rle u'=re. v,=r3 zv,. (3. 14)
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Hence the same expressions as in (3.10) are obtained and further the

substitution of the expressions (3. 10) in the equations o£ equilibrium
(2.7a) yields the differential equation (3.12) multiplied by coeMcients
(ci3+css)(ci2+c6s). Supposing that the differential equation (3.12) can be

resolved into threer differential equations of the seeond oder with real

coefficients, for form's sake equation (3.12) may be written in the form:

         (ail a//, +ail, a/"".. +ai3 aai,, )¢l ::= e,

         (a2i o//, +ad2 a/O".- +a23 aaz22)¢2 :== O, (3.ls)

         (a3i a//2 + a32 -z9iLv + a33 aOi2 ) ¢3 == O,

         ¢ == fi + ¢2 + ¢3･

                g4. Completely General Solutions
                    for a Transversely Isotropic Solid.

    As mentionect befoye, this class of solids is one of the most important

partieular cases o£ orthotropic solids. The stress-strain relations for
a transversely isotropic solid contain five independent elastic constants

and are expressed as

         o. == c"e.+c.t,)ey -i- clr,e.,

         ay = c12e. + cp ev + c13e.,

         a. =c13 e.+clley+c33e., (4. 1)
         Ty.=c4."y.s Tx.=:c"7'..t Txy=--il-i (Cll-CIL])rxy.

These may be obtained £rom the yelations (3. 1) by putting

         Cll=Csu,C23=::e13,C"==Csr,,C66==g(Cn-Cl..). (4,2)

Of course, the z-axis i's parailel to that of elastie symmetry. The solution

for a transverse]y isotropie solid achieved by H, A. Elliott8) and A. S.

Lodge') seems eonvenient of applieation. The latter says that whether
this solution is complete]y general or not is not known, and hence it is

deemed necessary to investigate its generality. The subsequent dis-

cussion will assure one that the soiution obtained by them is per£ectly
general and of most simplified form. Indeed, J. H. Michell") showed,
though A. S, Lodge does not point it out, that the differential equations
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in three-dimensions for a solid, which is elastically equivalent to a

crystal of the hexagonal system, can be expressed in the following
form. By transforlning Michell's notations into the ordinary ones, if

required, they beeame

            oo o         ( oO"r+ roOlli/eT +ri aOz"g-) iVi == O,

            oo o         (aai,+aay', +rf{ Dai,)vl == o, (4. 3)

         (a//? + o/L': +?':i aOz"e)(v3 =O,

in which

         v. === (e+q.Icl!Wlif), co3= -21-(g¥ ",ny':)･

         e -- e. + ev + e.,

and, furhter,

          q" = '".1 [Ci:IMCIE+C.ll (P.+1)},

          r. --= -(.Cl.IZ tt "C-).,

                C13 + C"
         7'i7"2 == -fl-3:3 , ri+r.= Ci'iC:i:i-C;3 2ci,ic" , .(4,4)

               CII " CllC41
           r,} = C" , (a=1, 2).
               ci}{}

As described in, the Eollowing, equations (4. 3) are utterly analogous to

those due to A. S. Lodge, and in faet J. H. Miehell certainly shows
that there are needed three independent partial differential equations

of the types o£ equations in (4.3> for the three-dimensional problems
concerning transversely isotropic solids, but his method of solution rnay

be said to be harder to apply.
    In the next p]aee, let the method of solution deduced in the fore-

going section be applied to a problem for the cla$s of solid coneerned.

From (3.5) and (4.1) one has

                              .O oo         z"'hIi";-rm(c,3+c.i,)(c{i6aax',+c6s･stLli,-+c"--o-OETs･-), (4･5a)
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         T3J3 = [c"(c]2+c66)-o/'].. +C-(Cl2+C66) o/"".. +

                  +[Ct}3(Cis+C66)-(ci,+c.,i)21aazl,--],' (4.5b)

and the basie differential equation (3.12) with (4.2) can be readily

resolved into three faetors with real eoeflicients as follows:

         :: [Cii (-eaX'IEi'2'+Liil)'3i') + [(Ci3+c.i4) ki+e"l aOi', ] ×

                   o"                                           o             × tCii(Dei,, + oOzd", )+{(Ci:3+C") k2+C"] aOz", ]×

                   oo             × [C`i6 (tuaath,, + aOy`L} )+C" aOz2.} ]¢=O, (4･ 6)

in which ki and k, are the yoots in k of the equation.

         C"<C}3+C-)li;!+[(Ci:i+Cg)P'rC"C3",+C:',i]k+C"(Ci`i+Cg) =- O. (4.7)

Of couyse, there seems to exist no definite reason why the coef}icients

or k,, appearing in faetors of (4. 6) should be real, but for almost every

eransversely isotropic solid this wili be the case. Then, eonsidering

equations (3.15), one can put for the forms o£ displacements by means
of the expressions (3. 10) with formulae (4. 5), exeept the case of equation,

appearing in (4,6),

         ('C"6(o//g+o/O"n-)+C'i',eOz?,]95t3[=eb ' (4･8)

This is easily seen from the faet that the operator in the brace of

this equation is equivalent to that of (4.5a), so that the expressions

(3.10) cannot be used in this case, Thus, excluding function ¢3, and
deleting the operator rb or r; in each expression in (3.10), sinee rJB

equals r;, one can write for displaeements

         u. =:: oO,., I";' ¢., v. == aay rR/' ¢a, ZVa =' aa, Z"h¢a, (4.g)

                          (a=1, 2)

in whieh a=1 and cr=2 eorrespond to ki and k,, in (4,7) respeetiveiy.

¢. sat･isfies the equation

         [eAi(o/r..+o9;)+I(cj3+c4.i)ka+c."loDi,]¢.==o. (4.is)
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As stated in the preeeding, the basic partial differential equation of

the sixth order (2.Z7) or (3.12) contains all needed basic differential

equations for the three-dimensional problem eonsidered, and hence it
becomes needful to seek a solution relevant to the third basic equat2on

    Now let a beginning be made by writing for displacements the
following:

         u= Ai¢, 'v == A2¢, zv =- A3¢, (4. 11)
in which A"(v=1, 2, 3) is the operator to be determined and is taken

to be subjeet to the Iaws of ordinary algebra for the present. Then,
by referring to the relations (2,12) with formulae (3. 4), or the relations

(3. 14), and formulae (4. 5), it follows that

               mri. eV =o, (4.12a)         rh au
            ey ax
         ri. a,", ---1' a,i,V-o, (4.12b)
        '
The substitution of the expressions (4. 11) in equations (4. 12 a) and (4. 12 b)

                                                        'yields the equations
                                    '
         I"le (A' eOy -- Ail oe.)¢ =: O, (4.13a)

         (rhAa eD, -1-'hr A.3 sOy)¢ =- o, (4. 13 b)

respectively. Hence, on condition that 7la¢#O, one gets by (4.13a)

         AJ=Aa.., AE==A-a-, (4.14)
               ex                           ay
in which

         A.¢;O,
and, further, one has

         I"h¢ :- O. (4. 15)From (4. 14) and (4.13b) it is, therefore, obtained that

         A=A-r3., A3 =. A-l'hO, (4.16)
                            az ,
in whieh A¢7EO. As the operator A can be merged in func'tion ¢, the
expressions (4.11) with (4. 14') and (4. 16) eviden'tly agree with those of

(4.9), Next, ¢ appearing in (4.15) should be originally denoted by ¢,,
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observing equation (4.8), then from (4.15) and (4.13b) one obtains

         A3 == O, (4. 17)
namely displacement zv vanishes for ¢3. Thus, for a transversely iso-
tropie solid three displacement equations of equilibrium reduce to a

simple equatjon:

         (Aioax+A!aOy)¢,=o. . (4.ls)
Aecordingly, jt is obtain.ed from (4,18) that

         Ai==A'aay,A2=-A',a., (A'¢,,ijrO) (4.19)

and one can obviously do wjthout the operator A'. In consequence

one gets the third solution corresponding to function ¢3, namely,

         ze:i=-tll/l]-¢3, v3 z: - oSx ¢3, zv3=O, (4 .2o)

in which ¢,., satisfies equation (4.8) or (4.15). Adding solutions (4.9)

and (4.20), the complete three-dimensional solutions are arrived at £or

a transversely isotropie solid by 'the use of the method o£ solution
proposed by the present author, showing one case whieh needs some
slight modifieations in this approach.

   Now let the solut2on due to H. A. Elliott and A. S. Lodge be cited
for the case of transverse isotropy and let it be shown that the above

solutions perfeetly agree with the resuit to be cited in ehe following.

Solutions due to Lodge and Elliott are

         z{=]Z]zei,v=Z)v,i,w=ZI]zvi, (i=1,2,3).

             Tet                                    o              e¢a                        a¢a              ox ' V" :=: oy , ZVa =' oz ka ¢a,        ZLa =

                      (nt == 1, 2).

                                   '              '         ZL:i r' Oa//}, V3=- oOx g5n, ZV:s == O,

and gli(i=:1,2,3)satisfiestheequations

           oo o         (oOi + oSi, +v･ti-saz',)gSi == o,

wherein vi ap.d v,, a.re 'the roots in v of the equation

         c" c" v2 + (ci3 - e]i c,i3 + 2ci:c") ;J + c:i:iC." = O.

(4. 21 a)

(4. 21 b)

(4. 22)

(4, 23 a)
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         ,,=Lgl:,!!i.L=. 2C-, (4.23b)
             C66                   Cll-CIL'
an.d

         ic.=(C']VntrmC'"), (a=1,2) (4.24a)
                Cl:. + C"

and let the .relation be added.

              (cir.+c")ic,,+c"r c:3k.         Vct= C.,i 'L-(c,,+c..)+c.k.･ (4.24b)

By (4.24b) it may be seen that k. satisfies the equation (4.7). Hence,

<4.24a) are the same as those which appear in Gquation (4.6), and
differential equations (4,8) and (4.10) can be rewritten into equations

(4,22), that is, the symbo]s pi ean be used for 'the solutions obtained

by the author. In order that the eonformity oLF the expressions for
displaeements (4.9) with those in (4.21a) may be eonfirmed, it must be

shown that the fol}owing equations hold:

         rb¢.::=k.r;¢., (a=1,2). (4.25)
By means of equations <4.7) or (4.23a) it is readily ascertained that
equatioRs (4.25) are equivalent 'to equations (4.22) relevant to vi and p.,,

Thus from (4.25) ¢. and k.¢. ean be substituted in p]aee of 1"}¢. and

rX¢. respectively, which appear in the expressions (4.9). By the above

shortened proo£ the completeness of the solutions £or a transversely
isotropie solid due to H. A. Elliott and A. S. Lodge is established in

the opinion of the present writer.

    In addition, reference wil} be made briefiy to J. H. Michell's app-

roach. B"rom an inspeetion of his result and of A. S. Lodge's, it Eollows

that r, (i=1, 2, 3) equals p, (i=1, 2, 3) and so p. (a=1, 2) agrees with k.

(a=1, 2), Though Michel]'s dfferential equations (4.3) are certainly
equal to those in (4.22), it is to be regretted that Lodge's so}ution or

equivalent one was not reached by J. H. Michell. Sinee A. S. Lodge's
solution for a transversely isotropic elastie solid is expedient and sim-

plified in form, and available for use without any apprehension about
its completeness as verified above, k wial, of eourse, be advisable to

employ this solution.

    It will be noted that the solutions for the case of transverse iso-

tropy may be regarded as a simple extension of the solution for plane'

stress or plane strain in an orthotropic material to three-dimensional

one, and that £unetion ¢i in (4.22) is of the harmonie type and ean be

'
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readily determined. For instance, let an elastie plate of moderate
thiek'ness be cons2dered. Take the z-axis to be in the direction of

thickness of the plate and positive upwaxds, and the origin of coordi-

nates to lie on t-he middle piane, assuming that the plate has trans-

veTse isotxopy about the x-axis. Then, so]utions ean be written by

virtue o£ the solutions (4.21) to (4,24). Stress-strain relations are

          nt. = a" e. + al,) ey + an e.,

          ay = a]eex + asL] e?1 + cu.):e.J
                                                        (4, 26)
          o. --- a12ex+a,)3egy+a.]2e.,

          rgy.=a"7'or., T.x=assr.., T.y=asr,7'.y,

in which, using notations for elastic constants c.B, one can write

          a]･1 -= e3:-}p a12 =: C13, aL]2 -- CIIs aL,g = ele:

          ca"=-(tze-.--a-,･i)=::ca6=-!(cii-ci2), ass=C--it

               22
Solutions for displaeements are as follows:

          (u., v., zva) = (k[[ aex , 8y , LsOlz") ¢a,                                               (a=Z, 2)

                                                        <4, 27)
          (u,,, v,, zv,,) = (o,･oaz , -- aay ) ¢,,

in which

              oo"          (Vi-iil:'ii+oOi.+aa,".)¢=z:O, (i=i,2,3) (4.2s)

and vi, p2 are the roots of the equation

          a2,. asJpE + (a?2-a"a2,,+2amar,s) v+ a]1a:is = O.

Further,

          v3 -- aa'll = al,ig6a-,,,, lea= V"c,e,}i,,,e,ss , (4.2g).

and pi and ic. are evidently the same as those in (4,23) and (4.24). When

this plate is in plane-stress state, the relations (4.26) are, of course,

as £oilows:

          ffs = Tyz = rxz = O!

                                                    t.
or
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         ex =altax+ai.)ay,

         egy =ama,t,+cr.,go"yp
                                                        (4.30)
         eN. =a:3ax+cr,)3%,

         7'xv -nv CCssTxgy.

Forms of solutions (4,27)-(4.29) will undergo no ehange, and it wi!l be

obvious that for an orthotropie thin plate, i,e., an orthotropie plate of

zero thickness, the solution derived from that for tran$versely isotropie

solid is available, 'though it wilHead te a final result whieh is slightly

different from what is to be obtained by an ordinary approaeh. Yet,
from the following simple explantion it wi11 readily be inferred that,

when the thickness of the plate, possessing sueh a transverse isotropy

as stated above, is moclerate, there does not exist any correct solution

for plane stress state which cor]responds to what is obtained by A. E.

H. Loveii) for the ease of isotropy. Thenee also exact solution for this

plate in the generalized. plane stress state eould by no means be aehieved.

O£ course, this generalized plane stress does not mean the mean value,
taken through the thiekness of the plate, of the stress in the middle
plane of the plate. In order to satisfy the first two stress-equations

of equilibrium for plane stress state even in the broadened meaning,

it will suffice to take the stresses of the following forms:

          a. .. a2I!, a. .. a2E, , T., .. p OUI7' , (4.31)

                          ex'                                       axey               ay

Sinee ¢i, ¢, and ¢3 are independent o£ one another, they ean be treated
separately. Forinstance,from(4.27),(4.30)and(4,31)thereareobtained.

         e. == ki -t-o-r"i#/;- = (aii a//, -p aJz, -a/l',, ) 17",

         ey= Oa"Ly¢," == (uti2 a/r,. +aL,L, a/2..)P, (4･32)

         e.== /O"z¢..i == (ai,., aO; +a2ti-toft,)F,

and

         r., :-] (ki+1) ,eXb :==-atir, o/"`,£ , (4. 33)

Equation (4.33) gives elastically
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         F..rm-K.ki+1)-¢,, ' ･ (4.34)
                 a55 '
and, hence, in order that the solution £or a plate of moderate thiekness,
i.e., one not in the limit ease'of zero thiekness, ean be obtained and

expressed as finite power series in z, the insertion of the expresion
(4.34) in equations (4.32) muse yield the basie differential equation (4.28)

with vi, but it does not do so eertainly, In the next place, if the
expressions (4･30), together with (4.31), be substituted in one of the

equations o£ compatibi12ty

          "n                       o         l?l'ti.+O-eg.,.. ')JTxor, (4.35)
          oy" ox- exey
the fo]lowing dfferential equation for F is obtained:

         (ae2oai,+(2ai2+crr,s)ox?gy.,+cr,ia?i,]F=0･ (4･36)

This can be rewritten into the form'

             oo                          oo         (Bi aDi, +-sei,) (P2 oei,-+ eOy",).l7' :=:: o, (4.37)

in which

         I3,i9,= umarrii.a!2nv.a-?2, l3,+i3, .. -2CtJ2a,is+aiia2!-2(tr'.･ , (4.3s)

                a:,"-ai.3 a.]2art,-
Thus, by the inspection o£ (4.29) and (4.38) it is easily seen that only,
if the elastie constants a,.3 and a,, be ignorect, B. can be thought equal

to v. in (4,28). These facts show that the solutions (4.30) an.d (4.27)--

(4.29) can be applied to the orthotropie thin plate problems, and, further,

that eorrect soiutions for a moderately thick plate of transverse isotropy

and, of other aeolotropies, needless to say, cou].d not exist.

    Hereupon, it becomes need£ul to point out that between the im-
plications of a generalized plane stress state whieh is termed frequently

in conjunetion with thin plate problems and with problems concerning

plate o£ moderate thickness there is an utter differenee, That is, mean
values, taken through the thickness of the plate, of the generalized

plane stresses may be said to be nothing but the values of plane
stresses relevant to the plate of zero thickness.

    Accordingiy, eoncerning aeolotropie plate problems, one can only

deal either with the case of zero thickness by drastic assumptions or

t
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with the case of suffieient thickness exactly by the three-dimensional

approach as mentioned before.

       SS. On the Method of Solution to the Three"Dimen-
              sidnal Problem for an Isotropie Solid.

   It will be of considerable importance to recall in the following
diseussion that in order to ensure the completeness of the solution

£or a transversely isotropic solid there must exist the displacement-

solution o£ the vector £orm

         (u,3, v,, zv,,) =::: rot (O, e, ¢,), (s.1)
in which

         (nvaOil'li + a//g +v" e//rv)¢3=O'

as shown in the preeeding seetion, when there is transverse isotropy
about the z-axis of the reference system,
    In the fust place let an isotropic solid as the partieular case of

aeolotropie ones be eonsidered: In the case of isotropy, by putting

         Cll =ii CE2 =- C3:3f C2:l = Cl.3 =' C121

                    C" = Css = Cfl6 =- --t7 (cil-cm), (5. ?)

and any other elastic constants equal to zero, one gets from (2.9) or
(3.2) and (2.17)

         A,, = c,, -:I]/i -l- e,,, (--o-/i',;--l--tajt, ), Atii := (cJi-e6fi) ozeliz ,

                                                  o'         A,,,=c,,-D-O}1--+c,,,(oOIII.+-lll/l7"-), A,,,=(c,,-c,.)DxOo"Ei--, (s･3)

         Azz = cg -e//r, + cfj6(-;sOxl'Ei- 'H- o/r, ), Am = (c"-cfifs)-oxOo?y ,

and

         eiicg6(-:Il/lf+oDz!i',,.+a///,,)"¢=:::ciic,-ny,,(S7L')!{¢=o, (s.4)

in whieh

               ooo         72=rmar..u.+ a".+ ol,. (s. s)
                   ay` oz"              axn



15D I<Ijn-jchi HATA
Next, by means of (2.13) and (5,3) one obtains

                          no                                                oJ                          a"         ri = ct,6(eii--c{:6)7"' oziDz , ri = etifs(CllTCfi6)7tlmaxDz ,

                                     a!                    1"=C6fi(Cnmea6)72 ,                                                       (5. 6)
                                    sxay

and, by putting

         c7,,(cii-c,,,)Et74039S==g)(x,y,z),/2G.=ii(p!2G, (5.7)

                    oxoyoz

in whieh G denotes shear modulus, one ean reach a solution of the
vector form

         2G(ui,v],tv,)=(oOx,eOy,8t-)ifi!i.gradq, (5.8)

in which

                              '         V2q ==: O.

   Now it becomes needful to seek solutions of other kinds. Again,
write the expressions for displaeements as in (4.11).

         zc=Ai¢, v=:= AL'¢, zv=A"O, (5.9)
in which the operators Ai, A.2 and A3 are eommutative or non-eom-
mutative as the ease may require, that is, they cannot be assumed

beforehand to be constructed with ･--[2-, a, O only. Then, from
                                  ax                                          oz                                      ey
equations (2.7) and formulae (5.3), (5.9), the equaeions of equilibrium

can be' written as follows:

       (c,V!Ai+(c.-c,,) eex (oSx A`+ oOy A2+-illz/--A.ri)]¢ :== o, (s. Ioa)

       (c,,rr2A2+(cii--c,,)-b/--(aax Ai+ oay A2+-t-Oz A3))¢= o, (s.Iob)

       [c,,72x4.:'+(cii-e,,) eaz (-sa-ifA'+ eay A2+ oOz A3)]¢ := o. (s.Ioe)

By means of formulae (5.6) and (5.9) the relation (2. Z2) beeome

         72(oay Ai- oe. AL')¢== O, (5. 11a)

         72(oa,A2-oOyA3)¢==o, . (s.11b)
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         72(aaz ,<ti- oax A3)¢== o, (5. 11c)

and further, considering the general property of partial differential
equations (2. 17), and observing the redueed equation (5.4), it is easily

seen that function ¢, appearing in (5.9)-(5.11), is a harmonic one.
    By inspecting the forms of the operators in the parentheses of

equations (5. 11), it readily oecurs to one that the £ollowing expressions
for displaeements may serve the purpose:

         ze=aO.A.¢,v=8y---A¢,w==-Iilz-A¢, (5,I2)

or the expressions (5.9) with operators

         Ai=---A,A2..eA,A3..La-A. (5.12t)
                          ay              ax                                       ez

In faet equations (5.11) are satisfied by (5.12) or (5.12') with any

function ¢ and any operatoz' A. By substituting the expressions for
the operators (5.12') in equations of equilibrium (5.10), these equations

reduce to the following:

         c,,72 oex Aa¢ =:= o,

         c,,7g,eyA･¢:-=O, . ' (5.13)
                                              '         c.V2 sez A･¢=o.

    When A is taken to be constant, equations (5.13) are satisfied,

since ¢ is a harmonie £unction, as mentioned above, and solutions (5.12)
with constant A apparently eorrespond to those in (5.8).

    Next, if operators Ai(i==1, 2, 3), 72, -a-, a, 0 are commutative
                                             ez                                    ox                                        oy
with one another, equations of equilibrium reduce to a single equation

         (oO. Ai+-ljl>- Ag+ eD, A")¢::=: o, (s. i4'>

and the relations (5. 11) are satisfied, for any operators At, sinee 72¢=O.
AIso, from equation (5.14) it is easily seen that solution (5.8) can be

aehieved by taking A in (5.12') to be constant. 'Further, by analogy
with the case of transverse isotropy, A3 can be taken to be zero and,
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putting the operator in parenthese of (5.14) equal to zero, one has

         A.i=O B, A2 ,.,-OB, Ar) =-, o. (5.15)
                            ox              oy

Using harmonic function o,/G in plaee of B¢ appearing in (5.9), the

following solution can be reached by means o£ (5.9) and (5.15).

         G(u,v,w)=(oay,-tl?.,o)ny,Erot(o,o,B,). (s.16)

                      '
From reason of symmetry, by taking A2 and Ai to be zero in sueeession,

one obtains solutions

         rot(O, op. O), rot(0i, O, O), (5.17)
with harmonie functions 0,, and 0i respectively, or, adding these, he

has

         G(zL,, v,,, zv,,) =:= rOt(Di, zY2, ZY:･), (s.ls)

                    E roW,

in which

         V2 "- = O.

Now Iet it be undertaken to obtain the third solution. By serutinizing

equations (5.13) and (5.10) and taking aecount of the relation

         rr2(.f)=2gl,(fEf(x,y,z),7gf-o) . (s.lg)

one can reasonably suppose that

         A:::: x, (5. 2e)
and the insertion of (5.20) in the left-hand sides o£ equations of (5.Z3)
yields the residuals 2cii-ee 9,2cn 02¢ and 2cii ag¢ ,which ean be
                       ax" sxDy exoz
evidently removed by the use of the eonstant operator Ai, which appears
in parentheses of equations (5.10). Thus the removing of these residuals

demands that

         2c,, + (c,,-c,,) Ai =. o,

and henee it results that

         AiAl=h 4Clt H                            -4 (1-v), (5, 21)                    Cll+C12 -
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in whieh v denotes Poisson's ratio and v== Ci2rm.
                                         Cll + CIL]
Aecordingly, it is obtained that for operators Ai

         Ai ,., O x+A-i= O x-4(1-p)
                          ax               E-X
                                                        (5. 22)
          Ae .. a x, A., .,. e x,
               oy                           ,8Z

and for displacements by (5, 9), using harmonic function 2i12G in place

of ¢,

         2G(zt,v,zv)=grad(xR,)-4(1-p)(2,,O,O). (5.23)

And, £urthermore, from symmetry reason one gets immediately

          2G (u, v, w) = grad(y2,) -- 4(1-v) (O, 22, O),
                                                         (5. 24)
          2G(u, v, zv) == grad (z2,,)-4(1-v)(O, O, RR)･

and, summing these up,

         2Gze,= grad (7a ,?)-4(1-v) 2,, (5, 25)

in which '
          ze3 = (ze,i, v,,, zv3), R = (2i, R2, 7i,･),
                                                         (5. 26)
                       ao :::: (x, y, z), l72,l =O.

The above obtained solutions (5.8), (5. 18), (5,25) will be re£erred to as
basic solutions 1, 2 and 3 respectively, and they are, needless to say,

basie solutions due to J. Boussinesq. Thus, it has been shown that, if

some caution be exercised in utilizing the relations (2.11), it is possible

to arrive at the correct solution.

    Hereon the writer wishes to insist that the second basic solution
(5. 18) has been obtained by a reasonably general proeedure of calculation

and should be an indispensable one as the so]ution (5.1) is so for a
transversely isotropie solid.

    Although by the above derivation it is evident that basic solutions

by J. Boussinesq are perfectly general, the writer will undertake to
derive them in the manner eustomary in the theory of isotropic elasticity,

and to extend some approaches. As mentioned above the case of the
                                                        -･ -absenee o£ volume force is being discussed. When investigation at
some length is made of the methods of solution to the three-dimensional

stress problems for a solid of finite extent and of the derivation of

the basic solutions from the equations of equilibrium by the various
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methods of integration, it will be easily shown that methods of solu-

tions analogous to the method of H. Neuber may be said to be not
general enough, that is, H. Neuber's basic solutions are devoid of one

important solution which corresponds to Luhe second basie one due to

J. Boussinesq <5.18). Since the evidence of the marked effectiveness

of the three-functions approaches is well known, caution should be
exercised in applying H. Neuber's approach to the three-dimensional

stress problems, if the above stated drawback of his approaeh or of
similar ones is credible. It will be undertaken to show in a later
seetion that, if the method of H, Neuber be applied without the u$e
of some particular deviee, it wiil be impossible to construet the exaet

solutions to the problem of a short column of reetangular cross-seetion,

to whieh surface tranetions are applied.
                                     '           '
           g6. 0n Some Three.Dimensional Approaches
                     for an Isotropie Solid.'it

    First o£ all, let the basie solutions of J. Boussinesq be transformed
by the use of H. Neuber's notations. Without violating generality of
the solutions, q and A ean manifestly be puti in the following foyms:

         if=-¢,, A== -di ==-(¢i,, ¢,, ak), (6.1)
in whieh

         V!(<1]',)=O, M2di=o.

By writing P" as

         F= ¢',+?oidi, <6. 2)
J. Boussinesq's solutions (5.8), (5.18), (5.25) assume the forms

         2Gze･ = -grad i7'+4(1-v) di: +2ro't ", (6. 3)

in whieh

         ze Ei. (u, v, zv) = zel + ee2 + at3.

             eel =- (ul, vl, zvl), ze,, iEi (u2, v,., zv,.), ze,3 Eii (u3, v3, zv3).

Indeed, the method of solution (6.3) is evidently J. Boussinesq's and

might be' said to be a variant of H. Neuber's method or the extended

method of H. Neuber. Though solution (6.3) is obtained foTmally from

J. Boussinesq's, this pz'oeess sure!y indicates the differenee between

these two approaches. The third term 2yot fi in (6.3), which is J. Bou-
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ssinesq's basie solution 2, may be indispensable in solving the three-

dimensional problems as shown later, but, of course, this third term
can be dispensed with in the case of a moderately thick plate or tor-

sion-free, axisymmetrical stress state.

    Now, it wi!1 be shown briefly that the divetrse kinds of integration

of the following displacement-equations o£ equilibrium for an isotropic
solid essentially yield the third term 2rot" appearing in (6. 3),

         cr2eb.= -1 grad divze. (6.4)
               1-2p ･
From this vector equation one manifestly gets

         72div?g- == O, 7272u=O. (6.5)
By eonsidering equation (6. 5) and inspecting the form of equation (6. 4),

P. F. Papl<ovitchi2) puts the solution in the form

         ze=B+gradF, (6.6)
in which B is a harmonic vector and P denotes a biharmonic function.
The author is of the opinion, howevetf, that B, which appears in equation

(6,6), is to be superseded by

               1         B+Grot 9, (6, 7)
sinee the following relation should be taken into aecount:

         div･rot t{a =L- O, Al =(A,, A,,, A,). (6. 8)

Then the insertion of expression (6.6) modified with (6.7) in equation

(6.4) leads to

                 -1         rr2F== div-B, (6.9)                2(1-v) '
and, by utilizing the relation (5. 19) in integrating this equation, one

readily gets the solution.

         zt= -1 grad(i"･B+q',)+.B+2-yotfi.
              4(1 - y)                                        G (6, 10)
                        (l7L'(p,=::O)･

This solution, exelusive of the third term 1 rot fi, is P. F. Papkovi-

                                       G
tch's basic solution, and, by rewriting .B and ¢o in the forms
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         B=-b-2(i-v)di, q,= Gi 2(i-v)a,,, (6.n)

solution (6.3) is apparently obtained from (6.10).

   Next, let the method of integration due to R. D. Mindlin be
followed.'"> One can put generally for ze

         ie==grad¢+rotS, (divg=:=O), (6.12)
and the substitution of this expression in the equation of equi]ibTium

         pL'(21(IE,") grad¢+rot S) -- o. (6.13)

Then, one can put from (6.13)

         -2i･<-l--=2:)grad¢+rots=2(IG-")ip+-Z}-rot£, (6.i4)

and, when one performs the operator of divergence on both sides of
this equation, he gets

         72¢ .. Ll..rG-2vi div di, (6.is)

and, thus, it is obtained that

         ¢==I.iiG2").(7i･to+op,),(72op,=72cb,=o). (6.i6)

Accordingly, by (6.12), (6.14), (6,16), solution (6.3) or (6.10) ean be

reaehed. Prof. Mindlin disregards the second term 1 rot£ on the
                                                G
right-hand side of equation (6.14),

    Again, from (6.13) the writer will derive the basic solution of B.
Galerkini4), and show that the correet solution relevant' to the form
of his basie so].ution also could not be destitute of the term, which

corresponds to J. Boussinesq's basie solution 2.

From the eondition in (6.12), namely,

S may be taken to be of the form

         S:==-2(i-v)rotPY+21GI2e-grad(7e･D)], (6,18)
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in which

         sw".. (x, y, z), e2£=o, (v2)2er== o.

Prof. Mindlin does not use the term within the brace in (6.18). By
applying the operator of rotation to formula (6.18), one obtains

         rotS=-2(1-y)(grad･divW-72#'Y)+--i;rrotg, (6.19)

utilizing the relation

         rot･g-rad ip == O. (6. 20)
Then, equation (6. 13), substituted by the expression Eor rot S in (6. 19),

reduces to
                                              '
         grad r2 [¢-(1-2p) div Per] =O. (6,21)
From this equation one obtains, elastieally,

         ¢=(1-2v)divPY+¢,, (72ip,=O), (6.22)
in which ¢o can be evidently dispensed with. Consequently, by form-
ulae (6.12), (6.18), (6.22) one arrives at the solution of the veetor form

                                       1         ･at =- - gradodiv LeP"+2(1-y) t72 'W +                                         rot £,                                       G (6. 23)
in whieh (mL')2 yef=o.
This solution, exelusive o£ the third right-hand term 1 rotp, is of
                                                G
the form due to B, Galerkin, and it is well known that B. Galerkin's
basic solution is equivalent to H, Neuber's. Hence, it is verified also

that B. Galerkin's solution should be equivalent to J. Boussinesq's.

   yet, it is to be noticed tha't the harmonic vector -EL yot £ can be
                                               G
merged in other appopriate harmonic veetoy formally, or the ex.pressions

(6.3), (6.10), (6.23) ean be transformed into the original forms, but

whether this harmonic vector 2rot£ or 1 rotfi is o£ profoun.d im-

portance or not will be another thing. Now, let solution (6.3) be

censidered and put as

         4(1-v)di+2rot£=4(1-v)e`', di'=-(oC`{,{P'":,¢','). (6.24)

By virtue of the relataon
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         72(7"･rot A) :=:: O. (V2A:=: O), (6. 25)

one can write

         a,,-ii-･rotsi:==a,6, '                                                     (6. 26 a)
              2(1-v)

and put

         F'=a}6+7a･di'. (6. 26 b)
Henee, solution (6.13) beeomes reduced to the form

         2Gae == -grad Ii" +4(1-v) ip, ', (6 .27)
and, of course, the dashes appearing in (6.27) can be effaeed without
loss of generality. It will be needless to discuss the ease of the solution

(6, 10).

    Next, for the ease of the extended basie solu'tion due to B. Ga-
lerkin (6.23), let a beginning be made by putting not as

         S=: -2(1-p)rot W+ 21G [2s-grad (?'-s)] =

                        == -2(1-p) rot YF･",

but as

         2(1-p) 72 Vgr+ b rots=2(1-y) rr2 W#i, (6.28)

in which

         e}P7,' = (Xt, Y,, Z'), (l72)2 ewi' ..- O.

By integrating equation (6.28) elastically, one gets

                      1
         W== eer'L 2(1-,)G [7'S'£], (6,29)

in which [r･D] denotes vector product of 7] and D,

From (6.23), (6,28), (6.29) it is found that

         ze :== -grad･div W' +2(1-p) e2 Vpt+

                       +grad(2(il,)Gdiv[r･fi]l. (6.3o)

I£ aceount is taken of the relation

         t72 div [r･D] == ff2(£･rot ?"- 7'･rot £) =
                                                      (6, 31)
  , =-72(7"･rot 8) -- O, by (6.25)
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it is easily seen that

     2(ll,)G div [a"･£] ean be merged in an appropiate part of divwy',

which is a harmonie funetion, and henee one obtains the solution of
the original form, effacing dashes.

    Although these proeesses seem plausible, they might be merely
equivalent to the neglect of the solution

         2rotp, 1rot",
                   G

or of the relation (6.8), or of the relation formula

         div[2"-grad(7"-8)]=O,(72"=O). (6.32)

Nevertheless, the methods of solutions equivalent to H. Neuber's may
be said to be eompletely general on condition that, if required, a basic

harmonic £unction, consisting of biharmonie £unctions, should be emplo-

yed, as is readily inferred from the faet that aa･rot £, whieh appears in

(6.26a), and div [ea･£], appearing in solution (6.30), are certainly the
funetions which satisfy the above requirement, that is, they a-re harmonie

functions which consist of biharmonie £unetions. And this remark will
be elueidated a little later, Hereon it will be recalled that Profs.

Sadowsky aBd Stemberg say that H. Neuber aehieves eomplete symmetry

of the three basie solu'tions at the expense of computational facility.

When the method of. the type of H, Neuber's is applied, one cannot

but have recourse to such a eumbersome manip'qlation as to need
partieular harmonic funetions stated above, and, of course, it is not

customary to use sueh harmon.ic funetions. Henee, it will be more
advantageous to apply the methods analogous to J. Boussinesq's or the

methods of the type of H. Neuber's extended by consideving 2rot£
or 1 rotDadditionaHy･
   G
           g7. Problems of Given Surface Tractions or
              Dispracements for an Isotropic Solid.

    In the first plaee it is desired to get the solu'tions to the problems

of given sur£ace tractions or displacements £or a reetangular parallele-

piped or a short column o£ rec`tangular cross-section wkhout resorting
to three-functions approaehes deseribed in the preceding section. Let
the bounding surfaces of this rectangular parallelopiped or rectangular
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piate of suflicient thiekness be given by

         x== O,2a; y= O,2b; z=O,2h, (7.1)
and let the z-axis be vertical and positive upwards,

By taking into aecount that it will be necessary to expand £unetions,
representing given surface traetions or displacements, into double
Fourier series, and that functions, denoting stresses, must be biharmonic

functions, and also by referring to equation.s of equilibrium (2.6), one

can readily put for stresses the expressions a,s follows:

for normal stresses

a. == ::cosB,ycosk,,2([

     7t S

+ ::cosk.z cosa,x(

  ot 7,

+ )Z]:COSa.xcosB,y

  7' S

A
A

[

1

71S

't

7tS

cosh

sinh

CL,eosh
O;,.Sinh

frE
lW'L

1

v･s

1

rS

cosh

sinh

l,,,x + x [ B;ts

Br ,i

ts

7n,,,y+Y[

r,,z+z[

gtnshh l.,x} +

tEllirsinh

D,,.eosh

F;･s

F- ,ls

m,. y] +

g6z,hr,,,},
(7. 2 a)

o, = ::cos3,ycosk,,z([

     ?t s

A72es

Afi o2

ts

cosh

sinh

l,,,x -t- x [B#i,sinh

B;',,eosh
l,isx]+

+ ::cosk.z cosa,x([

  71 v-

g,2,.eosh

Cinsinh M7i7Y+Y
[D2.imetr
PE
 ?li'

sinh

cosh n7nrY
1+
J

+ ::cosa,x cosB,y([

   rS

g,":,cosh

er.,sinh
r,,z+z[P;',,F-";., sinhcosh 7'rsZ

l
S,
(7.2b)

a. :=] Iill]:cos3,ycosk,,z([

     Vl S

A-,3ts

A73ts

+ Z: eOsk,,z cosa,x([

  7b 7-

C3
-otf-

C3
 ?Vl'

eosh

s3nh

cosh

sinh

l,,,x + x [ B3
-718

B3
 7tS

7nn7Y+Y[

cS
oigltl.,x] +

D;i' sinh
  v-
D#,,cosh 7zr

v] +

         + :X eos cr.x eosB,y

            rS
for tangential stMesses

([E
E
3

7･8

3
1's

cosh

sinh
r,,z+z[F3-}.s

F :'･s

sinh

cosh
r.,z
)
l'
(7. 2 c)
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      T,z == Z : sin t?,y sink.z([GG-l,:s, esOillll i.,[v -i- a; [iEil-/i,:z Seio' l]:i.,x] +

           7L S
        +Z:sink,,zeosa,ml[S-l,l:1,Stsgm..y+2i[f.r,l-r,IIg,O･,?hh7nnry]+

           ･7t ･t.
                                                  '                                      Ll,,eosh        +IIII.].¥cosa.xsinBsy([ff-l'.ggio'I]l/lir?･sz+z[tt.}.,sinhr,･sz], (7･3a)

                                          '      T.. =:= iX : cos ig,y sin n;.z( [[-lil.:: eSgisili:z.,x + x [fi,lt//its, esOil:ll i.sx] -t"

           7tS '-       '        +:Zsink.zsina,,x([J7/iLg,O..Shhm..zi+y[fT'/i',Ei,'",hhm,,,yl+

           ･ll v.

        + ::sina.xeosB,y([ff-il::esar,.,z+z[i-li'.[lC,OiXhhT.,zl, (7.3b)

           ?, s

      T.,=Z:sinig,yeosit,,z([g-l,t,:cSt61il:i.,x+x[Hi-ii--i):s,CsOiillli.,x]+

           ?t s

                                       Ji3,..eosh        +Z:cosk,,zsina,･x([f'/il:.2io'ech,m7wy+y[,.7n..sinhM'tr'U]+

           ,?t 7'

        +::sina.xsinBsy([i-iil,1:esiO･ilillr.sz+z[i-illi':ioinsRr.sz], (7･3c)

           ?. s
In these expressions, for instance, the formula

        A;is COSh lnsX + A-1.s Sinh lnsx,

             'is denoted by the symbol

         Al,, eosh        [                l?ts x .                                                   (7, 4)
         A-i,,, sinh

In order that the expressions fo]r stresses in (7.2), (7.3) may be bihar-

monic functions, the following relaCions are required:

        l?,,=-k:',+l?;',m?,.=k?,+a,2.,r?.,-=a;:+t9g', (7.5)

in whieh

        crr= r2rr., 3s= SZ, kn= Z ･ (T, s, n-O, 1, 2,3･-･)
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    CIearly, when the expressions for surface tTactions or displacements

are symmetTical about the plane z===h, such alteration may be made
as to let the origin of the coordinate system be transferxed to the
point (x=O, y=O, z=h) and the eoeflieients E,V,, F,Y,, JK,Y,, L,Y, with any

afiixes be deleted and to replace k.= n'r by k.== nff. QE eourse, there
                                 2h                                            h
is no need of the bam[ed eoeflieients, if these expressions are symme-

trical about the three plaRes sc:=ut, y=b and z=h. Now, since the
linear independen6e of the above expressions with double summation

symbols Z]Z], :Z and ZZ in (7.2), (7.3) is apparent, it will herein

        7'bS7b?･ o.Ssufllce to treat only the expressions with symbo! Z2, excluding co-
                                              7t S
eflicients with a bar, for instance. To avoid ambiguity the expressions

or solutions with symbols Z)Z, 2Z] and 2]Z] shall be referred to as
                        ?bS717･ 7'Ssolutions 1, 2 and 3 respectiveiy.

   Let the equatiens be sought, relating coefiicients with speeihe
summation indexes n, s to one another, by means of equations of

eompatibility o£ the forms

                 1 a?e         72a.+1+, ax, =O, (7.6a)
                 1 o!-e         72"gy+1+, aya'=:i= O, (7･6b)
                                                  t/                 1 oL'e         720z+1+, ez, =-O, (7･6c)
                 1 e2e         72r,.+ :=O, (7,7a)                1+v eyez

                 1 o2e                         :- O, (7,7b)         [7! Txx +
                1+v Dxe･z

                 i.m l]a=o, (7.7 c)         72 rx!t +
                1+v sxey

in which

         e= ff,,+ay+a., (7. 8)
Then, i£ solution 1 for a. in (7.2c) be inserted in equation (7.6c) and
the resulting equation be integrated with respect to cooydinate z, one

obtains elastieally
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        e=(1+v)X:-Zlili-tSB;',,cosk.zcosB,yeoshg.,x. <7.9)

                     ']t                n s.
Next, the substitutSon of the expressions £or stxesses of (7.2), (7.3) and

of the expression for e (7,9) in equations o£ compatibility, exeept
equation (7.6c), ]eads to the relations

        Bl,, z' -l?tS B2s, Bt',s=i/' Bl'ls,

                          lb;,              R)g,
             Hlts= -BE"Bliis, H;',s=Ll't'S BIi,, H?,,= 3sl'is B:',,,

                   kn                                R;ol                                             k;-,

                       for anynand s. (7.10)
Equations of equi]ibrium (2,6), $ubstituted by the solutions 1 for str-

esses, gives the z'elations

        l:tsA;zs + Bs G!?is + k" G;'ts + B7Ls = O,

        l?tsGi?ts-BsA;'ts+k7tGgts+H?ts=O, (7･il)
        lns Ge2is + Bs G}zs M-' lsnA:?iis + H7"'is == O.

I£ formula (7.8) be taken into eosideration, it follows that

        Alts + A;ts + A?ts = 2(1 + V)- l., B:,,

                        kZ                                                  (7, 12)
                       for any n and s.

Thus, all needed relations are obtained. Next, let these nine algebraie

equations (7.10), (7.11), (7,12) be solved for nine coeflicients (B;,,, B;',,,

B,3,,), (Gi,,, G,,, G;`,,), (Hh,, HJ2,,, Hii,,), obtaining

   BIis=L-TLI"'lnsA9is, B;',s=: T'l't-Tl:tiilnZA?,,, Bii,,:== 1 pt/ftA;',s,

                                      , 2(1+v)lns                         2(1+p) lns         2(1+v)
   G!lpiis =`' -27(JiirT+1.)k,,,g, ivl/"isA]is + ((1+ p)Bg'-l,s)A;,,+(vkt",-Bk')A?,,) ,

   Gts = 2(1+l)l.,ic,,, ((Bgh(1+v)g,2ts)Alts-pBZA?,,-t-(vh;',+l,A',,)A.?,,),

                                                  (7, 13)
   G!?zs = 2(1 +1,)l.,,s, 1m(5g+"lts)A;ts+(yBZ'+l;'ts)A,srmpfo,"',A;i,,) ,

   Ht,,=:::---t=l.- knPs A.g,,,

         2(1-l-p) lns
                                        '           H?ts ::::: r2tr'1+ ,) knA9is･ Hlits = 2(ii-.r) BsA?ts'
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in which

         A9zs -ww A zs + A;ts + A?ts･

It will be obvious that one can get immediately the desired formulae for
eoeffieients (B},,, B;,,, B,;;,,),(Eili.,, El?,,, Ef;'h,), (Gl,,, G7,,, G?,,), by attehing a bar

over eoeflieients to be determined from formulae (7,13). Aecordingly,

£or solutions 1, or for solutions of type 1, there exist six independent
sequences of coeflicients (Ai,,, A7,,, A?,,), (APi.,, Ae";,,, A?,,), and henee there

are eighteen sequenees of coeffieients in all for the soiutions to the

problem considered. This faet is, doubtless, the neeessary and suflltcient

condition for the validity of the solutions of the forms indieated in

(7.2) and (7.3). In this way general solutions have been obtained,
appropriat･e to the problems of given. surface traetions･or displacements,

without applying three-funetions approaehes.

   Incidentally, there will be given here the solutions o£ type 1 for
displacements, whieh are to be obtained by int.egrating stress-strain
relations.

   z` = 2iE )Z, ], ¥cosBsy cosknz[ i,i,, [igl-lli:: ++ [l:22 ,">) ((.4,i':,s ++ AArrni:,s))}}gi,",hhi.,x +

                           hX[l'111:Cs?fi:l7esx], (714a)

   v ::=: S :, llllsinBsycosknz[ 3i, ($4i:gl,"EA{ll:,sll[l-ll/l':,sj}}g,O.Slli,,,x+

                           'kifi.Ix[ll"!lilj,S82:insx]･ (7i4b)

    zv-:: ]Z! :, ¥eosBsysink･iz[i,, [ll-[lit:IY((l-[lij,s'.Ai2il:jlg?fi:i7tsx+

                           +E{l::"x[1-i:,s2',n,:i,,,x]. (7i4c)

    In the next plaee, applieation will be macte, £or instanee, o£ the

method o£ H. Neuber or extended H. Neuber's method (6.3) to the
problem under eonslderation. Thereby it will be shown that the third
                               1
right side term 2rot£ in (6.3) or                                  rot £ in (6.10), (6,23) is of great
                               G
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moment and, in case this term eould not be used, one would be com-
pelled to resort to some paytieular mathematieal manipulation. Now
it wil] be easily seen that the solutiens simiiar to those of type 1,

containing three sequences o£ coeffieients {A;,,}, {A?,,} and {A?,,} only

in (7.2) and (7.3), are obtainable from the basie harmonic £unetions of

the £oTrns

         ¢'o = Z) Z) A;,, cosB,y cosk.zcoshl,,,x,
             ns
         di == (ale,, o, o),

             ¢]=ZIZ)C;tsCOSBsYCOSknZSinhl,,,x, (7･15)
                  7L S
         £ = (z9,, O, O),

             tSLi = Z) Z B;,, sinl3,y sinic.z coshl,,,x.

                  7Z S
By substituting these harmonie funetions in formula (6.3) and comparing

the resulting £ormulae with the solutions (7,14), one finds the following
relations:

         A;,, = - g:,, A-l,, + 2(1- v) l., C;,,,

         A;'ts=B:A;is+2knBsB;ts+2VlnsCis,
         24o"']zs=k7!tA;zs-2ic,,B,B,,+2vl.,C,,, (7'16)

         ALs=2(1+p)lnsC;ts･

Hence, when one employs A£,, B;,, and C;,,, expressed in terms of A,,,
A;',, and A:, in aeeordanee with the relations (7,16), in the basic funetions

(7.15), solutions will be achieved of precisely the same forms as (7.14)

or (7.2) and (7,3) with (7.13). It appears apparent, however, that it

seems well-nigh impossible to construet the solutions t･o the problem

concerned, if it is not permitted to make use of the third term 2rote

in (6.3). There£ore, as stated earlier, it may be said that the term
2rote or 1 rotD is assuredly an indispensable one.
          G
   Nevertheless, if the following mathematica] manipulation is per-

formed, the purpose can be attained withou't applying the third term

2rotp in (6.3) as stated be£ore. Also ih this case let the solutions oS
type 1 be considered, eorresponding to the solutions (7.14), in whieh
barred eoeflieients are deleted. First, to cite,for instance,the relations

         72 (i'･grad f) ==: O. (7. 17 a)
         7L' (7o･rot Eir)=O, (7. 17 b)
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in whieh

         72f=-7!,if=-o, (ff=-(H,,Hb,Hi,],))

f"･gradf or oa･rot iY is evidently a harmonic funetion which consists of

biharmoniefunetions. ･
One may put in this case

         f== :!I Z] Yl,, cos k.zeosi9, gy eoshl,,,x, (7.18 a)
              ?b S
         uEif - (O, O, Hli),

            H3=7'Z]Z]VisSinBsYCOSle.zSinhl.,x･ (7･18b)
                 7L S

I£ the expression for f in (7.18a) be taken, and if reference be made
to the relations (7. 17 a), it will be pertinent to write functions a]i (i=O,

1, 2, 3), whieh are H. Neuber's basic haTmonic funetions, in the following

   '
         cao = ¢oi + a`o&

             op8 = Z] IE) A;is eOSBsY COS knZ eOShZ.sX,

                 vt s
             a`7, == 7a･grad f

                = l!) Z} Zts (lnsX COS3sY COSknZSinhl?isX +

                 71 S
                     unBsYSinBsYCOSk,,ZCOShl.sX+

                     -k.zcOSB,Ysinic,,zcOshl.,x), (7.19a)

         QPi = Z) Z] C;,, eos B,yeos k,,zsinh l,,,x, (7. 19 b)
             vz s
         QP2 == Z]Z D;,, sinf?, zl cos k.zeosh Z.,x, (7. 19 e)
             ns
         a'3=:Z)Z]E,,eosB,ysink.zcoshl.,x. (7.19d)
             7} S
Then, when the expression for ff (7.18b) is taken, functions a'i are to

be of the forms

         ¢bo = ¢S + ¢'o2,

             ¢'"o= Z] Z] A;,,eosB,yeosk.zeoshl.,x,
                 ?b S
             ca: = 72･rot (o, o, H,,) == (x'-lllY--- -y eaflti>

               :=:: Z) Z] V;,,, (3,x cosP,y eosk.z sinhl,,,x +

                 71 S
                     -lnsYSinBsYCOSII.ZeOShZ.sX), (7.20a)

         ¢i=Z)Z]C;,,ees,8,evcosk,,zsinhl.,x, (7,20b)
             71 S
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         ca.o=ZZ)D;,,Sint9,ycOSk.ZcoShl,,,x, (7.20c)
              7t S

         ¢b,=O, (7, 20 d)
When the expressions (7,19) are inserted in £ormula for u in the veetor
formula, of (6.3), exclusive of 'the term 2rot S, and both eoeMcients of

the biharmonic funetions ysi'n B,y cosk,,z sinhl.,x and zcosB,y sink,,zx

xsinhl.,x are put equal to zero, there are obtained

        .Dlzs= Bs l?;is, Elts =:'=- 'icn JVLts, (7･21 a)

and

         U=-21tt"(L-lns(A;ts+"Zts)+(3-4p)C;isleOS3sYCOSknZSinhl.sX+

             + lllllilli lns(lnsPTnsrl-Cis)xcosBsycgsknzeoshl.sx･ (7.21b)

By equating similar terms in the expressions (7.21b) and (7.14a), the

relations are obtained

         A;,,=l.s(hZns(AIzs+2(1-V)'Vlts)+2(IUP)C;is]' (7.22)

         A9zs = A;zs + A7is + AIits ='- 2 (1 + v) lns (l7ts Vlzs + C;zs) ,

and similarly, from the expressions for v and tv in (7.14) and those

whieh are obtained by !xieans of H. Neuber's method, using functions

¢, ('7.19), it is found that

   ' A",,=Bk'Al,,+2(2(1-v)Bg+pll',,iV.,+2vl,,.,C!,,,

                                                      (7. 23)
         A?,,=R;,lA,,mF2(2(1-p)ip;'L''Fpl,lb･)V7is+2PlnsC;ts'

It will be obvious that also by the use of the functions a`, in (7.20)

the same object can be attained, ox' Te]ations similar to those in (7.22)

and(7.23)eanbegotten. .
    Thus, it has been shown that by utilizing the above harmonic

funetions ¢'oL', which are constructed with biharmonic functions, one can
aehieve, applying the method of H. Neuber, the exaet three-dimensional

solutions which are to be obtained without employing three-functions

approaches.

    As a eonsequence, once it is known that it is possible to use par-

tieular mathematieal manipulation as deseribed just above, it would be

too much to say that methods of solution equivalent to H. Neuber's,
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destitute of the term 2rot fi, are ineomplete. But in any event it will

be advisable to modify H. Neuber's method of so]ution so as to eontain

the term 2rot fi, beeause the integration of equations of equilibrium

yields this term essentially, and the modified method or J. Boussinesq's

method is expedient to eonstruet the solutions, involving all needed

sequenees o£ coefficients, if the method of series be applied.

         g8, Solutions eo the Problems of Given Surface
            Tractions for an Anisotropic Eiastic Solid.

   In this section also a yectangular parallelepiped wiil be considered.

In the first place let the bounding surEaces of the solid conceyned be

given by

         x== ±a, y=: ±b, z=±h, (8.1)
and let the coordinate z be positive upwards. For simplicity let it be

supposed that the expressions for given surfaee traetions or displa"

cements are symmety2eal about the planes x=O, y:=:O and z=O, and,
further, that in the first p}aee the solid is orthotropie and, of course,

the axes of elastic symmetry aye paral]el to the coordinate axes. When

the basic differential equation for ¢ in (3,12) ean be resolved into three
differential equations of the seeond oz'der with real coeflicients as equa-

tions in (3.15), the solutions analogous to those ln (7.2), (7.3) eould be

found as easily as in the ease of isotropy. However, when this is not

the case, it becomes necessary to proeeed to solve the problems under

consideration in the following manner.

    Firstly let stress funetion ¢ be written in the form.

         ¢==Aexp(P,iy+k.iz+6x), (8.2)
in which A is constant or coeffieient and i denotes imaginary unit, and 6

is a eonstant to be determined from differential equation (3. 12)

         k,,="hrr,B,==Sbre. (n,s==o,1,2･-･)

Then, by substituting exponential function ¢ of (8.2) in 'ehe basie
diffe.rential equation (3. 12) and solving the resulting algebraie equation

for 6, one gets the solutions of the following forms, as examples, for

kuhe e.ase of topaz or barytes.

         i6ns = ±ilnss 2Bns =' ± (21ns+i".iloLs)t

                          :',6ns=±(3gns+i,32ns), (8.3)
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in which vl.. and y2., (y=1, 2, 3') are real constants.

Accordingly, funetion ¢ ean be written in the £orms

         S6i<ns') = Z] :Z] A3zs COS BsY COS7bnZ COShilnsX,

                71 S
         ¢2(ns') = X £ A7ts COS iE?s'Y COSketZ eOS22?,sX COSh21nsx,

                7t S
         ¢3(ns) =- Z) Z A?ts COS Bs Zf COS knZ COS ?,Rots X COSh tl7zs X,

                ?t s
and

         ¢ozs)=SZS]<ns)+¢2<ns>+¢3(7zs). (8.4)
The solution to be derived from this Eunetion ¢(,,,) may be referred to
as solutions of type 1 by analogy with the solutions 1 in (7.2) and (7.3).

    Similarly on may write

         g5 =Aexp (a.ix+ k,,iz+By), (8. 5)

         at.=L-rrr. (T=O,1,2･･-).
              a

The solutions o£ equation (3.12) £or 6, in whieh the expression for ¢
(8.5) is substituted, are of the forms:

         iB7ir = :t-7 En?'n,･, 26nr = ±' (s7n7w+i2ptnr),

                          3iir = +- ('iM,tr+i:'･Ynv)･ (8･ 6)

Hence, one getS fOr ¢v<..)

         ¢i(nr) =' Zl Z) B?itrCOSarXeOSknZeOShi7'nn.Y,
                nr
         ¢2{.nr) = Z) Z) B,"'i,･ eOS arX eOS ketZ COS!p,zr eOShL,Mn.Y,

                ?t 'i'
         ¢s(n.) :- Z) 2[l B;,. eOS at.x eOSk,,Z eOS3u.,, eOSb 377zmy,

                n f,
and

         ¢(?t7'>=SZSJ(nr)+962ot?･)+SZ5a(n?･). (8.7)
    And in ]ike manner the roots in 6 of equations (3.12), into which

is inserted

         ¢=A,eXP(at.iX--Bsiy+6X), (8t8)
are of the forms

         iBo･s = III:lrrs, 2Srs :== ±(27'rs+i2Vrs),

                          r,iis= ±' (:i7'rs-Jir)Vrs). (8,9)
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Thus, the're are obtained for ¢v(.,,)

         ¢i<.s> -- ZZ Cj･seOscr.xcOs3,yeoshir.,z,
                rS
         ¢2(.,) == ¥. 2i] C;.,eoscr,.xcosB,ycos2v,,,zeosh2r,.,z,

         ¢3(rs) == 2I] Z) C?･s COS atrX COSBsY eSO3v.sZ COSh 3r.sZ,

                ･1･ s
and

         ¢(rs> ::]= ¢i(7's)+¢2<,･s)+¢3(rs). (8.10)
It is evident that

         ¢=95(,ts')+EIS(7tr)+S6o･s). (8.11)
Solutions to the problem coneerned, which are to be deTived from

funetion ¢ of (8.7) and (8.10), may be denoted by solutions of types 2
and 3 respectively by analogy with the solutions 2 and 3 foy isotropic

reetangular parallelepiped in (7.2) and (7.3) with double summation

Iabels IE]Z and Z]Z.

      71?- rS
   In this way it is possible to get the desired forms of stress £unetions,
although it may be troublesome to solve the equations (3. 12), substituted

by the above exponeiitial functions for many different speeific indices

T, s and n. This difiieulty is, needless to say, presented by the faet

that 'the differential eqvuation in question (3.12) cannot be reso}ved

into three differential equations of the second order with real coeracients.

    For the case of cubic crystals it is found that 2, pt, v in (8.3),

(8.6), (8.9) vanish, and so for the sake of simplifieation Iet, £or the
moment, such materials be eonsideTed that every o" is real, that is,

2, " and v vanish. Then, by means of the expressions (3.11) and of

the £ormulae (3,7), (3.8), the exp]fessions for displacements similar to

those in (7.14) may be readily obtained from functions ¢c.,), ¢(..) and

¢c.,) derived just above:

         ze ==i ze<,,,) + zec..) + 2e(,,) = -tex lliSZS

             :･l
           =' JI[] :Z] £ COSi?sY COSfonZ Sinh vlnsX't-An"s +
             v=l7v s
             :           + Z] Z] ;I] Sina,,x eOSknZ COSh vM,trY-nB7Vr +

             v=1 7z r
           + 21]z;E] sin a.xeosB,y eosh ,r,,,zJ.c,y,, (s.12)

             u=lr s



　　Some　Remarks　on　the　Three－Dimensional　Problems　Concemed　with　the　Isotropic

　　　　　　　　　　　　　　and　Anisotropic　Elastic　Solids．

in　which　　　　　　　　　　　　　　　　　’

　　　　　　轟一÷・嘱・岬鋼・・ん溜・・㈹＋

　　　　　　　　　　　　　　　＋ノ藁（4画一・4・2β1一・4・・叫

　　　　　　面一÷峨｛一（4・調，・ん夷＋蹴轍

　　　　　　　　　　　　　　　＋・鴫（一（君2ジレ？？z荒7．十2（1」261；十2（123ん晃）｝・

　　　　　　・σ論一差剃一嗣怖β脚即1）＋

　　　　　　　　　　　　　　　ちγ狐（一（Z33・レγ罫、十2d23β言十2（93：正α寡）｝・（8・・3）

and

　　　　　　”＝立一π，φ

　　　　　　　　　∂〃　　’

　　　　　　　　　ヨ
　　　　　　　＝ΣΣ｝Σsinβ8写cos1診，、zcoshレZ，、，α）・刀A，野牛

　　　　　　　　　レ＝．17L　8

　　　　　　　　　ヨ
　　　　　　　＋ΣΣΣcosα，，磁cosん，、2　sinh〃2，、，．〃・。8，島．＋

　　　　　　　　　ン碍1π　　？・

　　　　　　　　　ヨ
　　　　　　　＋ΣΣΣcosα。ρ5　sinβ、〃coshレγ，．、2・。σ，怨，　　　　　　（8．14）

　　　　　　　　　り＝1？・　8

ill　which

　　　　　　・A爺一新叫卿…鶴＋…㈹＋

　　　　　　　　　　　　　　　＋・z握（一θ、ゴノ託，＋2θ、，β§＋2θ、、11暖）｝・一

　　　　　　βト素・㌦・B払｛ψ1幽3鶴＋…α懇）＋

　　　　　　　　　　　　　　　＋・剛・…鴻一…α享一・…鶴）｝・

　　　　　　窩一斗鰍｛一（・1鵬2β1＋・・講＋

　　　　　　　　　　　　　　　＋・γ霧・（一・・…γ寡・＋2…β1＋・・・…蓼）｝・（8・15）

171



172 . Kin-iehiHATA
and

      zv = a u,¢
         9z
       = Z) Z) Z) COS i?,y Sink,,z cosh vl.,x',,A,t', +

         Y,.3=1 ?t s

       + Z] 2!] Z] cosa.x sink,,z eosh .mmy･.B,Y. +
         V=!7Z 7-
         :l       + 2] Z] Z eOS cr,-X COSBsY Si}lhv7',･sZ'wC7"･s,

         y=tlr s
in whieh

      tvA,tVs :== rm.-1, k7tASs(-(f!2Bg+f3:3k7"i+ 2f23k:bBZ) +

               + ,IS2,,(T f,i].li, + 2f,,PZ+ 2fi,,ex)) ,

      ?vB7",. == :,, k.B,V,,(-(Aa;L+fr,3ic,",+2fr,ik;'o?-)+

               + v7?Z?t,t <- f2g'v?72･?,,, + 2fi-o a?. + 2f2r, fo,2,)]

      wC?･Vs =] fuili,i-, vr.sC,V･s ((f]i6t{+ f2]t?g+ 2fi2a,AO'.B:) +

               + vr?･, (fr,3･.r?.,- 2fL]33.""- 2f3ia?.)] .

from the stress-strain relations (3. 1).

  Fox instance, one has

      ax == ax(ns) + ax(nr) + ax(rs)

         3       =:= Z] Z) Z] COSBsY eOSknZCOShyZ.s'xA,V,s +

         Y3=17z s
       + Z] Z] Z] COS cr.X COSknZeOShv7n?trY'xB7Yr +
         u=l 7z r
         rl       + Z] Z Z] cos cr.x eosB,y eosh .T,.,z-.C,V,,,

         V==1r s
in whieh

      xA,Ys = ell yl?ts'･,eA7Ys + Ci2Bs'vA-7¥s -m Ci3leob'2vA･7¥s ,

      xB7Yr = Cil a,-'t`BXr + Ci2v7nnr'vBob;r + Ci3kn'?vB7Vr ,

      xC7V･s = Cii ar'2eC,V･s + Ci23s'vC,Ys + Cmr.s'.C,V.,,

'

(8. 16)

(8. 17)

Accordingly, by formulae (2. 4), the expressions are obtained for stresses

(8. 18)

(8. 19)
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              :         r.. = Z Z) Z] sin B,y sin k,,z eOSh ul.sm'y2A7Ys +

              v=1 7t s
              :l            + Z) 2 .;S.-1 cos at,. x sin k,,z sinh vm.,. y-y.B,Z, +

              y='l n r
              .s            +2[)ZZ)COScrrXSiP-BsYSinhvr.sZ'gyeC,Ys, (8･20)
              v=:1r s

in which

         y2A7Vs = -C"(k,i'vi47Vs+i3s'7vA7Y,s),

         yntBKr = C"(" ic?i'vB7Y,?- -- v77Znr'ivBeVr) ,

         yzC7Y･s=C-x(Trs'vC,Y･s-3s'wCoYs). (8.21)

Since the ]inear independence of three l<inds of styess functions ¢(.,>,

¢(..) and ¢(.,) may be obvious and, for instance, the solutions of type
1 contain three sequenees of coefflcients (AJ,,, A;,,, A5.,), one ean determine

these coe'flleients so that the boundax"y eonditions may be satisfied. It

goes without saying that even in the case of general loading functions

the solutions ean be obtained by analogy with the solutions for the case

of isotropic reectangular thick p]ate.

    Namely, when given surfaee 'traet2ons are general, one may write,

for instanee, ¢(.,> in the following form, moving the origin of the co-
ordinate system to the corneT (x=-a, y=--b, z:=:-h).

            3
      ¢(ns') = Zl･ Z) Z] eOS3s`U eOSk?tZ eOS vRnsX (A7",sCOSh vlnsX+ An?Vs Sinhvl.sX),

            v=1 ?t s

in whieh

                      sff                                n7r         iR,,, E'ii- O, Bs rm-' 2b' k" ::'=N "'ii7Il' (8.22)

               (s, n='O, 1, 2, 3･･･).

Thus, by referring to the expressions ob'tained for the ease of symmetri-

caUoading function, one ean, immediately obtain the desired solutions,

    Addition･a} remarks on the case, wherein the reetangular eartesian

eooydinate system, the axes of whieh are parallel to the edge lines of
the yectangular pairallelopiped eo'n,eei ned, ean be derived by a rotation

of the eoordinate system to whieh the stress-strain relations (2.1) or

(3.1> are referred, will be stated. Now let the £ormer eoordinate
system be taken to be (x', y', z') and the latter to be (x, y, z), and

suppose that they are conneeted wi,th eaeh othey by the transformation

scheme
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             xyz
            i -'         xt1li 7'ns ni

         y' l,, m2 na (8.23)
          zlil:l 77z:l n3

which is to mean the rotation of the eoordinate system.
    First, let the case of styess-strain yelations for a transversely iso-

tropic solid (4, 26) be considered. When the edge lines o£ 'the reetangular
parallelepied unde]r consideration are parallel to the x, y, z-axes, for

instance, stress function ¢(.,), corresponding to the solutions of type

1, as stated be£ore, may be written in the form

                3
         ¢(.s) = Z) )!I) Z) eosB,y eosk.zeoshl.,g`x･A3,,
               t=1 ?t s

in whi.ch l4;,:=:k;',+BZ and gi denotes -fi/. (i=1, 2, 3), and whieh is the

solution of "the basie dfferential equation

             ooO         (tjiaO.",+,ei+,,O)"ii..)szS.==Oo ･ (4.28')

Then, when the coordinate system (x', y', z') does not agree with the
system (x, y, z), and fuyther. the transformation scheme (8,23) is general,

the ctifferential eq-uation (4.28') eanp.ot obviously be invariant under

the tra'nsformation of the eoordinates in aceordan.ce with the sehem. e

(8.23). Howevesc, since one ean deal with the differential equation,s of

the seeond order only in this ease, the solutions may be readily obtained,

thougb. the solid in question may be virtually regarded as moxe highly

anisotropic. In f,aet, under the rotation about the z-axis by ang]e 0,

'that is, the transfformatign in aecordanee w2th seheme

               x yz
          x' cose,sinffO

             -sine coseo. (s.24)          yt

          zt               O OI

the stress-strain relation

of the matrix form:

f. or a gene/rally orthotropic solid beeomes that
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          o.. rfaual.,a13OOalf"                                     ext X

          ay. a12a,,,)a23OOcr261                                     e,t 1

          a...,.al3at,ip,ctnflOOa:ISi.ez', (8,25)
         (ili. (.ft.8,£o,,:,iiZ,i!.g,,/ii kt[

whieh contains 13 constants, Furthexmore, when the trans£o-rma'tion
seheme to be used is general, the stress-strain relation Eor an orthoropic

solid, re£eryed to the coordinates (x', y', z') obviously eomes to contain
21 constan'ts. Hence, if the differentia] equation (3.12) cannot be
resolved into three dfferential equations of the second order with real

coeMeients, it virtually becomes neeessaify to deal with the elastic

solid, possessing 21 independent elastie eonstants. In this ease one
would have to treat basie differential equation of the type (2. 17) direetly.

   Firse, in this case let 'the surfaces of a rectangular parallelepiped

be taken to be given by

         x' =L- O,2a, Y=:= O, 2b, 2' == O, 2h, (8.26)
as before, altd, by putting, for instanee, as

         szS=Aexp(ic.iz'+B,iy'+i6x'), (8.27)
in which i is imaginary 'ornit and

                     '         kei== kZZ, Bs=`' Zrrb, (n･s:==O,1,2･･･),

and by subseituting this expression in equation (2.17), referred to 'the

coordinate syseem (x', y', z'), one gets algebraie equation in S o£ deg]ree
six with real eoeffieients, Then, solutions of the type 1 are gotten,
but, of course, this process is tedious, At any rate, if the axes of

elastie symmetry for an orthotropie solid are not parallel to the edge

lines of a rectangular para}lelepiped, the proeess of calculation obviously

becomes complicated to an appreeiabie degree. It will be apparent
that the above method, assoeiated with the expression (8.27), applies

to the ease, where a rectangular parallelopiped is made of generally
anisotropic material.

                        g9. Conclusion.

   This paper, eontinued from the previous papers regarding the thiek

plate problem, has dealt with the isotropie and aeolotropic elasticity
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problems for a reetangular plate of suffieient thickness or a )reetangu]ar

parallelepiped. The previous papers are coneerned with a moderately
thiek piate, whereas it is found that in the ease of orthotropy the
exact solutions could not be obtained for a moderately thick plate,

which corresponds to an orthotropie elastie piate of zero thickness.
However, this faet seems quite immaterial, and it will not be inadequate

that we ean solve completely the elasticity p-roblems o£ given sur£aee
tractions for a suffieiently thick plate'in both cases of isotropy and

anisotropy by the method of series as shown above in Sees. 7 and 8.
The solut･ions ob'tained in this paper as governed by the boundary
conditions are obviougly exaet within the infinitesimal theory of elasticity

and, of course, those for the case of anisotropy do not involve any
restrietion on elastie con.stants.

    Sinee no general method of solving three-dimensional problems for

an anisotropie elastie solid of finite extent within the theory of the

first order seems to have been developed as yet, the author has attempted

to seek a three-dimensional approach to those problems. Though many
of the anisotropic elastieity probiems niight be beyond the scope of

the herein presented method' o£ analysis, ai)d the method obtained in
this paper may be awkward in many yespects, the result would be of

some significance in studying the problems o£ anisotropic elastieity.
It is to the author's regret that he could not resolve even the diffe]rential

equation (3.12), not substituted by any numerieal values of elastic

constants, into three differential equations o£ the second o-rde±' exeept
for the ease of transverse isotropy, and it is, of eourse, desirable to

surmount the diMeulty involved in resolvin.g the differential equation.

for ¢,

    Further, in eonjunetion with the three-ctimensional solutions for

isotropie solids, obtained as the particular ease of anisotropic elastic

solids by 'the use of the general method for anisotropic solids explained

in See. 2, the brief diseussion of three-functions appvoaehes for isotropic

solids was presented. The remarkable effeetiveness of the term 2rot fi

or 1 rot fi was £ully explained with illustz"ation, and moreover, it
   G
was indieated that the correet integration of displaeement-equations

of equilibrium yielded essentially this term. In any case one should

exercise some eaution in applying H. Neuber's method of solution or
any other method equivalent to H. Neuber's, though there will be no
loss of generality in discarding the third. term 2 rot " in veetor formula
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(6.3), by virtue of the existenee of the above-described mathematical

manipulation. However, it wM be very obvious that 'uhe application
of J. Boussinesq's approaeh or of any other approaeh equivalent to H.
Neuber's, which is modified so as to include the solution as 1 rot D,

                                                         G
is advisable.
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