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On a Rectangular Elastic Solid Compressed by the Forces
Applied on Its Two Opposite Boundaries

By

Chuji FUJIl and Hiroshi HANZAWA
(Received July 1, 1957)

Abstract

This paper presents one of the methods of solving a problem of
rectangular block by treating as a case as one of plane stress. The
elastie block in this case, however, is understood to be deformed by
an external compressive force applied on its two opposite boundaries
by rigid bodies.

1. Conditions and assumptions as to the elastic block.

Fig. 1 is a schematic presentation of the problem discussed in the
present paper. The - and the y-axes are taken parallel to the sides
of the block and the z-axis is taken so that it is normal to the xy-
plane passing point 0. A is the thickness
and 2a, 2b are the lengths of the sides of
block. This block is compressed by two N A
rigid bodies A and B, and subjected to a A
compressive force P.

The following conditions are assumed :

(a) External force P is applied by two 3
rigid bodies 4 and B, which have uniform- ¢
ly finished surfaces as AA and BB, respec-
tively. z

(b) The contact surfaces A4 and BB
between the elastic block and the rigid
bodies are wuniformly finished. In other
words, the surfaces of the elastic block 44
and BB are finished in the same degree, but the finishing grades of
the two bodies are not necessarily the same.

(¢) The deformation is symmetrical to the x- and the y-axis, and
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Fig. 1.
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the contact surfaces AA and BB remain parallel to the zxz-plane even
after the deformation.

(d) The deformation in z-direction is restricted by a condition at
the contact surfaces AA and BB, Therefore, the cases of no deforma-
tion and no limitation in the deformation being completely free, and
the deformation between these two extremes can oceur at the contact
surfaces.

The solution of these kinds of problems involve various cases to
be considered depending upon the conditions of the external force
applied and the contact surfaces. Since the solutions of these prob-
lems become quite difficult sometimes, it was proposed to solve a case
which ean be practically expected under the conditions deseribed above.

When the contact surfaces A4 and BB of the rectangular block
are perfectly flat and there are oil films upon them, so that their dis-
placements in z-direction are not restricted, the problem can be deemed
as one of the cases that would satisfy the above assumptions.

In this case, however, the external forces P are distributed over
AA and BB surfaces, and the solution can easily be obtained. The
details of this solution will be shown later.

Strictly speaking, the case of having no displacement on the sur-
faces of AA and BB would be impossible. However, the case when
the two surfaces of the elastic body are riveted to the rigid bodies
or cemented by a strong adhesive can be understood to satisfy this
condition.

2. The conditions at the boundaries.

There are two cases in treating this problem as a two-dimensional
case—cases of plane stress and plane strain, These two cases depend
upon coeflficients that include the Poisson’s ratio ». In this case, how-
ever, either one of these two can be applied in obtaining its funda-
mental solution.

A case of plane stress is handled in this paper; the stress function
is represented by F.

The conditions at the boundaries give

Op = Ty = 0 at = = *+a,

hence

Y,
I
<



On a Rectangular Elastic Solid Compressed by the Forces Applied 373

and
EY
2x3Y

=0

The first condition means that F'=0 at x=-4qa, and the second condi-
tion results in %% = const.
From the conditions shown in Fig. 1, one can easily obtain
'3 a ‘.’F
j aydx:j ? —dx
0 ax’

0
(%)),

2

Therefore the above two conditions can be rewritten as follows:

(FYyea =0 (1)

(5.~ (). =% (2)

In the present case the deformation is assumed to be symmetrical to
the - and the z-axis, so that the second term of the left-hand side of
Eq. (2) becomes zero. Consequently the condition obtained in Eq. (2)

gives

Now, the conditions at the contact surfaces y=-+b will be con-
sidered. Since the displacements of the surfaces are parallel to xz-plane
and they are not dependent upon x even after deformations, the dis-
placement in y-direction v gives the following relations:

A

Y
ax
or
v L
W_O at y = +b (3)

The relations between a displacement and a stress in the case of
a plane-stress are: ‘
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3y X E 7 E axsy )

When 2:2 = 0 is computed after differentiating the first and the

third relations with respect to y and x, respectively, one obtains

B 3
(-24) =r[2F e 2l]
ax* /e B L 3Y 3TBY -

Hence, Eq. (8) gives

at y= b (5)

3 3
(2@ 2]
oY B%°Y Jymns

One more condition remaing which must cause a certain displace-
ment parallel to the z-axis as was assumed. For the purpose of con-
sidering a practically possible and the simplest case, the following re-
lation is assumed to be valid:

U=y, (6)

where p, is the constant. Namely, the displacement in z-direction u
is assumed to be proportional to x. If p is null, the displacement in

y P
e e
block can deform perfectly freely as will be described later. Sinse g,
can take a value between these two values, g, can generally be defined

as

a-direction is perfectly zero. When p, takes the value of

P
0= =<2 = 7
=M="g" T (7
If the relation given in Eq. (6) is valid, one has
(3&) = at y=+b (6a)
2% y=+b

The first relation in Eq. (4) also gives

<3"€—v9;};> = poll at y==*b (8)
Y X" /oy
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Thus, the stress fuction F' which satisfies the above four conditions
(1), (2a), (6) and (8) must be found.
3. The stress function.

In order to solve the problem, the stress function F' is assumed
t0 be composed of two functions F), and F,, Thus,

F = F,+F, (9)
At first, I, is assumed to take the following form:
Pq x
Fy= —"="(1—"2— 10
! 4 < a‘3> (10)

This form of the function F, obviously satisfies the following Laplace’s
differential equation:

44 Fy, =0, (11)
where
A Pt} a“q + 87‘7
ar? 2y’

From Fq. (10), one can compute the values of oy, Gun Toy Ew and &,
as follows :

g, == aan — __7P,_,
" ax’ 2a
0’0@ fr— _a.@. o 0
Yy
K,
Ty = ——m = () , 12
XY r ( )
1S} — aun frnd _.B._ *P
” T E Za
_av, 1 P
801, T e T e e e
oy K 2a

where the terms with suffix 0 mean the stresses or strains related to
the stress function F,. Namely, the state repress_ented by the stress
function F, given in Eq. (10) means that the external force is uniform-

ly distributed with the intensity of % over its working surface as

will be seen in Eq. (12), Therefore, the contractions in y-direction and
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the elongations in z-direction are similar to those to be introduced by
simple tension and compression,

For the purpose of obtaining u, and v, from Eq. (12), the use of
the conditions of #,—0 at =0 and v,=0 at y=0 gives

v P
"TE oa "
13
1P (13)
Vy = ——— ——
E 2o
Therefore, the value of y, in Eq. (6) becomes 2”“ 12_1, . Then, the mean-

ing of the value in the right-hand side of Eq. (7) becomes clear.
It can be easily obtained that Eq. (10) gives the following relations
at the boundaries,

(Fo)x:a = O
(8_FL> S
L /pma 2
[33{’“ +(2+) agfﬂ—} =0
2y 2%y Jy-s o
[a?Fn . azﬁ'[,} _vP
oy x* |,., 2a
where
P
0< < ”
=M=

As will be seen in these equations, the function I, satisfies the con-
ditions in Egs. (1), (2a) and (), but the fourth condition in Eq. (14) is
satisfied only in a special case; i.e., F, gives a perfect solution when
re=1. However, since a problem of arbitrary p, is under the present
discussion, a solution must be obtained by introducing the second stress
funetion F, too.

Now the stress function #, defined by Fq. (9) must satisfy the
following relations when Kq. (14) is taken into account:

(Fl)x:a =0 ]

(5.0

. , , 15
[ 28] o 1s)
Y 3x 2Y y=0 l
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FF, ' F -
- Y - (Hl
82/‘ ox” y=0

where
_ WP ‘
o ol ] (16)
py = 0~1

The stress function F, is selected so that the following equation
would be satisfied:

Py o= Z‘C“O_STIT -h(ay) - cos ax
1
+C,) ——= k(Bx)-cos By,
0 - COSh ‘Ba (ﬁx) C By
where
. mr __ mr [ (17>
a =-—, B ="
2a 2b
m =1,85
C, = const. = E&
T

Of course, Eq. (17) must satisfy the Laplace’s differential equation of
Eq. 11). The forms of A(ay) and k(Bx) can be assumed as follows when
the condition of symmetry is taken into consideration:

hiay) = A, coshay + B,, /%— sinh ay

(18)
k(pxy = C,, cosh px -+ Dm%sinh B

in which A4,, B,, C,, and D,, are unknown coefficients.
Substituting Eq. (17) into the first and the fourth relations in Eq.
(15), one obtains

C,, = — D, tanh fa, (19)
and

c, Z of A, (140 + Bm[ +(1+5) tanh ab]}cos o

= rl-b—
(p )2a
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or

Zm‘—' {Am(l ) +B,,{ib +(L+) tanh ab]}. .08 a2
a

= v (1) (20)

Expanding the right-hand side of this equation into a form of Fourier’s
series, one has

m

v(n—1) = 4“’“‘;;” Z S COS ML (21)

Substitution of Eq. (21) into KEq. (20) gives

gin ==
Am = _B7n|:’—2’ + tanh abi]— 4:11 (l_#l) . %2
1+ ab (1 +,,) m
. ME
sin =
= ~Bm[_4 + tanh A } ) 2 (o
m(l+v)im 2 r(d+1) m
where
1=2 (23)
a

Next, substituting Eq. (17) into the second and third relations in Eq.
(15), one obtains

msm

4 mnd Y . ¥
+ tanh = Y sinha
2 2 " cosh A mﬂ {[ﬂ(l+v)1m na 2 JCOSh W= in a‘/‘

+ Dmt hmi+*1 “tanh? T\
Z anh o+ (1 ~ten 2).)1003@

2y (1—p) 1

+

71‘(1+L) % 2 hfﬂ&
2

-coshay =0, (24)
m* cos

and

5 3] 6—2v mad . s MmA |
AZm le[ : tanh 9 (1+u)<1 tanh 5 )

mr

m

. mr mrA
sin—= . tanh
T4 (l—p) 2 2 } oS ax

T m?
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mr
misin ——
+ ZDm __,_2__ [ [(1 + y) tanh —M}Cosh ﬂx
Mt l 22 mir
w  cosh o+ o1

—(L+») % sinhpel =0  (25)
a J

Since the treatment of Egs. (24) and (25) is rather difficult, the
following computations may be also useful. Fourier’s expanssions of

cosh ay, —g— sinh ay, cosh Bz, and —2— sinh px give

A
nsin m cosh A

m;u _ 4 Z 2 nry
cosh Mn + 7 €05 5%
A
nsin V- s1nh mr
Y sinh m:;y =4 Z[ 2
b i+t
nir mrA
@ mﬂSIHTCOSh 5 }COS oy
T (APm®+n®y 2b
o [ (26)
codh mnx 4 Zns.mkcosh o o T
AT +n? 20
nr mn
o g 4 Z nsm 5 sinh—_—- 2
a 2b L 27w+
PR (7 mr
_imnsmTcosh 57 ]COS -
A (A7%m’ + 'y 2a
where n takes the values of 1, 3,5, - for each value of m. Appli-

cation of these relations to Eq. (24) results

.M . W
nsin- 2 sin 2F

: Z Z B”[x (1+v) Pwi +n? z

m N

2
(Rm + 'y

nrYy

amnsin 7 sin —Qﬂ—]
082
2b

_|_
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+ ZD,n[tanh ey %T( 1 ~tanh“’%§£>} cos ”;Zy

nsin?
_ 81:(1—./11)22 ] UOS nry
m (1+v) mA(m’ + 7n’) 2b

One can easily rewrite this equation as

: mm . AT
mein——sin

= ZE "[x(lﬂ) miMZ‘T

s« MT . N
Amm’ sin ——gin

2 #2"] mny
+ (m’ + 'y €05 "ap

Q0] b T 4G (1 tane ) Joos 7

')7’&71'
msin-—
— 8y l~—p1)zz cos. Y
*(1+v) n* (m? +/i ") 2b

or

ZB[ m +/2(1+»)m'n]smmn sip T
Lm0t (P ) 2

+ D, AU, [t nh 77 4 T <1—tanh2m>:|
8 2 2

22
A=) 7‘
P = n(m’ + ')

mr
msin —
2

(27)

Rewriting the condition given by Eq. (25) in the manner shown above,
one has

IONG {Bm [6 ~ 2 tanh m;" —(1+5)(1—tank* ,mz”—*ﬂ

mml

mn

MT mnal
4»(1—/1]) Sin tanh =5 2 cog. 7T
x m’ 2a
n 4 (1+v) ZZD [_(8-}-4»)2 mn
o e "L a4 27w
4 mn ] gin M7 gin M7 nw _
md (A7'mP 4wy 20
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or
A
tanh T4 -
3 :;f 6—2v 2 _ 1—tanh? MmatA J
A ij lB"‘L A m (1+y)< 2 >
. M mnl
n 4y (1— ) Sln? tanh 2 cos TV
T m? 20
4 4(1+4v) ZZD”[_ 8+4r  mw’
T - r{l+y) m+217n
4 mné,, . ]sin M sin 7 cos M7 _ ¢
k(M A7) 2 2 20
or
A
- tanh 774
6—2v 2 o mmd \ |
Bml — . (1+»)<1 tanh? " >J
+ EMZDN[H (B8+4v)2 i a’ﬂ; _
nd* L . (L) miAm+ A7)
+ 4 n ]sin T sin 17
md mE(m’ 4 27 2 2
. mm A
C d () sm—z— tanhﬁgm
— (28)
T m?

Accordingly, one can easils obtain the values of B, and D, by
solving Kgs. (24) and (25) or Egs. (27) and (28) simultaneously. The
values of 4,, and C,, can also be obtained by substituting the values of
B, and D, in Egs. (19) and (22), and the solution of this problem is
obtainable.

Though y; can take any value between 0 and 1, the value of 4
must be determined by the conditions at the boundaries of A4 and
BB. If the value of yx is once determined, the stresses on any arbi-

trary section can be readily computed by means of the following re-
lations:
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K

g, = =

oy’

g - OF

Y ax’
. 'K

Toy — ™

3% Y

Another device of solution must be made when the conditions at
the surface of 44 and BB are difficult and the state of contact sur-
face is asymmetrical to the y-axis, but the solution is not necessarily

difficult.

The discussions of these cases will be presented on another

occasion,

J

(29)



