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§ 1. Introduction.

In this paper some remarks on the solutions of problems for stresses
in three-dimensions caused in isotropic and anisotropic elastic solids are
stated for the sake of continuity with the earlier papers® associated
with thick plate problem. As aforementioned in the introduction of the
second of these two papers, the method of solutions due to J. H. Michell
and A. E, H. Love to a problem of thick plate is, strietly speaking,
that for a moderately thick plate, and so, if one employs this method,
one cannot but apply the reduced boundary conditions represented by
the resultant forces and couples or displacements and their derivatives
on the middle plane of the plate. Algo one must apply in the case of
free edge conditions Kirchhoff’s theorem on torsional couple and vertical
tangential force on the cylindrical surface of the plate. In the previous
paper the author says that in view of this deficiency of accuracy of
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this method of solution to the three-dimensional problems, it will be
pertinent to indicate the forms of solutions in the higher degree of
accuracy to be furnished by the theory of the first order, that is, the
solutions to be applicable to a sufficiently thick plate problem under
general boundary conditions, and in a later report this complete solution
of the problem will be presented.

In the present paper, solutions for a rectangular plate of suflicient
thickness or a short column of square cross-section, which are to be
referred to the rectangular cartesian coordinates, are obtained by both
the procedures due to J. H. Michell® and J. Boussinesq® in the case of
isotropy. By the way, the author discusses various modes of approach
to the three-dimensional stress problems and asserts that most methods
of solution to the three-dimensional problems for isotropic elastic solids
should be equivalent to J. Boussinesq’s method and thereby he extends
the methods analogous to H. Neuber’s®.

J. H. Michell® says that the method of extension of his solution
for a moderately thick, isotropie, elastic plate to anisotropic solid is
perfectly obvious, but it seems to the present author that he does
mean by his “anisotropic solid” an anisotropic solid possessing elastic
symmetry equivalent to that of a crystal of the hexagonal system.
And yet even for a moderately thick plate possessing transverse isotropy,
if the axis of elastic symmetry lies in the middle plane of the plate,
this extension would be impossible, In the present report the author
extends to aeolotropic or orthotropic solid his solutions obtained by the
method of series, referred to above, for a sufficiently thick, isotropic
plate.

So far there have been published a number of analytical treatments
for plane stress or strain problems in the theory of anisotropic elasticity,
but investigations on three-dimensional problems for aeolotropic media
seem comparatively few, and yet a mode of attack in the case of
aeolotropy, corresponding to J. Boussinesq’s approach or H. Neuber’s,
is deemed not known. Though it will seldom be necessary to deal with
the aeolotropic elasticity problems which require twenty-one indepen-
dent elastic constants, materials of construction which are essentially
orthotropic or are to be regarded as such from the macroscopic view-
point, will be numerous. Hence, it would be desirable that a general
method of solution to the three-dimensional problem for orthotropic or
anisotropic solid is derived, and the extensive studies on its application
are undertaken.
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and Anigotropic Elastic Solids.

This paper excludes the case of curvilinear anisotropy or orthotropy
as found in Love’s textbook on elasticity®. It will be inevitable to be
content with investigating the cases, in which the so-called elastic
constants are constant in true sense of the word or are not funtecions
of positional coordinates with the exception of the case of curvilinear
orthotropy relevant, for instance, to spherical or eylindrical coordinates.

A. S. Lodge” has recently shown that problems for generally ani-
gotropic elastic solids can be transformed into those for isotropic ones
by the use of an appropriate linear transformation of coordinates, or
affine transformation, imposing specific conditions upon elastic constants.
When these conditions for the validity of his method ean be satisfied,
his result serves to facilitate calculations, but, needless to say, trans-
formation of any such kind without any restrictions upon elastic constants
would be unattainable and such restrictions will be evidently undesira-
ble. He has moreover extended the solutions for the case of transverse
isotropy obtained by H. A. Elliott®, and these extended solutions seem
to the present author more noticeable, though Lodge says that this
result will be applicable to a wider class of problems but whether his
extended solutions are completely general or no is not known. By
applying the general method of solution for anisotropic solids to be
derived in this paper, the solutions due to A. S. Lodge can be verified
to be completely general. It is to be added that J. H. Michell® presented
in 1901 perfectly general solutions for transversely isotropic solids, but
the forms of his solutions may be said to be awkward and rather hard
to apply in practice. The subject of transversely isotropic solids is
thought noticeable and it seems most accessible to us, so that problems
associated with transverse isotropy will be treated at some length.

The main purpose of this paper is to describe the general methods
of solution to the elasticity problems for sufficiently thick plate, which
is subjected to surface tractions, in cases of both isotropy and aeolotropy
under homogeneity restraint within the assumptions of the infinitesimal
theory of elasticity for the sake of continuity with the author’s earlier
papers. Most notations to be used throughout this paper are Love’s
or are self-explaining and so, if not necessary, no pains will be taken
to explain the implications of notations in detail.



132 Kin-ichi HaTA

§ 2. General Method of Solution to the Three-Dimensional
Problems for Anisotropic Elastic Solids.

The writer will take here and throughout this paper the rectangular
cartesian coordinate system such that stress-strain relation or strain
energy function, referred to this system, can be expressed as simply
as possible by considering every degree of elastic symmetry, and no-
tations for elastic constants will be the same as Love’s'®™. Now let a
homogeneous, generally aeolotropie, elastic solid in the absence of volume
force be considered within the scope of the infinitesimal theory of
elasticty. Then needed stress-strain relations or the generalized Hoo-
ke’s law in matrix notation are of the following forms:

Oy Ciy Ciz Ciz O Cps Cug "y
Ty Co1 Caz Cog Cay Cay Cag e,
[ Cyp C3z Cgz Cyy Cyy Cog e,
Tys o Ciyt Cip Ci3 Cyy Cy5 Cug Tye ’ (2 1)
Taz Cst Co2 Crg Csy Css Css T2a
Tay Cit Cer Cgz Cyy Cgs Co Ty

in which ¢,, (r, s=1, 2, 3., 6), are the elastic constants of the anisotropic
solid and have symmetry relations of the type

Cps = Cyy. 2.2)

Hence the solid possesses twenty-one independent elastic constants.
Asg is well known, the relations (2.1) are equivalent to the following.

1.4 14 _aW . aW
se, " ae,  ~ ee, U ar,’
aW oW
Tae™ — s Tay— , (2. 3)
N ez N oy
in which e, = % | ey:i}, 0, =W
2z oy o7
sw ., av . % 20 . U
Tyz: i -}———’ 7mz:i—‘+a—‘; ')Tl/:_av\_}—i’ (2_4)
ay a9z az oz £y 3y

and W in (2. 8) is a homogeneous quadratic function of strains containing
the above 21 constants and of the form.
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2 W = 1,62+ Cosfl -+ Cosfi - Coil - Gl 2+ Coel oy -
+ 2C1:6.8, F 20:6,8, F 2C232,0, + 20457 T o+ 204 4o 2y
F 265 el vy F 261827 1o 2015807 ot 20168, oy +
F 20,8, 7T o 20258,7 1y F 2Coi, T oy + 2C5,8,7 0
+ 20587 ot 2058,7 oy (2.5)

The stress-equations of equilibrium are

20, 4 a_z'@zj’Ml_ Olwe __ 0,

o 2y oz
ey g B 4. O — g, 2.6)
2% Yy %

e | BTye | 0. _
aw Ay a2

Since there is little prospect of obtaining solutions if one undertakes
to solve these equations directly with the aid of the conditions of
compatibility, a start will be made from the displacement-equations
of equilibrium. In the subsequent, extensive use of the operational
method will be made in order to facilitate much the process of cal-
culation. By inserting the expressions for strains (2.4) in equations
(2.6), one obtains the equations of equilibrium of the forms

Ay + Agv + A = 0, (2.7a)
Ayt -+ Ao + A = 0, (2.7Db)
Az + Ay + A = 0, 2.7c¢)

in which the operators 4, (r, s=1, 2, 3) possess the symmetry property,
namely

Ay = Ay, @.8)

and are expressed as

a3 1] 3 \
Ay = (Cny Cosy Crsiy Cogy Crpy Cm) <ﬁ‘ I ‘—>
ax ' ay o2/,
3 3 3\’
Aoz = (Cisy Cazy Cagy Casy Casy Cup) <‘W* y T —)
or Yy R/,
2 3 CAY
Ay = (css y Cuy C335 Csyy Cys, 045) <“‘* y T —> (2.9)
aw oy ez /.
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1 1 1
Ay = <Cm ’ CQQ y Ciss o (Cm + 025) r g (Cm + Cﬁs) r o (012 + C(iﬁ)) X

< 3 3 3 >2
X — "y T
sx ' sy a2/,
1 .1 1
Ays = {Cisy Cig, Cigy —2‘(035"‘0-15), 7‘(013"*'055): 7‘(@14+056) =
< a3 3 a2 )‘
X =) sy T
2249 Y 32/,

1 1 1
Ay = <Ciiﬁ! Coyy Cyy, 5 (czs + 04-1) g (045 + c:sn) g (025+ 046)> x

) d 3\

X <_— 2 T T —‘>

T ay a2/,

wherein symbolic representation implies a formula such that

) E] 2y
(dn ’ d:z ’ d:sfs s dzm d:st ’ dl-z) (ﬁ y T ‘"> —
2% oY oz

a 2 2 ° o 2
= d]l 2 + dzzi; + d:;:; 2 -+ zdza s + 2d§sl‘“L' + 2d1"' - .
Y :

2%’ o7 Yoz %37 " pxaYy

2. 10)

It appears self-evident that the operators constructed with differential
coefficients only, referred to rectangular cartesian coordinates, have
the commutative property or are subject to the fundamental laws of
ordinary algebra. Now, by multiplying equations (2.7h), (2.7¢) with
Ay, and 4, respectively and subtracting, one obtains

(Am/lz-z‘_ AJzAz:s) v+ (/113/123“ Am/laz) w =0, (2- 11 a)

and similarly, by multiplying (2. 7a), (2.7¢) with 4, and 4, respectively
and subtracting and thus eliminating v, it results that

(Ayy Aoy — Ao dlig) U4 (Apg oy — A Asg) w0 = O . (2.11b)
Accordingly the desired relations can be arrived at
My = I =Iw, (2.12)
in which
I = Aydos— Ay,
I = Aydy— Al , 2. 13)

= /133/112’“/113/123 .

" Since for the present the general case is being treated, one will be
obliged to put for the dizsplacements
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w=TIT"¢, v=TIT, w=IT¢, (2. 14)

in which =9 v 2,

from the relations (2.12), though one should obviously be cautious to
utilize equations (2.12) to deduce the forms of solutions, Next one
must look for the basic partial differential equation to be satisfied by
function ¢. When the expressions for displacements (2.14) in equation
of equilibrium (2.7a) are inserted, this equation becomes

Ay dys { Ay Ao Ay 2455 Ais Ay — Ay (/123>2 +
— loy(Aisf— Ao Af'} 6 = 0. (2.15)

This differential equation is of the 10-th order, and, by considering the
general property of boundary value problem in three-dimensions, it is
readily inferred that the differential equation satisfied by function ¢
is to be of the 6-th order. Further, solutions of the equations

At =0, Aug=0 (2. 16)

will be eéasily seen to be trivial, by observing the form of equation
(2.7a). Also from other equations of (2.7), the same operator as in the
brace of equation (2.15) are obtained. Consequently, the basic partial
differential equation to be satistied by ¢ is found to be of the form.

{/111/112/123 4 2A23A13/112 - /11,(/1.23)2—- Aiﬂ(/llx)z_ /133(/112)2} ¢ =0, (2 17)

The operator in the brace of this equation is a homogeneous function

of operators —--9«—, 2 and - of degree 6, and, if this operator can be
o 82

ay
resolved into three factors of degree 2 with real coeflicients, analytical

treatment will be much facilitated, but such cases are likely to be
few, if any. Ior definiteness let the case be considered, wherein such
resolution as stated above can be performed. Using symbolic repre-
sentation (2,10), one may write

{A11A22A33+2/123/131/112_/111(/1"3 2_ 7(/11 ) A33(/11">i} ¢ =

1 2
= <CL,1, Qpay Ay, %am, *E Q5 ;a1r)< 5 d’y ‘%)X
/ 1 1 1 3\
a’"’ 23y 23y T Wid ’7 —“‘a’x ’ I
(e Oy i, Oy o, gt (2 ay az>><
X <a/31 y Obszy Oz, ‘#;‘asu } Qg5 ; Qs ,) < , 82/ Sg”) ¢$=0, (2.18)
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and hence ope has

¢ = ¢1+¢2+¢x ' (2. 19)
in which
1 3 ) 2 \°
Gry ory oy gy, oy oy T T ’J:O’
<“ 2 )(ax Ay az>7
1 EY EY 2\
sy oy ey gy e, ) (2, 2, 2 N 4= 0,
(a'l g )<ax aYy 3 >¢

1 ) ) 3\

(am, e, ey ?0’311 ., > <%’ 5’ é;) (/)5__ 0.
The solutions for digsplacements (2. 14), together with the basic differential
equation (2.17), can be taken in all cases of aeolotropy, perhaps, with
the exception of the case of transverse isotropy. It may be said that
the method of solution, derived above for the aeolotropic elasticity
problem, corresponds to J. Boussinesq’s or H. Neuber’s approach to the
three-dimensional isotropic elasticity problems. If the resolution with
real coefficients as aforementioned cannot be carried out, it will be
troublesome to treat equation (2.17), and the above result, referred
to other coordinates than rectangular cartesian, may be too intricate to
be utilized in practice. And yet the resolution or factoring in this case
cannot be enforced as it can be in a two-dimensional orthotropic elasticity
theory. At any rate it will be rather difficult to obtain a reasonably
correct factoring with real coefficients, if it is possible, taking account
of the faet that values of elastic constants are, of course, determined
to within some errors. Though the author is assured that the above
result is useful, its form may be awkward and so it will be desirable
to seek a more convenient one.

§3. General Solutions for Orthotropic
Elastic Solids.

As a matter of fact the problem concerning a material with higher
degree of aeolotropy as found in certain crystals may be insignificant
and may be excluded, and at most the solids with orthotropic or or-
thorhombic symmetry or transverse isotropy will be worth noting, For
an orthotropic elastic body stress-strain relations (2.1) reduce to

Oy == €€, + Cpp€, T+ Cy36,,

6, = Cpe, + Cne, + cye, , (3.1)
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G, = C13€, T C6, + Cxz0, ,
Tyz e C“Tyz, Taw — Cg;;;TQ.z, T:uy Py CGngy.

Accordingly operators in the foregoing section are much simplified.
From formulae (2.9) one has

52 pe 5
Ay = ¢y =+ Cg—— + Cp——,
o Y oz’
Aoy = cm),in + Cop ° —+ Cyy 3-_)‘) .
% oy 22"
o 3° 7 3.2)
Agy = Cio—— + Cuy -+ Gy,
% s 92,2
Ay = o' 2 , Ay =a’ 2 , =4’ o ,
ayaz xaz 373y
in which
al = (623+C41> , o = (013+055) , a' = (012+Ga(;) . (3 3)

From (2.13) and (8. 2) there are obtained

B

= 2y, = oy, =2, @3
aYaz 192 33y
in which
° 2 o
F}B == (C]] a"_agas)iﬁ + a‘ <Cﬁq i '}_ Clr,;,fa S >
- 3y % /o
% = (Cy a"l——aja")in— + a® <C(;g—a—T+C44 aq (8.5)
ay’ ax” 8/
[1:}3 == (Cg:; 0::3“&10‘.2) ‘a_j + a3 <055jwn_+044 a - >
a2’ ax° 2/ -
For convenience’ sake one puts
ary, =AHn, ' =AIH0,, 'yl = AIl,, (3. 6)
in which
A=dda,
Iy = (dy, A, Ay, dy, dy, dl‘l)< a,, , —a;'y —a‘,—\
aw® | oyt A/,
. 9 Ex 2"\
a*ll, = (611 y Cozy 633, €135 Gapy 312) <)‘: y . > (3 )
. ax® a2yt o2/,

Q3H3 - (f]l: .]L"er .f:isy fzs; fst; f]2)< 84,2 ? i’ i>_

2% oyt = a7’
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wherein

2

, {5 2
aa aa
Gy = CosCosy A= C44<c-7~ - ) oy = Cﬁu<c?,3w “—“‘“\)
’ ’

PERVAN &
1.3 - 2
a'a a'a . . aa
2dy = <C~12~ 5 ) (C-z:s" 5 > +Cugs Zdiil:cﬁ(}((/ﬁ?._—‘“,;"> +CuCys
a /N a a
a'a’
2d; = 055<C_m-» ‘T‘) + Cs s (3.8a)
P
a’a’ ala®
€ — 05;(@1 = > €227 Cy Cg5 633:055<033_ ’;{'*)
[24 4 ’
1.2 2 3 12
aa” a aa
2 ey = C(;(;<Cf;';_‘ 3 ) +CuiCrs, DOy = <011 ] > <C%_ 3 ) +Css 5
a 28
a’a®
2e, = 01;<Cn - o > + Crs Cep (3.8D)
2 3 13
a~a aa
fu = Cr;r;<cn — > fzz:Cﬂ«s<ng —— > Ss=0uCss,
[28 ’ a” s
; ad P
2fy = 055<022— - > +Cuce, 2 fu=culcy— ; > + 56
[/ a
2 3 1,3
aa aa o
2fp = <011_ ; > <C:zz'_ S > + Ceg - (3.8¢)
[24 a

The implications of symbolic representations in (8.7) are similar to those
in (2. 10), but for caution’s sake it is indicated that

(dll) d'ﬂy d".%; d'.’i%y d-’i]y dl'Z) <§;; i 9 )‘

3 P 2

1

4 o4 g E 4 g}
—d v dy® +dy2t2d, ® vod, 2 tod, °
3 ! 2

' Ay’ o7 = oy a1%e? sty -
(3.9)
3
Now, if ¢ is written in place of _a_¢__, which is evidently permissi-

XY
ble, from (2.14) and (3. 4) the expressions for displacements are obtained
2] 2 s a 3 _ 7 2
u:_gac_]“BFqu, v:/agl"ﬂl’gyﬁ, w—~5-z-FgFB¢, (3.10)
or, by substituting the expressions (3.6) in these formulae and writing
$/A in stead of ¢, which is likewise permissible, one gets

_ 8 g =2 =2 1,
u=_ ¢, v= 5 I,¢, w= e I, ¢. (3.11)
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The basic differential equation to be satisfied by function ¢, appearing
in (8.11) or (3.10), can be found from (2.17) and (3. 2), namely

(] 0 G

Lcncucrr ? 1 C22C14C5 2 + Cys Cyy Oy aﬂ +
2a° ay’ %’

+ { Cy1 oy o+ 2044 Cgs Cop 20 a20° — 41 Cog (Coy + 204,) +

— € C1y (Cis + 2C55) — C3C1o (Cr2 + 2066)} ;L‘;gay—b?
Py ’
J*az

+ Cas G5+ Can Gy Cg Cas Gy (Con T 2044)}

Cas— Cas Gy (Cas +20H)

-ﬂ

ay-

ariod

4 Ca3Cas Con F Cuy Oy Cuy —C5 Gy (Coy + 2655

{onc

+ {c,;c“cmecy
{
{

+ {C1; CyyCrs+ C1 Gy crr_cl’crc(cn'!‘?(?w}
} =

=+ {C]IC-HC(‘)G_'_CHCZ'ICM Ci2Cys Cw+ zcrr)

2! oy’

+ {cq,c 5Co6 1 Cr1 Cas Cas — 10 Cyy (Cpa F 2cm)

Mwo 3.12)

The above solutions of displacement—equations of equilibrium regarding
orthotropic elastic solids are manifestly completely general except for
certain cases of the class of orthotropic solids. For orthorhombic solids
the regolution of the operator in the bracket of equation (3.12) in the
three real factors of degree two will be easily performed, if possible,
since the operator concerned is virtually considered as that of degree

3, though that is needless to say.
In addition the above solutions can be derived in somewhat different
way. When one puts for displacements
au’ v’ ow’

U = , V= , W =
A 3y 2

: (3.18)

and integrates the reduced equations (2.11a) and (2. 11b) with respect
to « and y respectively, he obtains the relation formulae similar to
(2.12).

pt = [3v = I . (3.14)
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Hence the same expressions as in (3. 10) are obtained and further the
substitution of the expressions (3.10) in the equations of equilibrium
(2.7a) yields the differential equation (3.12) multiplied by coefficients
(ciates) (€ tCs).  Supposing that the differential equation (3.12) can be
resolved into threer differential equations of the second oder with real
coefficients, for form’s sake equation (8.12) may be written in the form :

(a'n 8‘0 + a’H > ¢y =0,
oy
<a'z U aL,, + Qs au{, > ¢2 =0,
oy’ 52" (3. 15)

2 52
<G/rﬂ +a37 ay”l"aﬂ;'; >¢‘3: 0,

b= g1t ot i

§4. Completely General Solutions
for a Transversely Isotropic Solid.

As mentioned before, this class of solids is one of the most important
particular cases of orthotropic solids. The stress-strain relations for
a transversely isotropic solid contain five independent elastic constants
and are expressed as

Oy = Cpn €, + Cpn€, + C5€,,
g, = Cpy,t+ Cne, +ce,,
0, = Cpe, + Cpe, + one,, 4.1)

Tyz = C»J»}Tyz y Taw — C—HTmz 3 Tmy - “’2* (CIJ_CIZ) rmy .
These may be obtained from the relations (3.1) by putting
1
Cyy = Gy, Czg = Ci3, Cy = Cgz, Co = ? (Cn_cm) . (4- 2)

Of course, the z-axis is parallel to that of elastic symmetry. The solution
for a transversely isotropic solid achieved by H. A. Elliott® and A, S.
Lodge” seems convenient of application. The latter says that whether
this solution is completely general or not is not known, and hence it is
deemed necessary to investigate its generality. The subsequent dis-
cussion will assure one that the solution obtained by them is perfectly
general and of most simplified form. Indeed, J. H. Michell® showed,
though A. S. Lodge does not point it out, that the differential equations



Some Remarks on the Three-Dimensional Problems Concerned with the Isotropie 141
and Anisotropic Elastic Solids.
in three-dimensions for a solid, which is elastically equivalent to a
crystal of the hexagonal system, can be expressed in the following
form. By transforming Michell’s notations into the ordinary ones, if
required, they became

2

< agv+i’i+r1i’i->vlz(},

o’ 2Yy” 27"

(Z+ 2+ )v=0, 4.3)
ox” oy oz’

< 840 + —a‘n + 73 8 >(z)3 =90,
217 oy’ oz° 7

in which

vV, = <0+Qa%%>’ Ws = ’%‘@Tﬁg Z;),

0=e,+e, te,,

and, furhter,

1
Qu = — { Cs—Ci+Cy (pzl + 1)} s
Ciy
p == SQIT “ ‘*04 |),,
Ciat+Cyy (4 5
7‘1r2 d “C“i , Tt T = /—“C“C;;;;—E—C?;;*2‘_013044 ’ .
Cyy CinCyy
r1‘>:&; (azll 2).
Ciss

As described in the following, equations (4. 3) are utterly analogous to
those due to A, S. Lodge, and in fact J. H. Michell certainly shows
that there are needed three independent partial differential equations
of the types of equations in (4. 3) for the three-dimensional problems
concerning transversely isotropic solids, but his method of solution may
be said to be harder to apply.

In the next place, let the method of solution deduced in the fore-
going section be applied to a problem for the class of solid concerned.
From (8.5) and (4.1) one has

a‘Z

2

> 82 ag
L=I7% = _(013+ Car) <C<m +Cas 5;;“'*‘044’—”) ; (4.5a)

292°
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o

2 3
I, = [044 (Clz + CGG)“ 0 — - Cyy (019 + GGS) ——t
ax’ oY°

-+ {C;—‘,s(@m+CSG>"<013+C.H>2} Si;/] . (4 Sb)

and the basic differential equation (3.12) with (4.2) can be readily
resolved into three factors with real coefficients as follows:

Cay [C” (?j;? -{—_:7;.2> -+ {(013 + C»M) ]61 -+ 044} aa; } X

Cny
X [Cn (L+a(> + {(c];; + 1) s +c44} o ]x
FovT 3y T
X [Cm; (“L"’*a;,\ +Cy 8“., ] ¢ =0, (4 0)
‘axt ey’ Er%

in which %, and k%, are the roots in k of the equation.
044(\(3»3 + 044) K+ {(013 + 044)2*@11033 + 634} k+ c-u<013 + Cu) = 0. (4- 7)

Of course, there seems to exist no definite reason why the coefficients
or k. appearing in factors of (4.6) should be real, but for almost every
transversely isotropic solid this will be the case. Then, considering
equations (3.15), one can put for the forms of displacements by means
of the expressions (8. 10) with formulae (4. 5), except the case of equation,
appearing in (4.6),

{cm( ;x +aan) +c§z~} $:=0. @.8)
This is easily seen from the fact that the operator in the brace of
this equation is equivalent to that of (4.5a), so that the expressions
(8.10) cannot be used in this case. Thus, excluding function ¢, and
deleting the operator I'; or I'; in each expression in (3.10), since I'%
equals I'%, one can write for displacements

) s o 3 o
a:‘—“ra a 2 a:—‘""l—'a a s a:rl—" a »
“ 3¢ B¢ v oYy B¢ W oz B¢ (4_ 9)

(a=1, 2)

in which a=1 and a=2 correspond to %, and %, in (4.7) respectively.
¢. satisfles the equation

[Cu <§a?_+ :;2 ) + {(C,g"l—C“) k. +c44}

3 N
2 gm0 @y
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As stated in the preceding, the basic partial differential equation of
the sixth order (2.17) or (3.12) contains all needed basic differential
equations for the three-dimensional problem considered, and hence it
becomes needful to seek a solution relevant to the third basic equation
(4. 8).

Now let a beginning be made by writing for displacements the
following :

w=Ag, v= A, w= A, (4.11)

in which AY(v=1, 2, 8) is the operator to be determined and is taken
to be subject to the laws of ordinary algebra for the present. Then,
by referring to the relations (2.12) with formulae (3. 4), or the relations
(8. 14), and formulae (4.5), it follows that

¢ U oy BV
ry 2 —ry 2=, (4.122)
| BV g AW

ry 2 —ry 2 =0. (4.12D)

The substitution of the expressions (4. 11) in equations (4. 12a) and (4. 12b)
yvields the eguations

AT P 2P g =
ry(a2 a2 )g=0, (4.132)
1 A2 2 o 4s @ g = _
(14 oAl Jo=o, (4.13b)
respectively, Hence, on condition that I';¢+ 0, one gets by (4.13a)
A =A° A=42, (4. 14)
2z EY
in which
Agp#0,
and, further, one has
I'té =0. (4. 15)

From (4.14) and (4.138D) it is, therefore, obtained that
A=Ar3, A?:Z]‘g—;—, (4. 16)

in which A¢#0. As the operator A can be merged in function ¢, the
expressions (4,11) with (4.14) and (4. 16) evidently agree with those of
(4.9). Next, ¢ appearing in (4.15) should be originally denoted by ¢,
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observing equation (4.8), then from (4.15) and (4.13Db) one obtains

AP =10, (4.17)
namely displacement w vanishes for ¢,. Thus, for a transversely iso-
tropic solid three displacement equations of equilibrium reduce to a
simple equation :

@@§%+u¥é%>%::o. 4.18)

Accordingly, it is obtained from (4.18) that
A g g
At=A o A A — (A7 ¢5# 0) (4.19)

and one can obviously do without the operator A’. In consequence
one gets the third solution corresponding to function ¢, namely,

— Oy, Vg = — — @3, W3 —U, .
¢ o9 0 (4 20)

in which ¢, satisfles equation (4.8) or (4.15). Adding solutions (4.9)
and (4.20), the complete three-dimensional solutions are arrived at for
a transversely isotropic solid by the use of the method of solution
proposed by the present author, showing one case which needs some
slight modifications in this approach.

Now let the solution due to H. A. Elliott and A. S. Lodge be cited
for the case of transverse isotropy and let it be shown that the above
solutions perfectly agree with the result to be cited in the following.
Solutions due to Liodge and Elliott are

U= 22U, V=2V, W= 2 W, (=1, 2, 3).

w =

’LLu:-a—(/)-L, q)u::_gf/i“_, wa::_,a_]{;a¢a'
2% oY % (4.213)
(=1, 2).
gy 2 _
=y U= ¢s, wy =0, (4.21D)

and ¢; (=1, 2, 3) satisfies the equations

<aa + 30 +u.b-«-a_7
s’ xf 3z’

)@:0, 4.22)

wherein v, and v, are the roots in v of the equation

C11Coy ¥+ (Cis — Cii G + 2C1361) v + Gy = 0. (4, 233)
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by G Plw ' (4.23b)
Cen Cn—0Cp
and
_ (enva ) _ 9
ke = et (a=1, 2) (4.242a)

and let the relation be added,

- (013+CH)]CLI+C44 _ Conles

- Cit B (Cis+cu)+enk, ' (4.24b)

By (4.24b) it may be ssen that &, satisfies the equation (4.7). Hence,
(4. 243) are the same as those which appear in equation (4.6), and
differential equations (4.8) and (4. 10) can be rewritten into equations
(4. 22), that is, the symbols », can be used for the solutions obtained
by the author. In order that the conformity of the expressions for
displacements (4. 9) with those in (4.21a) may be confirmed, it must be
shown that the following equations hold:

Iy = ke e, (a =1, 2). (4. 25)

By means of equations (4.7) or (4,23a) it is readily ascertained that
equations (4.25) are equivalent to equations (4. 22) relevant to v, and v,
Thus from (4.25) ¢, and %, ¢. can be substituted in place of %4, and
I'%;¢. respectively, which appear in the expressions (4.9). By the above
shortened proof the completeness of the solutions for a transversely
isotropic solid due to H. A. Elliott and A. S. Lodge is established in
the opinion of the present writer.

In addition, reference will be made briefly to J. H. Michell’s app-
roach. From an inspection of his result and of A. S. Lodge’s, it follows
that 7,(G=1, 2, 3) equals v;(¢=1, 2, 3) and so p. (a=1, 2) agrees with k,
(a=1, 2). Though Michell’s differential equations (4.3) are certainly
equal to those in (4.22), it is to be regretted that Lodge’s solution or
equivalent one was not reached by J. H. Michell. Since A. 5. Lodge’s
solution for a transversely isotropic elastic solid is expedient and sim-
plified in form, and available for use without any apprehension about
its completeness as verified above, it will, of course, be advisable to
employ this solution.

It will be noted that the solutions for the case of transverse iso-
tropy may be regarded as a simple extension of the solution for plane’
stress or plane strain in an orthotropic material to three-dimensional
one, and that function ¢, in (4. 22) is of the harmonic type and can be

Va
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readily determined. For instance, let an elastic plate of moderate
thickness be considered. Take the z-axis to be in the direction of
thickness of the plate and positive upwards, and the origin of coordi-
nates to lie on the middle plane, assuming that the plate has trans-
verse isotropy about the z-axis. Then, solutions can be written by
virtue of the solutions (4.21) to (4.24). Stress-strain relations are

Oz = Gy €+ Q28 + U,
G, = G2y + Ané, + Use,
Y 129 22 C gy 25 Yz 9 )
‘ (4.26)
Gy = Qpalq + Uz, + U6, ,

Tyz = a’HT'yz ’ T — a’ﬁﬁrzm y T.'z:y - a/S.“:Tmy y
in which, using notations for elastic constants c.z, one can write

Gy = Cysy Qg = Cp3y O = Cyyy Qo3 = Cpa,

Solutions for displacements are as follows:

oy ay a) = ]'u"”iy"a—y j_) a3 :112
Mn s Vay Wa) <C 55" 3y az¢ (a )
5 5 (4. 27)
(s, Vs, W) = (0, YR —a—y-> ¢,
in which
(W 2+ 2+ 20 p=0, (=129 (. 28)
N T
and v, v. are the roots of the equation
oz Oz 1V + (a?z—allazz"“za'xza:.s) v+ Oyt = 0.
Further,
b= oo 2Om g VOO (4. 29)
Oy a2 — Chag Cizg+ Css .

and v, and k., are evidently the same as those in (4.23) and (4.24). When
this plate is in plane-stress state, the relations (4. 26) are, of course,
as follows :

gz:Tg/z:Tmz:()y

or
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erc = Oy 0y + al-lgy '
ey - aif_’om + amay ’
(4. 30)
e, = A0, + dyo,,
Ty = Clos Tay -

Forms of solutions (4.27)-(4.29) will undergo no change, and it will be
obvious that for an orthotropic thin plate, i.e., an orthotropic plate of
zero thickness, the solution derived from that for transversely isotropic
solid is available, though it will lead to a final result which is slightly
different from what is to be obtained by an ordinary approach. Yet,
from the following simple explantion it will readily be inferred that,
when the thickness of the plate, possessing such a transverse isotropy
as stated above, is moderate, there does not exist any correct solution
for plane stress state which corresponds to what is obtained by A. E.
H. Love™ for the case of isotropy. Thence also exact solution for this
plate in the generalized plane stress state could by no means be achieved,
Of course, this generalized plane stress does not mean the mean value,
taken through the thickness of the plate, of the stress in the middle
plane of the plate. In order to satisfy the first two stress-equations
of equilibrium for plane stress state even in the broadened meaning,
it will suffice to take the stresses of the following forms:
oK >H aF

o, = , 0, = y  Tay = — 4, 31
ooy Y ot “ axay .31

Since ¢, ¢, and ¢, are independent of one another, they can be treated
separately. For instance, from (4.27), (4.30) and (4. 31) there are obtained.

9 )

e, = Iy adji]’ = <a11 aa~ + a12‘8~ > F,

o p

o’ o’
0,— 20 (am A aa—>F (4.32)
ay ay” ax®
e, = adyi] — <0(‘., 31 + a ”a‘a ) F,
2z ay” ox?
and
¢ P
Ty = (b, +1) 2 = — gy, . 4. 33
e = (o )axay " ooy ( )

Equation (4. 33) gives elastically
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pe - EID (4.34)
and, hence, in order that the solution for a plate of moderate thickness,
i.e., one not in the limit case of zero thickness, can be obtained and
expressed as finite power series in 2z, the insertion of the expresion
(4.34) in equations (4. 32) must yield the basic differential equation (4.28)
with v, but it does not do so certainly. In the next place, if the
expressions (4.30), together with (4.31), be substituted in one of the
equations of compatibility

e e, . ATay

L , (4. 35)
Y ar’ 513y
the following differential equation for F' is obtained:
) v 5
{azi 2 " +(2a4,+ag) ? S + an ’8 4} F=90. (4- 36)
o x5y Y
This can be rewritten into the form-
<{31 o +3> <ﬁz 42 ) F=0, (4.37)
ax® 8y’ s 2y
in which
Bif = _ag{a”z’“qa'h . B+ f = — 2y Oy Oy Gy — 23 . (4.38)
O — g Gl Uiy

Thus, by the inspection of (4.29) and (4. 38) it is easily seen that only,
if the elagtic constants a, and a,, be ignored, 5. can be thought equal
to v, in (4.28). These facts show that the solutions (4.30) and (4.27)-
(4.29) can be applied to the orthotropic thin plate problems, and, further,
that correct solutions for a moderately thick plate of transverse isotropy
and, of other aeolotropies, needless to say, could not exist.

Hereupon, it becomes needful to point out that between the im-
plications of a generalized plane stress state which is termed frequently
in conjunction with thin plate problems and with problems concerning
plate of moderate thickness there is an utter difference. That is, mean
values, taken through the thickness of the plate, of the generalized
plane stresses may be said to be nothing but the values of plane
stresses relevant to the plate of zero thickness.

Accordingly, concerning aeolotropic plate problems, one can only
deal either with the case of zero thickness by drastic assumptions or
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with the case of sufficient thickness exactly by the three-dimensional
approach as mentioned before.

§5. On the Method of Solution to the Three-Dimen-
sional Problem for an Isotropic Solid.

It will be of considerable importance to recall in the following
discussion that in order to ensure the completeness of the solution
for a transversely isotropic solid there must exist the displacement-
solution of the vector form

(s, vy, wy) = 1rot(0, 0, @), (6.1)

in which

(Z+ St ul
o Y o7

>¢3:O,

as shown in the preceding section, when there is transverse isotropy
about the z-axis of the reference system.

In the first place let an isotropic solid as the particular case of
aeoclotropic ones be considered. In the case of isotropy, by putting

Cyy == Con = Cg3, Co3 ™ C;3 == Cya,

.2

1
Cyy == Cyy = Cgg = 2‘ (011*012> s

and any other elastic constants equal to zero, one gets from (2,9) or
(3.2) and (2.17)

2

a? az a‘l N a:.
Ay = ¢y — Gy </”’;,”+“T> , Ay = (@1“‘%6) ,
art Y 92/ 332
a‘] :)Z ; 2 2
doy = €y e A Gy <%+ af) , Ay = (CII—C(;G) i‘\ , (5 3)
Yy %" 2z X3
2 Pe 5? 3
Ay == ¢y - — + ¢y <“ - +4,1> , A= (Cuﬁcﬁs)‘ y
2" ar® Ay 2y
and
i 5 2"\ o
Cu%c(f;"‘ —+— > ¢ = CllcEG(V—) ¢ =0, (5 4)
ax” oYy~ a2
in which
pre 2 4 9 4 9 (5.5)
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Next, by means of (2.13) and (5. 3) one obtains

9

5 .
I = ¢y (Cn C«r>[7” 37187 y 47 =cy (Cn*Cas) VM—BCEBZ ,
. , ., B
I = cylcn—Cg)V swoy (5. 6)

and, by putting

0 ) 5

Golen—caf 7' 20 = (@, v, 9/20 = of20, .7)
in which G denotes shear modulus, one can reach a solution of the
vector form

2G (uy, v, w)_(ax,%,a‘i’z7>¢zgrad¢, (5.8)

in which
172([/ ) O .

Now it becomes neediul to seek solutions of other kinds. Again,
write the expressions for displacements as in (4. 11).

u=A¢, v=A4%, w=A4¢, (5.9)

in which the operators A!, A? and A® are commutative or non-com-

mutative as the case may require, that is, they cannot be assumed

beforehand to be constructed with -*, i 2 only. Then, from
ax’ 2y’ a2

equations (2.7) and formulae (5.3), (5.9), the equations of equilibrium

can be written as follows:

I 2 A1 o 2 1, A ]
lcmy A +(Cu CGG) on <3xA + 2y A + )J =20, (5 10&)

a2 A2+ (e - cw) AAAAAAA Al+§A~+-_A* =0, (5.10D)
1 IR

% 2y
el +oa—cu) 2 (EEA +2ae2a)g—0. (6.100
By means of formulae (b.6) and (5.9) the relation (2. 12) become
P (%Al—%ﬁ) 6=0, (5. 11a)
P (%AL%A‘*) $=0, | (5. 11b)
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(B 41 B g\
V(ETZA a:cA>¢_0’ (5.11c)

and further, considering the general property of partial differential
equations (2.17), and observing the reduced equation (5.4), it is easily
seen that function ¢, appearing in (5.9)-(5.11), is a harmonic one.

By inspecting the forms of the operators in the parentheses of
equations (5. 11), it readily occurs to one that the following expressions
for displacements may serve the purpose:

=2 =2 =2
U= Ag, v 5 Ad, w > Ag, (5.12)

or the expressions (5.9) with operators

A =2 A, A= 2 A, A= 4. (5. 127
ox oY for

In fact equations (5.11) are satisfied by (5.12) or (5.12" with any
function ¢ and any operator A. By substituting the expressions for
the operators (5.12)) in equations of equilibrium (5. 10), these equations
reduce to the following :

cnﬁﬂgx_ A =0,
cul? _é%. Ag =0, (5.13)
011[72:71‘1-¢ =0.

When A is taken to be constant, equations (5.13) are satisfied,

since ¢ is a harmonic function, as mentioned above, and solutions (5.12)
with constant A apparently correspond to those in (5.8).

Next, if operators A’ (=1, 2, 3), 7%, 2.2 2 are commutative
ax’ 8y’ oz
with one another, equations of equilibrium reduce to a single equation
3 3 4o B 45 «
_Al - A‘ 414_7) — B 5. 14
<ax + BY + 22 $=0 ( )

and the relations (5. 11) are satisfied, for any operators A7 since I’¢=0.
Also, from equation (5.14) it is easily seen that solution (5.8) can be
achieved by taking A in (5.12)) to be constant. Further, by analogy
with the case of transverse isotropy, A® can be taken to be zero and,
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putting the operator in parenthese of (5.14) equal to zero, one has

Al — fyB, Aﬂ:_%B, A =0, (5.15)

Using harmonic function #,/G in place of B¢ appearing in (5.9), the
following solution can be reached by means of (5.9) and (5. 15).

. 3 3
, v, = (2, —2,0)9, = rot(0, 0, &,). 5.16
G (u, v, w) (w 2 o> rot (0, 0, 95) (5. 16)
From reason of symmetry, by taking A* and A' to be zero in succession,
one obtains solutions

rot (0, 9., 0), rot(®,, 0, 0), (6. 17)
with harmonic functions ¢, and ¢, respectively, or, adding these, he
has

(; (ui’! v‘ly w‘.’) - rot (?911 ?92y 79’%):

5.18
rot 2, ( )

Ll

in which
29 =0,

Now let it be undertaken to obtain the third solution. By serutinizing
equations (5.18) and (5.10) and taking account of the relation

raf) =220 (f=fw v 2, 7F=0) (5.19)

2%

one can reasonably suppose that
A=, (5. 20)

and the ingsrtion of (b.20) in the left-hand sides of equations of (5.13)
yields the residuals 2c¢y; -92% s 2ey a4 and Zey Gl , which can be
8z’ ALY BN

evidently removed by the use of the constant operator 4', which appears
in parentheses of equations (5.10). Thus the removing of these residuals
demands that

2¢ 4 (Cu—Cu) A =0,

and hence it results that

— Al dey, . o
A=at= - S0 = 401, (5. 21)
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Cia
cuten
Accordingly, it is obtained that for operators A4,

in which v denotes Poisson’s ratio and v=

A= gr A= % 441
20 or
(5. 22)
A= g, A=y,
Y o7

and for displacements by (5.9), using harmonic function 2,/2G in place
of ¢,

2G (u, v, w) = grad (i) —4(1—v) (4, 0, 0). (5. 28)
And, furthermore, from symmetry reason one gets immediately

2G w, v, w) = grad{yi) —4(1—-»)(0, 4, 0),

5. 24
2G(u, v, w) = grad (z2;)—4 (1—»)(0, 0, 2. ( )
and, summing these up,
2Ge, = grad () —4 (01— 1, (5. 25)
in which :
Wy = (Uy, vy, Ws), A= (4, 22; 23,
= ) G ) (5. 26)

r=(, vy 2, MFi=0.

The above obtained solutions (5.8), (5. 18), (5.25) will be referred to as
basic solutions 1, 2 and 3 respectively, and they are, needless to say,
basic solutions due to J. Boussinesq. Thus, it has been shown that, if
some caution be exercised in utilizing the relations (2.11), it is possible
to arrive at the correct solution.

Hereon the writer wigshes to insist that the second basie solution
(5. 18) has been obtained by a reasonably general procedure of calculation
and should be an indispensable one as the solution (5.1) is so for a
transversely isotropic solid.

Although by the above derivation it is evident that basic solutions
by J. Boussinesq are perfectly general, the writer will undertake to
derive them in the manner customary in the theory of isotropic elasticity,
and to extend some approaches. As mentioned above the case of the
absence of volume force is being discussed. When investigation at
some length is made of the methods of solution to the three-dimensional
stress problems for a solid of finite extent and of the derivation of
the basic solutions from the equations of equilibrium by the various
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methods of integration, it will be easily shown that methods of solu-
tions analogous to the method of H. Neuber may be said to be not
general enough, that is, H. Neuber’s basic solutions are devoid of one
important solution which corresponds to the second basic one due to
J. Boussinesq (5.18). Since the evidence of the marked effectiveness
of the three-functions approaches is well known, caution should be
exercised in applying H. Neuber’s approach to the three-dimensional
stress problems, if the above stated drawback of his approach or of
similar ones is credible. It will be undertaken to show in a later
section that, if the method of H. Neuber be applied without the use
of some particular device, it will be impossible to construct the exact
solutions to the problem of a short column of rectangular cross-section,
to which surface tranctions are applied.

§6. On Some Three-Dimensional Approaches
for an Isotropic Solid.*

First of all, let the basic solutions of J. Boussinesq be transformed
by the use of H. Neuber’s notations. Without violating generality of
the solutions, ¢ and 4 can manifestly be put in the following forms:

G Wy, A= — B = (O, Tu, &), (6. 1)
in which

P2 (@) = 0, P*d=0.
By writing F' as

F=®+vrd, 6.2)
J. Boussinesq’s solutions (5. 8), (5. 18), (5.25) assume the forms

2Gu = —grad F+4(1—v) @ + 2rot 9, (6. 3)
in which

w = (U, v, W)= W, + 2w+ Uy,

W = (U, Ve, W), U= (U, Vs, Wa), U= (u.g,v Vs, Wy).

Indeed, the method of solution (6.3) is evidently J. Boussinesq’s and
might be said to be a variant of H. Neuber’s method or the extended
method of H. Neuber. Though solution (6. 3) is obtained formally from
J. Boussinesq’s, this process surely indicates the difference between
these two approaches. The third term 2rot# in (6.38), which is J. Bou-
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ssinesq’s basic solution 2, may be indispensable in solving the three-
dimensional problems as shown later, but, of course, this third term
can be dispensed with in the case of a moderately thick plate or tor-
sion-free, axisymmetrical stress state.

Now, it will be shown briefly that the diverse kinds of integration
of the following displacement-equations of equilibrium for an isotropic
solid essentially yield the third term 2rot# appearing in (6. 3).

e =

Sy grad div . 6. 4)

From this vector equation one manifestly gets
PFrdivee =0, P*lPea=0. 6.5)
By considering equation (6.5) and inspecting the form of equation (6. 4),
P. F. Papkoviteh™ puts the solution in the form '
w—=B+tgrad F, (6.6

in which B is a harmonic vector and F’ denotes a biharmonic function.
The author is of the opinion, however, that &3, which appears in equation
(6.6), is to be superseded by

1
B+ —rot g, 6.7
or (6.7

since the following relation should be taken into account:

diVI‘Ot fl = 0 3 A — (A;[, A-g, AA:;) . (6. 8)
Then the insertion of expression (6.6) modified with (6.7) in equation
(6.4) leads to

) —1 .
PR == div.B, 6.9
21—y (6.9)
and, by utilizing the relation (5.19) in integrating this equation, one
readily gets the solution.

—1 1
w=__— grad (1".]3—1‘—([(,) +B+ —rot9.
4(1—v) G (6. 10)

(& (P():O) .
This solution, exclusive of the third term % rot ¢, is P. F. Papkovi-

tch’s basice solution, and, by rewriting £ and ¢, in the forms
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1
G
solution (6. 3) is apparently obtained from (6. 10).

Next, let the method of integration due to R. D, Mindlin be
followed.” One can put generally for 2

u = grad ¢ + rot S, (div §=0), 6.12)

B~~§2(l—v)@ @0 = — 2(1—) &, , (6. 11)

and the substitution of this expression in the equation of equilibrium
yields
f 2(1—

— &Y

grad ¢ +rot S\ =0, (6. 13)

Then, one ean put from (6, 13)

2(1—
1—2v

)grad¢+rot8 M(ﬁ—k%}arotﬂ, (6.14)

G
and, when one performs the operator of divergence on both sides of
this equation, he gets

prg = G?” divd, 6. 15)

and, thus, it is obtained that

b = agf”)( Dy,  (Pe,=T0=0). (6. 16)

Accordingly, by (6.12), (6.14), (6.16), solution (6.3) or (6.10) can be
reached. Prof. Mindlin disregards the second term % rot® on the
right-hand side of equation (6. 14).

Again, from (6.18) the writer will derive the basic solution of B.
Galerkin', and show that the correct solution relevant to the form
of his basic solution also could not be destitute of the term, which

corresponds to J. Boussinesg’s basic solution 2.
From the condition in (6.12), namely,

div§ =0, 6.17)
S may be taken to be of the form

1 .
S = —2(1—v)rot W+ﬁ{2;9—grad(1 .,9>}, (6. 18)
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in which

W=(X,Y,2), MP9=0, FPW=0.
Prof. Mindlin does not use the term within the brace in (6.18). By
applying the operator of rotation to formula (6.18), one obtains

rot § = — 2 (1—v)(grad-div W — 72 W)+ -Aérot 9, (6.19)
utilizing the relation

rot-grad ¢ = 0, (6. 20)
Then, equation (6. 13), substituted by the expression for rot § in (6. 19),
reduces to

grad P* {¢ —(1—2v)div W} = 0. (6. 21)
From this equation one obtaing, elastically,

¢ =(1—2v)div W+ ¢,, "¢y =0), (6.22)
in which ¢, can be evidently dispensed with. Consequently, by form-
ulae (6. 12), (6. 18), (6.22) one arrives at the solution of the vector form

1

w = —grad-div W+21—»)/* W + ~-rot 9,
G (6. 23)

in which EW=0.

This solution, exclusive of the third right-hand term % rot ®, is of

the form due to B. Galerkin, and it is well known that B. Galerkin’s
basic solution is equivalent to H. Neuber’s. Hence, it is verified also
that B. Galerkin’s solution should be equivalent to J. Boussinesq’s.

Yet, it is to be noticed that the harmonic vector -(1? rot 9 can be

merged in other appopriate harmonic vector formally, or the expressions
(6.38), (6.10), (6.23) can be transformed into the original forms, but

whether this harmonic vector Zrot# or =5 rot 8 is of profound im-
- T

portance or not will be another thing. Now, let solution (6.3) be
considered and put as

A1) B+ 2rot9 =4 (1= &, @ =, &, &). (6.24)

By virtue of the relation
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Pr(rrot A)=0. (F*A4=0), (6. 25)
one can write
1 ,
T r.rot 9 = &, 6.264a
P20y ’ (6. 262)
and put
B = @+ v @, (6. 26b)

Hence, solution (6.13) becomes reduced to the form
2Gw = —grad F' + 4 (1—v) @/, (6 .27)

and, of course, the dashes appearing in (6.27) can be effaced without
loss of generality. It will be needless to discuss the case of the solution
6. 10).

Next, for the case of the extended basic solution due to B. Ga-
lerkin (6. 23), let a beginning be made by putting not as

8 = —2(1—)rot W+ % {29 —grad (9] =

= —2(1—y)rot W,
but as

21— P2 W+ %1’0‘5 9 =20 - )W, 6. 28)

in which
VV/ - (-X/r Y/! Z/)’ ([72)2 ‘g/vyl =0,
By integrating equation (6. 28) elastically, one gets

, 1
Wew_— 1 .29
210G [2-9] (6. 29)

in which [#-9] denotes vector product of # and #.
From (6. 23), (6.28), (6.29) it is found that

w = —grad-div W4+ 20— W +

[ 1 iy ‘
+ grad (200G div [ 9]{. (6. 30)

If account is taken of the relation
P2 div[#-9] = F*(9-rot »—r-rot 9) =

6. 31
= —P@rot9) =0, by (6.25) ¢ )
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it is easily seen that

w—lhdiv [#-9] can be merged in an appropiate part of divW”,
201—y)@G
which is a harmonic function, and hence one obtains the solution of
the original form, effacing dashes,
Although these processes seem plausible, they might be merely

equivalent to the neglect of the solution

2rot 92, -Lrotﬂ,
G

or of the relation (6.8), or of the relation formula
div{29 —grad @)} =0, (79=0). (6. 32)

Nevertheless, the methods of solutions equivalent to H. Neuber’s may
be said to be completely general on condition that, if reguired, a basic
harmonic function, consisting of biharmonic functions, should be emplo-
ved, as is readily inferred from the fact that #-rot®, which appears in
(6.26a), and div [#9], appearing in solution (6.30), are certainly the
funections which satisfy the above requirement, that is, they are harmonic
funections which consist of biharmonic functions. And this remark will
be elucidated a little later. Hereon it will be recalled that Profs.
Sadowsky and Sternberg say that H. Neuber achieves complete symmetry
of the three basic solutions at the expense of computational facility.
When the method of the type of H. Neuber’s is applied, one cannot
but have recourse to such a cumbersome manipulation as to need
particular harmonic functions stated above, and, of course, it is not
customary to use such harmonic functions. Hence, it will be more
advantageous to apply the methods analogous to J. Boussinesq’s or the
methods of the type of H. Neuber’s extended by considering 2rot#

or %— rot ¢ additionally.

§7. Problems of Given Surface Tractions or
Displacements for an Isotropic Solid.

In the first place it is desired to get the solutions to the problems
of given surface tractions or displacements for a rectangular parallele-
piped or a short column of rectangular cross-section without resorting
to three-functions approaches described in the preceding section. Let
the bounding surfaces of this rectangular parallelopiped or rectangular
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plate of sufficient thickness be given by
=20, 2a; y=0, 2b6; 2=0, 24, (7.1)

and let the z-axis be vertical and positive upwards.

By taking into account that it will be necessary to expand functions,
representing given surface tractions or displacements, into double
Fourier series, and that functions, denoting stresses, must be biharmonie
functions, and also by referring to equations of equilibrium (2. 6), one
can readily put for stresses the expressions as follows:

for normal stresses

oo
0, = ™ cos Y coskﬂzf A”SCOSth +z B”ssmhlmso1 -+
|| 4, sinh Bj,cosh ™

. ([C.. cosh D, smh }
+ ZZCOS % cosaml[oi“ nh +y[D}”co h N ¢

© e
+ 7‘2 coSa,% Cos 3 (E C?Shn.sanz[lz"ssmhr,.sz1 , (1.223)

t ginh Fecosh ™)
0, = ZZ cos By cosk,z [ 7 COSh lsw ’U[ngj(l;}}: l’”}
+ ZZcoslcnz COS a, & [g s?zi}‘; [D S:)n?l } +
IR e e R PO

([AL osh B sinh,
o, = EZ cos Sy cos]cnz I +z Lz +

.sinh bt B! cosh ™|
3 Cm D” ginh ]
+ Ez cosk,z cosa,x [C n,l,y+ \} 5 cosh n,JJ
(TR, cosh Fi,sinh )
+ ZZcosa,,m cos By LE‘ smh [F,Scoshr 2 (7.2¢)

for tangential stresses
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1
foe = Z Z sinfy sin kz{ [Cj_.’”c?Shz vtz

J L. cosh 1
y + Z/ T : 7nnryj +

Gl,sinh ™

. L% sinh
+ 7‘2 sink,z (3osa7.:cI =7 o
[ ” [Lf. .cosh™™
”noor

,ssmn

+ ZZ cosa,x sinﬁsy{ [Kisc
To = ZE cosBy sink,z [g? mh Lz

+ ZZ sink,zsina,x [ :1 COSh

+ ZZ“ sina,x cos By [fs S:;E
Tay = Z}j sinfBy cosk,z [Gm smh

.cosh L

. (ri smh

+ ZZ cosk,z sina, oz; ”'
" 13 cosl
2% 2"

K?,sinh s

T . . ([ Ki;cosh
+ ZZ gina,x smﬁsyll T

h?s

THL, sinh] x}
LL {,cosh™

4L sinh

[L}scosh | @.3a)

5%
L’”Sl h SJ,

(Hj,cosh, |
x 2 e 7I-Sx +
Hissinh ™|

Y+ T Sinhm 7} +
]:l7 h 7LI‘J

Liscosh )
LL,SSA W 2 (7.3b)
Hi cosh

Fa| s )

J 2}, cosh )

Wl Y\ 7y MY ¢ -t
’ ’[ 73,sinh Y

7,62

z[éissinh l
Li.cosh ™)’

(7.3¢)

In these expressions, for instance, the formula

_ Al coshli,x + AL, sinhl,,x,
is denoted by the symbol

‘:A,ls coshl
AL, sinh wo

In order that the expressions for stresses in (7.2), (7

(7.4)

.3) may be bihar-

monic functions, the following relations are required:

Gs=Fk,+p, m, =k +a,

in which

rm 8 nw
a - ’ BS —_ 2 kﬂ, —

T%Z“i*‘ﬁ?y

on

(7.5)

(r,s, n=0,1, 2, 3
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Clearly, when the expressions for surface tractions or displacements
are symmetrical about the plane z=h, such alteration may be made
as to let the origin of the coordinate system be transferred to the
point (=0, y=0, z=Ah) and the coefficients E?, F Y, K~, L% with any
" Yy k=" Of course, there
2h h
is no need of the barred coefficients, if these expressions are symme-
trical about the three planes x=qa, y=0 and z=h. Now, since the
linear independence of the above expressions with double summation
symbols 222, 2> and 22 in (7.2), (7.8) is apparent, it will herein

n 8 n 7

affixes be deleted and to replace k,—

suffice to treat only the expressions with symbol 222, excluding co-

7§

efficients with a bar, for instance. To avoid ambiguity the expressions
or solutions with symbols 22>, >3 and 2> shall be referred to as

n 8 n o7

golutions 1, 2 and 3 respectively.

Let the equations be sought, relating coefficients with specific
summation indexes %, s to one another, by means of equations of
compatibility of the forms

o 1 &6 \
e, + =0, 7.6a
7 1+v ax® ( )
Pra, +- 1 90 _ g (7.6b)
1+v 8y’
Poo, +LF0 _ (7. 6¢)
1+v a2
pre, + L 70 g, (7.72)
1+v ay3z
pro, + L 0 _ g, (7.7b)
1+yv ax2e
Por, +- - 20 g, (7.7 ¢)
) 1+v axsy
in which
@ =og,+a,+oa,, (7.8)

Then, if solution 1 for ¢, in (7.2c) be inserted in equation (7.6¢) and
the resulting equation be integrated with respect to coordinate 2, one
obtains elastically
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@ =1+ ZZ %{lﬁi B}, cosk,z cospy cosh . 1.9

Next, the substitution of the expressions for stresses of (7.2), (7.3) and
of the expression for @ (7.9) in equations of compatibility, except
equation (7.6¢), leads to the reiations

B, = “bap g g
5 ks,
Hy = Pop g =lup = Bhsop
k., k, I,
for any n and s. (7.10)

Equations of equilibrium (2.6), substituted by the solutions 1 for str-
esses, gives the relations
Lis Ao + B Ghs + b6, G + By = 0,
l’zn G?z.s - B A;Zzs + ku Galzs + [_-[?zs = 0 H (7. 11)
Zns G'ns‘ + ﬁ 7713 - kw. A:;zs + H;Zzs - O .
If formula (7.8) be taken into cosideration, it follows that
AL B,
ks, (7.12)
for any » and s.

A + Ao+ Al =

Thus, all needed relations are obtained. Next, let these nine algebraic
equations (7.10), (7.11), (7.12) be solved for nine coefficients (B, B;,,
B, (Grsy Goss Gi), (Ho, Hi,, HJ), obtaining

Bl — gi;l,,,, A? B 1 /l‘s AP B — 1 ks Hn g0
ns 2 (l + 1)) ns ns ¥ ns 2 (1 + p) Zns 718 ¥ ns 2 (1 + ’J) y 7S 9
1 I 2 2 2 \
quzs _ ST Zns A-:ls I+ - Zns Ans +(vk A‘:zs ’
21 +0ks (@rf—L,) A+ (e f
. 1 o :
G;zs I .; _— 1 + g l;LS Avlls Ans Jr— kn + l;w Ans ’
BT, IR A B ) A
. . 1 (7. 13)
G?zs YRt st Zns Ans + + Zns A—?zs —vk 12L Aijzs ’
Bl | A TR R A A
- “ 1 ‘lcn,B 5 A°
ns 2 (1 + y) Z7l8 s ¥
H;ZL-S _ 1 k?z A(y)zs H ‘H::LS — B Ans y

2(1+) (1 v)
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in which
A;’zs - A-}zs + A;le + Afzs-

It will be obvious that one can get immediately the desired formulae for
coefficients (BY,, B, B, (HL, B, HL), (G.,, Gi, G, by attching a bar
over coefficients to be determined from formulae (7. 13), Accordingly,
for solutions 1, or for solutions of type 1, there exist six independent
sequences of coefficients (AL, A2Z,, 43), (A, A%, A%), and hence there
are eighteen sequences of coefficients in all for the solutions to the
problem considered. This fact is, doubtless, the necessary and sufficient
condition for the validity of the solutions of the forms indicated in
(7.2) and (7.3). In this way general solutions have been obtained,
appropriate to the problems of given surface tractions-or displacements,
without applying three-functions approaches.

Incidentally, there will be given here the solutions of type 1 for
displacements, which are to be obtained by integrating stress-strain
relations.

w= 25y eospy cos kz[ 1 ({3Am+<1~z»><A,;IS+A;S>}sth ot

28 Lis | {BA%, 4 (1—20) (A%, + A ) cosh ™
Al cosh )
_ W(Z?w sinhlmx} , (7. 142)

1wy, 1 (AL (Al 42} cosh
v =G LA CO"k"Z[ A, ({Zis—y@}wm;;)}sinhlm“

n 8

+ .
Al cosh

1 A, |A)sinh
2 1, "

m] . (1.14b)

1 . 1 [{43,~ (AL + 42} cosh
=gy ), eosh Smk‘”‘“[ s [{waw (AL, + A2} sinh 7

1 %k, |A,sinh
+ o 7713 x{Zi’wcoshlmx} . (7.14¢)

In the next place, application will be made, for instance, of the
method of H. Neuber or extended H. Neuber’s method (6.3) to the

problem under consideration. Thereby it will be shown that the third

right side term 2rot # in (6.3) or —(1? rot ® in (6. 10), (6.23) is of great
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moment and, in case this term could not be used, one would be com-
pelled to resort to some particular mathematical manipulation. Now
it will be easily seen that the solutions similar to those of type 1,
containing three sequences of coefiicients {AL}, {42} and {4}.} only
in (7.2) and (7.3), are obtainable from the basic harmonic functions of
the forms

@y = 222 A, cosB,y cosk,z coshl,,x,
n 3

¢ = (&, 0, 0),
& = 230 C,,co8B,y cosk,zsinhl, x, (7.15)
’9 - (7911 O’ O)y

&, = 22 B, sinB,y sink,z coshl,,x .

By substituting these harmonic functions in formula (6. 3) and comparing
the resulting formulae with the solutions (7.14), one finds the following
relations :
Aﬂlzs = - Z?LS A';zs + 2 (1_ V) lns C;LS ’
ALy = BAL + 2k, BB, + 201,,C,y
A-jzs - k;lL A;zs - 2]{;7“@3 B;zs + 2 Vlns C;zs 5
ALy = 2(1+2)1,,C,,, .
Hence, when one employs 4., B,, and C,,, expressed in terms of AL,
Az, and Al in accordance with the relations (7. 16), in the basic functions
(7. 15), solutions will be achieved of precisely the same forms as (7.14)
or (7.2) and (7.3) with (7.18). It appears apparent, however, that it
seems well-nigh imposgsible to construct the solutions to the problem

concerned, if it is not permitted to make use of the third term 2rot#
in (6.3). Therefore, as stated earlier, it may be said that the term

(7. 16)

2rot 8 or —:CLTT rot # is assuredly an indispensable one.

Nevertheless, if the following mathematical manipulation is per-
formed, the purpose can be attained without applying the third term
2rot ¥ in (6. 3) as stated before. Also in this case let the solutions of
type 1 be considered, corresponding to the solutions (7.14), in which
barred coefficients are deleted. First, to cite, for instance, the relations

pe(mgrad f) = 0. (7. 17a)
72 (rerot H) =0, (7. 17D)
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in which
Pf=rH=9, (HE(H,, H,, H:Q)
v.grad f or #-rot #4 is evidently a harmonic function which consists of

biharmonic funections.
One may put in this case

S = 22 Vi, cosk,zcos B,y coshi,x, (7.184a)
H — (Oy 07 H%) ’
Hy= 22 V., sinB,y cosk,z sinhl,,x. (7.18Db)

n 8

If the expression for f in (7.18a) be taken, and if reference be made
to the relations (7. 17a), it will be pertinent to write functions ¢, (=0,
1, 2, 8), which are H. Neuber’s basic harmonic functions, in the following
forms : :

¢y = @+ ¢,
¢h= 23" A, cosB,y cosk,z coshl,x,

i =r-grad f
=221V, (lsx cos By cosk,zsinhl,,x +

7 8

— B,y sin B,y cosk,z coshl,.x +

—k,z cos B,y sink,z coshi,x), (7.19 a)
¢=22 C,, cosB,ycosk,zsinhl,,x, (7.19Db)
@y = ZH}A? D sinp,ycosk,zcosh l,,x, (1.19¢)
@y = 4%2 B, cosfysink,zcoshl,x. (7.194d)

n 8

Then, when the expression for £ (7.18Db) is taken, functions ¢, are to
be of the forms
’ @, = O+ ¢,

y= 22 A, co8p,ycosk,z coshl, x,

72 8

2 e ; . aH, . aH,
%WJ10HQOPHQ_<x7@m yax)

= 22\ V.. (B.x cos B,y cosk,zsinhl x +

7§

— sy sin B,y cosk,z coshl,x), (71.20a)
¢, = 3 C,,cos8,y cosk,zsinhl,x, (7.20b)

n 8
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&= 223 D, sinf,y cosk,z coshl,,z, (7.20¢)

n s

When the expressions (7. 19) are inserted in formula for « in the vector
formula, of (6.38), exclusive of the term 2rot#, and both coefficients of
the biharmonic functions ysin 8,y cosk,z sinhl,,x and zcosf,y sink,zx
x sinhl,,x are put equal to zero, there are obtained

-'Z);IS = /38 ‘V7LS i E;zs —_ ]{;n Vns ’ (7- 21 a)
and
U = ,,2%, {w Lis(Ar+ Vo) +(3—4v) C;m} cos 3, cosk,z sinhl, o +

+ ;2‘@14 (bus Vo + Co) @ cO8 By c08k,z coshl,w. (7. 21b)
By equating similar terms in the expressions (7.21b) and (7.14a), the
relations are obtained

1.s:Zns!—Zn.s A;m—*—z 1— Vns +2(1— C;zs‘l s
A | e (A F 2 Vo) 421 Oy (7.29)

Ay = Ao+ A5+ A =21+ )1, (0 Vo CL)

and similarly, from the expressions for » and w in (7.14) and those
which are obtained by means of H. Neuber’s method, using functions
@, (7.19), it is found that

Ay = BA,+2 {zu—u) B+ Z} Vet 200, Cl
(7. 23)

}' Vns + 2 14 Zns C;zs .

It will be obvious that also by the use of the functions ¢, in (7.20)
the same object can be attained, or relations similar to those in (7.22)
and (7.23) can be gotten.

Thus, it has been shown that by utilizing the above harmonic
functions ¢;, which are constructed with biharmonic functions, one ean
achieve, applying the method of H. Neuber, the exact three-dimensional
solutions which are to be obtained without employing three-functions
approaches.

As a consequence, once it is known that it is possible to use par-
ticular mathematical manipulation as described just above, it would be
too much to say that methods of solution equivalent to H. Neuber’s,

Al = KA+ 2 {2(1~v>lp$L TR,
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destitute of the term 2rot #, are incomplete. But in any event it will
be advisable to modify H. Neuber’s method of solution so as to contain
the term 2rot#?, because the integration of equations of equilibrium
yields this term essentially, and the modified method or J. Boussinesq’s
method is expedient to construct the solutions, involving all needed
sequences of coefficients, if the method of series be applied.

§8. Solutions to the Problems of Given Surface
Tractions for an Anisotropic Elastic Solid.

In this section also a rectangular parallelepiped wiil be considered.
In the first place let the bounding surfaces of the solid concerned be
given by

t=ta, y=xb, 2= th, (8. 1)

and let the coordinate z be positive upwards. For simplicity let it be
supposed that the expressions for given surface tractions or displa-
cements are symmetrical about the planes =0, y=0 and 2=0, and,
further, that in the first place the solid is orthotropic and, of course,
the axes of elastic symmetry are parallel to the coordinate axes, When
the basic differential equation for ¢ in (3.12) can be resolved into three
differential equations of the second order with real coefficients as equa-
tions in (3. 15), the solutions analogous to those in (7.2), (7.8) could be
found as easily as in the case of isotropy. However, when this is not
the case, it becomes necessary to proceed to solve the problems under
consideration in the following manner.
Firstly let stress function ¢ be written in the form.

¢ = Aexp(Biy+k,iz+ox), ‘ 8.2

in which A is constant or coefficient and 7 denotes imaginary unit, and §
is a constant to be determined from differential equation (3. 12)

kn:n—}z‘ry ﬁs: S_g“- (ny S:O, 17 2)

Then, by substituting exponential function ¢ of (8.2) in the basic
differential equation (3. 12) and solving the resulting algebraic equation
for 8, one gets the solutions of the following forms, as examples, for
the case of topaz or barytes,

lans —_ ;'-t llns ’ 26715 - i (2l7zs+i2/2ns) ’
:’.6713 — i (Blns_]r,l:f'ixns) y (8' 8)



Some Remarks on the Three-Dimensional Problems Concerned with the Isotropic

and Anisotropic Elastic Solids.

in which [, and ,4,, (v=1, 2, 8) are real constants.
Accordingly, function ¢ can be written in the forms

b1 iuy = 2220 Ayy c08 B,y cosk,z coshl,x,

n s

Poney = 2223 Ajs cO8 S,y 08k, 2 08 od,, coshol, .z,

7S

Poinsy = 2220 Al co8 B,y cosk,z cos,,, @ coshil,x,

7§

and
¢(7zs) — ¢J (ns) + ¢2 (ns) + ¢3 (n8) *

169

The solution to be derived from this function ¢.., may be referred to
as solutions of type 1 by analogy with the solutions 1 in (7. 2) and (7. 3).

Similarly on may write
¢ = Aexp(aiz+kiz+ 0y,

in which

= T =
a4, == (r=0, 1, 2--).

The solutions of equation (3.12) for § in which the expression for ¢

(8. 5) is substituted, are of the forms:
187“‘ = :l‘: [W?/'m- ’ 257” = i (27n7w+?:2/1n7'> ’
367”- — —‘_t (f§m77,7‘+7"'3/17n') .
Hence, one gets for ¢,

By s = 2020 By, cosa,x cosk,z coshm,,,y,
7 7

Doy = 222 Bl 08, % 08K, 2 COSqp,, cOSham,, v,

n o

Doy = 2022 By, oS a,.x o8k, 2 COS8 sy, COSH M, Y,
n ?»

and
¢(7L1') - ¢I(n7-) + ¢‘l(nr) + (/)‘3 [CIORY

And in like manner the roots in 6 of equations (8.12), into which

is inserted
¢ = Aexp(a,ix+piy+02),
are of the forms

131‘3 = 7 1T7’8 b 267-3 = * (27‘7-5_{_7:2”7«3 ’

30, = T (:sTrs —{_iﬁyrs) B
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Thus, there are obtained for ¢,
Grirsy = 2.2 Clgcosa,m cos B,y cosh,r,.2,
7 S
Bairey = 2020 O, cO8 @, 0 €08 5,9 €O8,v,5% COSh LT, 2,
” S

Pacry = 2220 C), €084,2 CO8 B,y €S04y, COSh T, 2,
8

s

and

Doy = Proy T Pageey + B3 sy - (8.10)
It is evident that

¢ - ¢(ns') + (/)(mv) + 75(7‘.3') . (8. 11)

Solutions to the problem concerned, which are to be derived from
function ¢ of (8.7) and (8.10), may be denoted by solutions of types 2
and 8 respectively by analogy with the solutions 2 and 8 for isotropic
rectangular parallelepiped in (7.2) and (7.3) with double summation

labels X2 and 2331,

In this way it is possible to get the desired forms of stress functions,
although it may be troublesome to solve the equations (3. 12), substituted
by the above exponential functions for many different specific indices
7, s and n. This difficulty is, needless to say, presented by the fact
that the differential equation in question (3.12) cannot be resolved
into three differential equations of the second order with real coefficients.

For the case of cubic crystals it is found that 2, g4, » in (8. 3),
(8.6), (8.9) vanish, and so for the sake of simplification let, for the
moment, such materials be considered that every 6 is real, that is,
2, p and v vanish. Then, by means of the expressions (3.11) and of
the formulae (3.7), (3.8), the expressions for displacements similar to
those in (7.14) may be readily obtained from functions ¢u., $w., and
bosy derived just above:

%]
U = u(ns) + u(nr) + u(_rs) T HI¢
2
= N2 cos B,y cosk,zsinh [z, Ay +
v=in s

+ 2323V sina,x cosk,z cosh m,, y- B +

v=19n »

+ ZZZ sina,x cos B,y cosh ,7,,2-,C%, (8.12)

v=1lr &
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in which

AL

78

v
uB nr

WO

and

in which

UA;:S

B

ar

’IIC'IL',S

o

and Anisotropic Elastic Solids.

LIy VYA (il + 2 28) +
a

t B (i B2 fi— 24 k>} :
L Byt kit 2yl +
a

o m, <—d22-,,m;.+2dmaz+2dzf,kz>} ,

% a, c‘:s{ (Ao 2l )+

T (e T 20 2 )5 (813)

m,¢

3
A sinp,y cosk,z cosh Lz, AL +

v=1ln s

3
>3 eosa,w cosk,z sinh m,, Y- ,B2. +

v=1n »r

2 > 2 cosa,x sin B,y cosh ,7,.,2,Ck (8.14)

v=t» s

1.2 B, AL, { “(622 /351 + sl + 265 ,Bi k) +

a

+ ulis(—eu-ulis+Zemﬁi+Ze:nki)} ,

1 o 9 2
> Umnr B;:r {(611 0./;{ + 633 ]€;L + 2 631 0[; kn) +
a
+ mi, (6w M, — 200, — 20 ki)}. ,
1

pe ,83 C7Vs {_(311 ar+ gzvzﬂé +2e,a; (3’;) +

T (= 7 2en i+ 26, ai)j ;  (8.15)
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and

w=_2_ ;¢
oz
3 .
= 2312 cos B,y sink,z cosh L,z AL +
v=ln s

3
+ 23232 cosa,xsink,z cosh ,m,, v B, +

v=tn =»r

k3
+ 22X cosa,x cos B,y sinh ,7,,2,,C%, (8.16)

v=ir 8

in which

{m(ff_,z Bt Funlit 4 2 it 52)

B (= fr Bt 2 10 28w icz)} ,

1
'wAn,{‘; = “;{? k’n Avl:.s

By = LBy [ (fat fulet + 2fulind) +
.
2, (— for g2+ 2F waet 2 k;i)} ,
WOl = -al— aner {(fn @t Fufit 2Fualf) +

7 (Farr T 2F B 2f a3.>}. . 8. 17)

Accordingly, by formulae (2. 4), the expressions are obtained for stresses
from the stress-strain relations (3. 1).
For instance, one has

T — ‘T:c(ns) + U:l:(nr) + Oy (8)

3
= 222 cosB,y cosk,z cosh b, AL+

v=1mn §

3
+ 33 cosa,x cosk,zeosh m, y- B +

v=in =
+ E >3 cosa,x cos B,y cosh 7,2 .CY (8.18)
v=1+ s

in which
:chgs = Cu ulns'uA;:s + CIQBS.’UA;:S + €53 ]‘cn'wA;s ’
a:B::r = Cny ar.'lLBnVr + Ci2 V'}n?lr‘?}B';;’r + cl‘Skn'wB;r ’
1
’LC7US = Cyy %-'ucfs + Cio Bs'vcrus + Cis Trs'wCyI{s y (8- 19)
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3
Ty == 22020 sinfBy sink, z cosh 0,2+, A% +

v=tn s

+ 22> cosa,xsink,zsinh m,,. y-,. B +

v=tn »

1+ 30 cosa,w sin B,y sinh ,7,,2,.C%, (8. 20)
y=1s s
in which
7/zA7';s = —Cy (kn'vA'/Zs + [93'7(,14.,‘{5) ’

BU — 044(M]§7L'vB7Z:7' _I_ Un?‘nr'wBal:r) y

yrne

yzcvl‘js = 0»14(T7-S.7)071-/3—_—'/33'10071{3) . (8- 21)

Since the linear independence of three kinds of stress functions ¢,
Py a0 ¢, may be obvious and, for instance, the solutions of type
1 contain three sequences of coefficients (4., A%, A%,), one can determine
these coefficients so that the boundary conditions may be satisfled. It
goes without saying that even in the case of general loading functions
the solutions can be obtained by analogy with the solutions for the case
of isotropic rectangular thick plate.

Namely, when given surface tractions are general, one may write,
for instance, ¢, in the following form, moving the origin of the co-

ordinate system to the corner (x=—a, y=——b, 2=—h).

3 - .
bonsy = 202025 €08 B,y cosk,z cos 4,0 (AL cosh 1o+ Al sinh [,x),

v=1n §
in which

S T
260 " 2h (8. 22)
(s, n=0, 1, 2, 8.-).

Thus, by referring to the expressions obtained for the case of symmetri-
cal loading function, one can immediately obtain the desired solutions.

Additional remarks on the case, wherein the rectangular cartesian
coordinate system, the axes of which are parallel to the edge lines of
the rectangular parallelopiped concerned, can be derived by a rotation
of the coordinate system to which the stress-strain relations (2.1) or
(8.1) are referred, will be stated. Now let the former coordinate
system be taken to be (x/, %/, #) and the latter to be (z, ¥, 2), and
suppose that they are connected with each other by the transformation
scheme

1/%715 = 01 Bs -
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1 x Yy 2
o |l om w
y il m, (8.23)
2l omy my

.

which is to mean the rotation of the coordinate system,

First, let the case of stress-strain relations for a transversely iso-
tropic solid (4. 26) be considered. When the edge lines of the rectangular
parallelepied under consideration are parallel to the =z, y, z-axes, for
instance, stress function ¢, corresponding to the solutions of type
1, as stated before, may be written in the form

3
Pinsy = 202020 €08 B,y €08k, 2 coshi,, p'w- A,

i=1n 8

in which 12—k, +p5; and p* denotes 71 (¢=1, 2, 3), and which is the
Yy
solution of the basie differential equation
(u,. AR > gy = 0. . (4. 28)
3xt At AR

Then, when the coordinate system (x/, ¥/, #/) does not agree with the
system (z, y, #), and further the transformation scheme (8. 23) is general,
the differential equation (4.28) cannot obviously be invariant under
the transformation of the coordinates in accordance with the scheme
(8.23). However, since one can deal with the differential equations of
the second order only in this case, the solutions may be readily obtained,
though the solid in question may be virtually regarded as more highly
anisotropic. In fact, under the rotation about the z-axis by angle 6,
that is, the transformation in accordance with scheme

‘ x Yy oz
! cosd sinf 0
y | —sinf cosl O (8. 24)
2 0 0 1

the stress-strain relation for a generally orthotropic solid becomes that
of the matrix form:
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Tor /au t iy 0 0 ay [
Oy A Ao Oy 0 0 ay €y
Oy Qg Oa Oz 0 0 ary | (%
_ . , (8. 25)
l Tyrar O O O Ay Ay O E 7y'z’
! !

Tarar LO 0 0 ay as Oj kr”
. krlzm G o a3y 0 O aGG) Taryr
which contains 13 constants. Furthermore, when the transformation
scheme to be used is general, the stress-strain relation for an orthoropic
solid, referred to the coordinates (z/, ¥/, /) obviously comes to contain
21 constants. Hence, if the differential equation (3.12) cannot be
resolved into three differential equations of the second order with real
coefficients, it virtually becomes neccessary to deal with the elastic
solid, possessing 21 independent elastic constants. In this case one
would have to treat basic differential equation of the type (2. 17) directly.
First, in this case let the surfaces of a rectangular parallelepiped
be taken to be given by

=0, 2a, ¥ =0, 2b, =0, 2h, (8. 26)
as before, and, by putting, for instance, as
¢ = Aexp k17 + By +idx"), (3. 27)
in which ¢ is imaginary unit and
k«n:n—nr s:S—TE; n, SZO: 1; AR y
2h g 20 ( )

and by substituting this expression in equation (2,17), referred to the
coordinate system (a/, 9/, #), one gets algebraic equation in § of degree
six with real coefficients. Then, solutions of the type 1 are gotten,
but, of course, this process is tedious. At any rate, if the axes of
elastic symmetry for an orthotropic solid are not parallel to the edge
lines of a rectangular parallelepiped, the process of caleculation obviously
becomes complicated to an appreciable degree. It will be apparent
that the above method, associated with the expression (8.27), applies
to the case, where a rectangular parallelopiped is made of generally
anisotropic material.

§9. Conclusion.

This paper, continued from the previous papers regarding the thick
‘plate problem, has dealt with the isotropic and aeolotropic elasticity
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problems for a rectangular plate of sufficient thickness or a rectangular
parallelepiped. The vrevious papers are concerned with a moderately
thick plate, whereas it is found that in the case of orthotropy the
exact solutions could not be obtained for a moderately thick plate,
which corresponds to an orthotropic elastic plate of zero thickness.
However, this fact seems quite immaterial, and it will not be inadequate
that we can solve completely the elasticity problems of given surface
tractions for a sufficiently thick plate in both cases of isotropy and
anisotropy by the method of series as shown above in Sees. 7 and 8.
The solutions obtained in this paper as governed by the boundary
conditions are obviously exact within the infinitesimal theory of elasticity
and, of course, those for the case of anisotropy do not involve any
restriction on elastic constants.

Since no general method of solving three-dimensional problems for
an anisotropic elastic solid of finite extent within the theory of the
first order seems to have been developed as yet, the author has attempted
to seek a three-dimensional approach to those problems. Though many
of the anisotropic elasticity problems might be beyond the scope of
the herein presented method of analysis, and the method obtained in
this paper may be awkward in many respects, the result would be of
some significance in studying the problems of anisotropic elasticity.
It is to the author’s regret that he could not resolve even the differential
equation (8.12), not substituted by any numerical values of elastic
constants, into three differential equations of the second order except
for the case of transverse isotropy, and it is, of course, desirable to
surmount the difficulty involved in resolving the differential equation
for ¢.

Further, in conjunction with the three-dimensional solutions for
isotropic solids, obtained as the particular case of anisotropic elastic
solids by the use of the general method for anisotropic solids explained
in See. 2, the brief discussion of three-functions approaches for isotropic
solids was presented. The remarkable effectiveness of the term 2rot #
or % rot 2 was fully explained with illustration, and moreover, it
was indiecated that the correct integration of displacement-equations
of equilibrium yielded essentially this term. In any case one should
exercise some caution in applying H. Neuber’s method of solution or
any other method equivalent to H. Neuber’s, though there will be no
loss of generality in discarding the third term 2 rot 2 in vector formula



Some Remarks on the Thres-Dimensional Problems Concerned with the Isotropic 177

and Anisotvopic Elastic Solids.
(6.8), by virtue of the existence of the above-described mathematical
manipulation. However, it will be very obvious that the application
of J. Boussinesq’s approach or of any other approach equivalent to H,

Neuber’s, which is modified so as to include the solution as % rot 9,

is advisable.

In conclusion, the author wishes to express his heart-felt gratitude
to Prof. C. Fujil for kind guidance and to Prof. R. Kuno for inspection
of the present paper and valuable suggestion concerning the mathema-
tical manipulation mentioned in Sec. 7. Cordial thanks are also due to
Assist, Prof. H. Miyamoto of Chiba Institute of Technology and to Mr.
R. Muki of the Faculty of KEngineering of Keido University for their
carefully considered advice and discussion. The author further wishes
to extend his thanks to Assist. Prof. H. Hanzawa for his looking over
this paper.
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