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Mathematical Investigation of the Flow in a Stream

with a Finite Drop on the Free Surface
By

Ikuo IKEDA
(Received June 17, 1957)

Abstract

By means of conformal representation several examples of stream-
lines with the free surface have been calculated by A. R. Richardson
and Fr. Prasil.* The inclinations of the free surface were represented
by certain funections of ¢ and the inclinations of the free surface at
infinity were assumed to be zero. In this article, the inclinations are
represented by a more simple function of ¢. Hence the calculations
are easier and the results are more adequate for discussion and appli-
cations.

I. Introduction
Let
L= ¢ y+ip @y (1)
be an analytical function of
2=ax+1y, : (2)

where ¢ 1is velocity potential and ¢ is stream function. Hence it

follows
ﬁ:ai_ijg:vx_ivy’
dz ax oy

dz 1 ,

== = (p,+iv,) ,
dx v* . 2

where v is velocity and v, and v, are the components of v with respect

to 2 and y; the direction of y being taken to direct upward. For the

* A.R. Richardson, Phil. Mag. 1920.
Fr. Prasil, Technische Hydrodynamik, J. Springer 1936.
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line element ds of the streamline and its components dx and dy one
has the relation

v dv, _ dv,

ds dx dy
If the angle between the streamline and z-axis be denoted by =, one
has on the stream line v,=v cosa, v,=v sin a, (3)

oo _de dy_do v,_de g (@)
ds dy ds dy v dy
On the other hand, one has Bernoulli’s formula in the same flux

of the flow

i v P, v
i TR
where P is pressure of fluid, 7 specific weight and ¢ gravity constant,
and the suffix 0 is the notation which shows the initial values of the
quantities,

Now let it be assumed that ¢=0 and ¢=0 at the origin =0 and
y=0, and ¢=0 is the free surface on which it may be put P=0. Hence
Bernoulli’s formula (5) will be written

(6)

2 22
4V B 6
Yr 2 29 (6)

where the suffix f is the notation which shows the values on the free
surface.

Changing the unit of ¢, z, ¥, ¢ and v into ¢/, o/, ¥/, ¢’ and ¢’ as shown
in the following :

299 = ¢!, 2grx=x', 2g9y—vy, 2gt=t and v=r’,
one gets Bernoulli’s formula expressed by
Y+ V7 = 5. (7)

Let the start be made from this formula; after the numerical
calculation is completed, the original unit will be used again.
On the other hand, if one puts

¢ =¢¢/, x=q2/, y=3y and =1

he obtains
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Then Bernoulli’s formula (6) is written in terms of the new unit,
e v

7 29

+"7?/f***;“—-
37

2 . .
If »p=¢e* be taken, Bernoulli’s formula remains invariable. Hence it
follows

2 2 1
t=¢e3x, y==¢3y and v, =e&%v}.
Lo,
Thus if one makes use of the initial velocity €3 times as large as the

orginal one, the scale of x and y must be multiplied by the factor e%.

In this case besides the condition voze%v{), sin @« must be a function
of e¢ instead of ¢. Hence gin a is evidently different from the original
one. It may be unnecessary to add that if sina remains the same
and the initial velocity alone differs from the original one the conformal
representation can not be obtained by means of enlargement or con-
traction.

Now from Egs. (4) and (7) one gets

sin a,do = ¥ vi—y,; dy; .

Integrating both sides, one obtains

¢ 2 3
C—j sin a,de = ?(v;—yf)‘z ,

0
where integral constant C is determined by the magnitude of the

velocity at ¢=0 and ¢=0; then one puts %C:vﬁ. Therefore

s 8 (P > 3 _ s
v;,—«é—j sin a;de = Wi—y,)? =0},
0

v?-:[vg—%&: sin aquc]d. (8)
From Eq. (3) it follows
2= jwvieww:r exp (ia) dg (9)
0 f

o[,8 3P 1
[vo —ngosm q,ecl¢]
Hence
cos adg (10)

¢
xf :j 1
0 [v?p—%\:sin or,:d(,a}§
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0 .
yf:j sin ade . (11)
0 [vﬁwigq)sin aqu)]§
2 Jo

If ¢$<0 be assumed to be the velocity field of the stream, the
coordinate of a point in the inner stream is expressed by the following:

2 = Real part of Sx - e);p ‘{jaa)} dx = (12)
0y g3 . 9 i 3
Lvo 5 30 sin a(X)dX]
y = Imaginary part of jx exp {ia (L)} 2 (13)

U 3 (% : % .
[vo ?Sosma(X)dX]

II. Flow with a Finite Drop on the Free Surface

In natural phenomena it is often observed that there are flows in
a stream with finite drop. The inclinations of the free surface will
be expressed by various functions of ¢. If it be assumed that the
inclination at infinity is zero and there is only one drop in the stream,
the inclination may be expressed by the function of ¢ and e ®. As
the most simple function the author takes

-1 =1

si = = 3 14
ndr e? e ? 2 cosh g (14)
Since
N
‘ J sin a,dp = —tan~'e® + -,
0 4
it follows
v, = [v3+% tan“‘e“’—% n']% ,
Vo—Yy = [vﬁ + % tan™’ e"’—g— n:I% ,
0 .
2 :j exp {ia} dy . (15)

3 3 1
Yl 4+ 2 tanT'ef— S |3
[vo 9 n-'e 3 'l‘jl

* Richardson assumed
3 2
o= —?ﬂ— (B— tanhslﬂ) 3
and Prasil assumed
v = (C+ tanh @)’
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The values of sina,, v, and y, at the points ¢=—c0, 0 and +oo
are shown in the following:

sin a, 0 —~% ‘ 0
1
vy [vﬁ— —2— n:l% Uy [vg + % rr:l§
Vi—Ys [vg — -g— 7'[}% v [vﬁ 4 % nJ%

As is easily seen, the velocity at infinity is uniform.
Therefore the depths of the stream at —oc and +co are inversely
proportional to the velocity of the stream,

, 1
s_ O 13
[Depth at + eo] _ —[vo 8 n]

[Depth at —ico] [USJF 3 J% )
0

- 7T

If v} equals

S w, v at ¢=—oo is zero, and the depth at ¢ = —oo tends

to infinity, while the depth at ¢= + co keeps finite.

III. Bed of the Flow

. Even though the free surface of the flow appears to be smoothly
curved to make a finite drop, the bed of the flow just below the drop
makes various geometrical forms. In other words a slight difference
in the form of the free surface causes considerable variations of the
form of the bed.

For example, one may put sina= —1

in the general velocit
2cosh & y

field. Hence one has from (9),

2cosh ¥
0 [vﬁ—ijx_“mdx :|%
2 Jo 2coshX

By separating the real and imaginary parts of sina, and putting

’ . ey —1 1
L Sx exp {7, sin <——-—>J dx i~

sina = R+1I, a=a+1b, a7
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one obtains

R=-= coshgcosg _ sinacoshbd, (18)
cosh 2¢ + cos 2¢

= _Sinhesing _ oo sinhb . (19)
cosh 2¢ + cos 2¢

Since the magnitude and the direection of the velocity must change
continuously in the stream, the singularity of the factor exp {ia(X)}

5 3 % . -1 .
and [vo——z—s sin adX] 3 must be inspected.
0

First, the continuity of a will be investigated in general complex
domain. From Egs. (18) and (19) one has on the locus of ¢=0

—1

k= 2cos¢ (20)
I=0. (21)
Hence there are three possible cases.
1) =0, a:——%, consequently EB=—1.
2) b=0, a---- arbitrary, consequently K = sina.
3) b0, a=-— g , consequently R = —coshb.
Case 1) is where g/)z——g—; 2) is the case where a limiting con-

dition |¢] <% exists, because sina<1; 3) is the case where the con-
dition of continuity does not hold. In this case from (18) one has

l 1

2cos¢

’>1

Consequently the interval where ¢ exists is limited from ——7?:— to —F.

2
Denote the domain

—e gL, 0>¢>—

by D,, and the domain‘

— oL gLt o0, —%>¢> —%

by D,. In D,, b changes the sign on passing through ¢=0, as 6=0 on
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the locus ¢=0, while in D, b cannot change the sign, As coshb is
always positive, from (18) and (19) it follows that

¢<0 sina<0, cosasinhbd>0
>0 sina<0, cosasinhb<0.

Therefore on the locus ¢=const., ¢ and b vary in the following
way :

In D
<0 =0 ¢ >0
0>a>—-= a=—" 0>a>—"2.
2 — 2 — 2
b>0 b=20 b<0
or i T v T
0> —nm—a> — —— a=— 0> —mr—a> ——
{ . 2 _a{ 2 _ﬁ{ sl T
b<0 b=0 b>0
In D,
O>a>——£ a:——l 10>___7:-_a,>___l
b>0 b>0 b>0
or ‘0>——7r——a>—il 4= — 0>a> — T
2 — 2 — 2
b<0 b<0 b<0

So long as b varies continuously, in D, a varies into a different
quadrant as ¢ increases from —oo t0 +oo. Therefore there appears

a discontinuous part of ¢ on the locus ¢= —%. Since the discontinuity

of physical quantities in the velocity field is excluded the domain
]g//]\/-g« must be excluded.

Every streamline may be assumed as bed of the stream, but as
above shown, the domain of the existence of velocity field is limited.
The lowest bed of the flow may be found in some cases. Next, it
is needful to investigate the factor

s 8 (%
A zgosmadx

The zero of the factor may be the singular point of the velocity field.
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Again another condition becomes available to use in obtaining the
lowest bed of the flow.

IV. Example

When the inclination is given by a function of ¢ and the initial
veloeity by a certain value, the geometrical form of the streamline will
be determined. For examples the following two cases are calculated:

vy =2 and v@:in.
8

Let the inclination be assumed

sinag=— 1 _
e¥4e?
1). Free surface: ¢=0.

As shown in Eq. (15), the free surface is obtained by

[ qin-t —1 ]
0 B
_ Rt <2c:oshqo>1
P = 3 3 1 de ,
0 [vﬁ—k-—tan“e“’—* n}g
2 8
—1
¥ 2 cosh
yl :S 3 ¢ <0 d(o .

s 3 1
0 [v‘; +-tan~'e? —>- 71':| 3
2 8
The numerical results are tabulated in Table I for the above two
exampeles.

2). The locus of ¢ =0.
From Eqgs. (20) and (21) one has

a = ¢ = sin™* —1 .
2cos¢
Since
b s . .
J 7 dg/;:—ilog 1+sing
0 208 ¢ 2 cos ¢
by putting

s 3 [ —idy . s 1 s 4 B
Vg— — =A+iB=[A*+B]2e®, =tan~'-=,
’ 2]0 2 cos ¢ ' l Pe ? A
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TaBLe I
a) vy = ¢=iﬂg" h) vh == ¢=i‘1§—;’
¢ >0 ¢ <0 ¢ >0 ¢ <0
n n
k3 Yt X1 Y &y i1 1A Y1
X102 X10-2 x10-2| x10-2] X102 X102 x10~2] x10-2
0 0. 0. 0. 0. ) 0 0. 0. 0. 0.
1 0.3652 - 0.2100 | — 0.3699 | 0.2129 1 0.4337 | — 02497 | — 0.4434 | 0.2553
2] 07274 | —0.4155 | —0.7462 | 042683 | 2| 0.8608 | —0.4920 | —0.8991 | 0.5187
3 1.0878 | —0.6143 | — 1.1305 | 0.6381 | 3 | 1.2827 | —0.7246 | — 1.8696 | 0.7730
4 1.4472 —0.8045 | — 1.5288 | 0.8461 4 1.7003 — 0.9456 | — 18572 | 1.0310
5 1.8071 — 0.9858 | — 1.9270 | 1.0486 53 2.1163 — 11546 | —2.3640 | 1.2853
6| 21678 | — 11557 | — 23409 | 1.2440 6| 25811 | —1.8505 | —2.8915 | 1.5844
7 2.5296 — 1.3149 | — 27656 | 1.4310 7 2.9451 — 15828 | — 3.4415 | 1.7764
8 2.8418 — 14629 | — 3.2014 | 1.6085 8 3.8591 — 17016 | — 4.0152 | 2.0100
9| 32668 | — 15996 | —3.6478 | 17760 | 9| 87724 | — 1.8568 | — 4.6186 | 2.2845
10| 3.6220 | — 17253 | —4.1046 | 19331 | 10 | 4.1858 | — 1.9991 | — 5.2374 | 2.4491
11 39879 | — 1.8404 | — 45710 | 20798 | 11 | 4.6986 | —2.1289 @ — 5.8875 | 2.6532
12 4.3547 — 19464 | — b5.0466 | 2.2160 | 12 5.0115 — 2.2471 | — 6.5644 | 2.8470
13| 47223 | —2.0412 | — 565308 | 2.3420 | 18 | 5.4246 | — 2.8547 | — 7.2688 | 3.0802
14 5.0903 — 21281 | — 6.0226 | 24581 || 14 58375 — 24522 | —8.0012 | 3.2030
15 5.4586 — 2.2069 | — 6.6216 | 2.5650 || 16 6.2499 — 2.5405 | — 87625 | 3.3658
16 | 58270 | —2.2782 | —7.0276 | 26629 | 16| 6.6619 | — 2.6203 | — 9.55633 | 8.5188
17 6.1955 — 2.8427 | —7.6396 | 27625 | 17 7.0734 — 2.6928 | —10.3740 | 3.6624
18| 65639 | — 24010 | —8.0572 | 28343 | 18 | 7.4843 | — 2.7573 | —11.2259 | 8.7969
19| 69322 | — 24535 | — 85799 | 29089 | 19 | 7.8948 | — 28159 | —12.1098 | 3.9230
20 7.3002 | — 2.,5009 | — 9.1071 | 2.9768 || 20 8.8047 — 2.8688 | —18.0260 | 4.0409
21| 76681 | — 25437 | —9.6384 | 3.0885 | 21| 87139 | — 29164 —139760 | 4.1512
22 8.0357 | — 2.56822 | —10.1735 | 3.0946 | 22 9.1225 — 29592 | —14.9605 | 4.2543
28 | 84030 | — 26169 | —10.7120 | 8.1455 | 28 | 9.5806 | — 2.9978 | —15.9809 | 4.3506
24 8.7700 ~- 2.6481 | —11.2536 | 3.1916 || 24 9.9382 — 3.0325 | —17.0881 | 4.4405
25| 9.1368 | —2.6763 | —11.7987 | 3.2334 | 25 | 10.8453 | — 3.0638 | —18.1834 | 4.5246
26 1 9.5033 | - 27016 | —12.3464 | 3.2712 | 26 | 10.7619 | — 8.0919 | —19.2683 | 4.6029
27 | 9.8697 | — 27245 | —12.8956 | 3.3054 | 27 | 11.1581 | - 8.1172 | —20.4439 | 4.6759
28 | 10.2358 | — 2.7450 | —13.4468 | 3.3363 || 28 | 11.5638 | — 3.1400 | —21.6614 | 4.7444
29 | 10.6016 — 27632 | —13.9997 | 8.3643 | 29 | 11.9691 — 8.1605 | —22.9188 | 4.8077
30 | 10.9674 | —2.7802 | —14.5544 | 8.3895 | 30 | 12.3748 | — 8.1789 | —24.2117 | 4.8667
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one hag
A=, B:-?Llog 1+sin¢;
4 cos ¢
tan g = 3 log 1+sing
4 v} cos ¢
It follows
¥ gin <a—— B >
X = — g """" dﬁ ’
0 [ A‘) + BZ:I 6
TasLe II
a =2 ¢=0 ¢=_—"E B w=—r =0 ¢=—TF
60 8 60
n T2 Y2 n 2 Y2
X 10-2 X10-2 x10-2 X 10-2
0 0. 0. 0 0. 0.
1 — 0.1055 — 0.1838 1 — 0.1255 — 0.2199
2 —0.2100 — 0.3682 2 — 0.2485 — 0.4403
3 — 0.3139 — 0.65630 3 — 0.3699 — 0,6622
4 — 0.4174 — 073877 4 — 0.4893 ~— 0,8842
5 — 0.6209 — 0.9226 5 — 0.6076 - 1.1066
6 — 0.6246 — 11071 6 — 0.72566 — 1.8201
7 - 0.7290 ~— 12910 7 — 0.8429 — 1.55610
8 — 0.8343 — 14741 8 — 0.9602 — 17719
9 — 0.9410 — 1.6561 9 — 1.0781 — 1.9918
10 — 1.0496 — 1.8366 10 — 1.1969 — 2.2097
11 — 1.1606 — 2.0153 11 — 13178 ~— 2.4260
12 — 1.2746 — 2.1917 12 — 1.4408 — 2.6393
13 — 1.3923 — 2.8651 13 — 15673 — 2.8495
14 — 1.5146 — 26348 14 — 1.6979 — 8.0651
.15 — 1.6424 — 2.6997 15 — 1.8342 — 8.2656
16 — L7770 — 2.85683 16 — 1.9786 — 3.4484
17 — 1.9207 — 8.0077 17 — 2.1326 — 3.6311
18 — 2.0750 — 8.1450 18 — 2.2979 — 3.8010
19 — 2.2413 — 8.2641 19 — 2.4780 — 3.9510
20 — 2.4289 - 3.8331 20 — 2.6857 — 4.0464
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dg .

# cos _B
_ S cosa 3>
Ys = —
© [A*+ B¢
The numerical results are shown in Table II.

T

3). The extreme bed line: ¢ =— -

Again let it be put

P %
vy — — sinadl = A’+iB' .
Now

P-i g -~ 5 p-ef
sin adX = sinad)H—S sin ady .

-7

win

0 0

The first integral is already caleulated; it equals —0.9877.

321

On the

locus ¢ :——%, sin a can be separated into real and imaginary parts

as shown in the following

y_ —ecoshg __  —coshg
2 cosh 2¢—1 4 sinh®¢+1
I = —y/3 sinhg _ —¢3 sinh¢
2 cosh 2¢—1 4 cosh*g—8 °
Since
? 1 .
j R'dg = — - tan” (2sinh¢),
¢ 1 2cosh¢—y3 |, 1 _
Pdg = — = log 25297V S 4~ Jog(2—/3),
0 ¢ 4 2coshe+V3 2 g(2—/3)
it follows

P -2 ‘P
‘ sin adX :X (RI+iINde ,
Jo-i %

0

WA

A = y,— % tan~"(2sinh¢),

B’:—?—’—lo 2cosh¢—/3
8 2coshg+v3

and
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322
ﬁ: = tanp’.

Next it is neccessary to separate a into real and imaginary parts
a = a +it’

If one puts e =s, then s is always positive and he has
sin ¢’ cosh &/ = %sin o (—Sl- + s) =R

cos @/ sinh &/ = % cos a’<‘1~—s> = I

S
F
$u-r
A L] }‘ X
0 &
7z & s"’,!ce L2}
Bed of Flou, ‘P='3 i 33
Plate A. =2
u
P ¢
T f
] 2
e
7o o B

Plate B. 3 =%n.
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TasLe IIL
a) vi=2 wzié‘—(’)i b) = w:i%
>0 ¢ <0 ¢>0 ? <0
" n
T3 Y3 R Y3 a3 s Ty Ys

X102 xX10-2 | x 102 x10-* x10-2 X 10-2 x10-21  x10-2
0| —24289 | — 3.3331 | — 24289 | —3.3381 0| — 26857 | — 4.0464 | — 2.6867 Y‘ —4.0464
1| —22143 | — 8.7780 | — 2.5413 | —2.9010 1] —24265 | — 4.5316 | — 2.8454 i —3.6985
2| — 1.8857 | — 4.2808 | — 27224 | —26979| 2 | — 1.9487 | — 5.0225 | — 8.0755 | —B.4867
8| — 18418 | — 4.6428 | — 2.9857 | —25898| 8 | — 18697 | — 5.4429 | — 3.3398 | —3.3332
4| — 07947 | — 49720 | — 8.1740 | —2.4148 4 —0.7419 | — b.7837 | — 8.6837 \ —3.2220
5| — 02852 | — 5.2372 | — 8.4342 | —2.3132 5, —0.1014 | — 6.0631 | — 3.9561 = —8.1470
6 0.3265 | — 5.4464 | — 3.7168 | —2.2816| 6 0.6347 | — 6.2648 | — 4.3076 i —8.1015
7 0.8780 | — 5.6182 | — 4.0219 | —2.1658 | 7 1.1561 | — 6.4321 | — 4.6877 —3.0827
8 1.4148 | — 5.7469 | — 4.3469 | —2.1122 8 1.7591 | — 6.5682 | — 5.0964 ‘ —3.0883
9 1.9862 | — 58556 | — 4.6908 | —2.068% 9 2.3480 | — 6.6719 | — 5.5847 : —3.1169
10 24418 | — 5.9449 | — 5.0680 | —2.0842 1 10 2.9084 | — 6.7697 | — 6.0025 1 -3.1669
11 2.9331 | — 6.0193 - 5.4326 | —2.00066 | 11 3.4567 | — 6.8316 | — 6.5005 ‘ —3.2368
12 3.4107 | — 6.0816 | — 5.8280 | —1.9842 | 12 3.9893 | — 6.8923 | — 7.0290 : —3.3260
13 3.8765 | — 6.1841 | — 6.2382 | —1.9668 | 13 45079 | — 6.9483 | — 7.5882 —3.4337
14 4.8311 | — 6.1795 | — 6.6627 | —1.9525 || 14 5.0140 | — 6.9867 | — 8.1790 < —3.6597
15 4.7760 | — 6.2183 | — 7.0999 | —1.9418} 15 5.5088 | — 7.0240 | — 8.8020 ‘ —3.7031
16 5.2122 | —6.2520 | — 7.5494 | —-1.9826) 16 5.99387 | — 7.06566 | — 9.4676 | —8.8633
17 5.6408 | — 6.2816 | — 8.0096 | —1.9260 | 17 6.4698 | — 7.0847 | —10.1458 | —4.0403
18 6.0627 | — 6.8071 | — 84800 | —1.9204 || 18 6.9379 | — 7.1092 | -—-10.8673 | —4.2347
19 6.4785 | — 6.8300 | — 8.9596 | —1.9168 | 19 7.3991 | —7.1811 | —11.6234 . —4.4459
20 6.8887 | — 6.8499 | — 9.4479 | —1.9183 || 20 7.8541 | — 7.1500 | —12.4147 t —4.6740
21 72943 | — 6.83678 | — 9.9433 | —1.9107| 21 88084 | — 7.1678 | —18.2412 | —4.9189
22 7.6958 | — 6.3881 | —10.4468 | —1.9092 | 22 8.7479 | — 7.1821 | —14.1045 | —5.1806
23 80923 | — 6.8974 | —10.9555 | —1.9076 || 23 9.1879 | — 7.1954 | —15.0050 | —5.4587
24 8.4862 | — 6.4096 | —11.4708 | —1.9066 | 24 9.6240 | — 7.2076 | —15.9443 | —5.7646
25 8.8770 | — 6.4209 | —11.9912 | —1.9061 | 25 10.0564 | — 72184 | —16.9233 = —6.0673
26 92647 | — 6.4306 | —12.5167 | —1.9056 || 26 10.4856 | — 7.2275 | —17.9417 | —6.3974
27 0.6499 | — 6.4897 | —13.0463 | —1.9061 | 27 10.9122 | — 7.2357 | —19.0004 | —6.7449
28 10.0881 | — 6.4474 | —13.6800 | —1.9049 | 28 11.8862 | — 7.2484 | —20.1009 | —7.1102
29 10.4142 | — 6.4545 | —14.1172 | —1.9047 || 29 | 1L7579 | — 7.2500 | —21.2447 | —7.4933
30 10,7988 | — 6.4607 | —14.6575 | —1.9047 | 80 12,1775 | — 7.2561 | —22.4330 | —7.8954
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Hence

costal = %{ —(BP 4 P + (R I 1] +4T7)

sinh ¢ (2sinh ¢+/48inh?¢+38)
4 ginh® ¢+ 1 '
—I'+{/ I +cos*a’
cos o '

§ =

Thus one obtains

where gz, and y, are the values of z, and ¥, at ¢=0, (/;:—%. The

numerical results are shown in Table III and the two curves of the
comformal representations are shown in plates 4 and B.

Above values show the actual measures by means of dividing the
numerical values in calculation by 2g; the adopted unit in length is
metre. In the use of such a unit, when v,=1.26 m/sec, the depth of
the stream is only several centimetres. Such a stream can be realized
in the laboratory or observed only in the shallow part of a brook. If,
however, a new unit as v,==1.26 x 10 m/sec=12.6 m/sec is employed the
depth of the lowest bed of the stream is about 6 metres. For a laminar
flow sueh a case ean hardly exist. The medium cases where the initial
velocity v, lies between these two values are observed in nature.

In this first report the author clears up only the basic part of
the problem. It is expected that extension and applications of this
result will be published later.



