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Bending Stresses in Beamless Stair Slabs

Yoshizo DOBASHI

Introduction

In case of stair slabs, as shown in Fig. 1 (a) and (b), with subbeams and
bridgeboards, B, and B,, respectively, landings and flights are usually designed
as rectangular plates with all edges fixed and in case of having only B, (without
B,) are designed as rectangular plates with three edges fixed and one free. It
is noted that stairs are often designed without B, and B,.
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The difficulty in analyzing the actions of these slab members has brought
about conventional solutions, developed by regarding flights as plates with three
edges fixed or mere cantilevers and by regarding landings as beams with
a sufficiently large width to be substituted for the corresponding slabs or as
all-edge fixed -slabs. ’

These assumptions may be inevitable for lack of closer approximations.

The modes of stress distributions in stair slab (a) may be assimilated to
those in slab (b) or (c) in Fig. 1. In both cases flights should be treated as
having two different rigidities in londitudinal and transversal directions.

[nflexible Beam

(2) i S
Fig. 2.

Approaches from this viewpoint seem not to have been made except by
Y. Yokoo? who presented a solution for such a type as shown in Fig. 2 (a)
and 2 (b) by the method of difference.

The present paper presents solutions for a few cases of stair slab as shown
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in Fig. 1(b). The solutions are obtained
from simultaneous systems of difference
equations concerning isotropic (landing) and
anisotropic (flights) parts and including the
equations at the points in question relative
to both these parts (shown in Fig. 3).
The results of the experiment help
those equations to be set up on the assump-
tion that a stair slab be approximately treated
as a horizontal plane body which is simply
supported at the end of its slit insted of as
a system of horizontal and sloping members.

1. Subdivision of Slab Surface and Notation

Each slab surface is plotted out into equal small squares with all inter-
secting points numbered as shown in Fig. 4. ‘
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with E: Young’s modulus of normal and anisotropic slab in x and
y-directions.
h: thickness of slab in z and ¢-direcions.
y: Poisson’s ratio.
SA: reaction resultant.
A reaction.

2. Governing Differential Equations of Stair Slabs
The governing differential equation of an orthogonally anisotropic slab is
Nryw oH _ N, Ow P e (A)
ox! 8:&28 J oy’
with 2H = 4C—(Nw, +N,v,)
= (1—vvw,) YN, N,

In this equation N,, N, and H must be decided in order to carry out com-
putations. Strictly speaking, these values should be experimentally established
but here they are conventionally adopted. An approximate relation, H*=N,N,,
is assumed here as is generally the case with computative studies of this kind.

Accordingly, Eq. (A) is

Naw+2,/NN 9‘19 +Ny§fﬂ:p ........................ (B)
282/ ay4

Putting N,=N, =N in Eq. (B) the equation of isotropic slabs is obtainable.
And further, stresses and reactions are expressed as follows :

M, =—N, (5% +4,9%)

M, =—N, (G +»5%)

=222

Q, = —N, a;;i’ —(N,, +2C) aax‘a‘;z } ..................... (C)
Q, =—N, T8 —(Np,+20) [

b = (T (G ) 22

Ay = =N (G (3, +) 7))
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For simiplicity putting v=0 in Eq. (C) we obtain

M, = —N, Fw
X

S
M, — —N, %;0

M, =—/N.N, 2%

Q, = M(Nﬂ%}‘;{J”/NTNy a‘j;;“;g) ST TN (D)
e

A =—(N T 4 2/NN, )

A, = -<Ny%§~+2,/NNJ 83326?/> )

And substituting N./N, =k ,N,/N=n in Eq. (B) we obtain

]54 84'10 +2]€2 a4w _a_‘lg_ — p/nN ................. e mrrrencanearan (E)
ox! ox*oy? oy’

Thus the corresponding stresses and reactions are indicated as

M, = —nk @2“; )
M, = —nN aazJ
M. — aay OCTW
oy = — 1N N
Y a3 w o, 0w -
Q. =—nk N<L ST ax8y> ..................... (F)
. Pw . Pw
Q =-—nN ( oy® Tk 8x28y>
= — kN[O g T
Ay=— nk N(/e 42 axw)
A, =—nN <aaw +op 0w 2a iy )

Eqs. (E) anp (F) are the governing differential equations of a stair slab
composed of isotropic and anisotropic parts.
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If these parts are joined together in y-direction the following relation
stands between them'™.
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Fig. 5.

3. Finite Difference Equations at the Points in Question
According to the previous paper® such equations are schematized as under.

Developing into Difference Expression
The development and schematization of the fundamental differential equations
into difference expressions produce Fig. 6.
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Resultant reaction SA,=1'A,and SA,=24, become, from A,= —nk:N(Fw/ox’
+ 20%w/oxdy?),
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and from A,=—nN(0’w/dy®+ 2k w/[0xdy),
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Now, if a point on the slab is regarded as the junction of slab A, B, C
and D and the resultant reaction for each slab is considered

SA comer = ([ x /A4 +(J)x 1/2+(K) x 1/2+(F)
then the resultant reaction at each corner point becomes

SAorer = (I)x 1/4+(J) x 1/24+(K) x 1/2 +(L)
The conditions of equilibrium at this corner point are:

ZM?/ = O SMA+SMD—SM3_SMC == O
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For the points adjacent to the end of the slit the respective equations are set
up by eliminating the terms due to external points availing the condition
M,2/2=0.
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4. Solution of Equations and Stress Tables

As the flexural rigidity of a flight for transversal direction is computable

TaBLE 1,
Riser 18°™ Tread 27°™
Thickness | P | /0] /7] 72] 73] 1 IZA AN AN AN AN

of Flight Tx | 6061 6951 796| 906|102 oM 4.2/ 4.83| 554 | 630 | 7/3

3 [ 3.0213.8014.35 |4.95 |56/
Thiokness | Fo |/2 /5 | /5 i | 2621304 348 |396 445
of Landing | 7 |14 /83| 229|282 s | 205|248 282 |32 [364

In case 1%, =4
sn=4/4

by Eq. (B) the value of N,/N, may be determined by experiment. The following
experimental and computative values of N,/N, and N,/N, respectively, were
reported by Y. Yokoo, as shown in Fig. 16 and Table 1. Hence these values

150" (59025)

‘mild steel
o .(8)
1M
Fig. 16.
Deflection of Strip (A) Deflection of Strip (B)

Average by Four Trials Average by Ten Trials
72125 (unit 1/100 mm) 22.61
No/Ny = 72.126/22.61 = 319 =~ 3

are replaced in the respective equation at each point so that it is set up again
as shown in Table 2 (where =1 and point support at point 33 are assumed).
The equations are solved by elimination and stresses are found as shown in
Table 3a, 3b, 3c and 3d. In the following are plotted the stress diagrams
for each slab.
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5. Stress Diagrams

Table 4 and Fig. 18 are a stress table and a stress diagram respectively
plotted from the solution for a stair slab with Z,/,=5/3, for reference to the
corresponding anisotropic state of flight, on the assumption that its flight be
a flat isotropic slab with the same depth as its landing.
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6. Examination of Stress Distribution

Reaction at Point Support

Table 5 shows the reaction at the point support relative to the total load.
The increase in the ratio of longer to shorter edge of the flight when that ratio
of the landing is constant causes the decrease in the share of the resultant
reaction, acting on the point support. This may be adequately explained as
follows. The resultant reaction over the cantilevered part near the center is
concentrated in the fixed part near the edge. It is also made known by the
resultant reaction derived from the assumption that landing and {flight be both
orthogonally isotropic.

TABLE b.
?
A ; 5/3 20 773 8/3
YA (Pi2) 10 1 14 16
pin Az » 13242 | 15306 | 15912 | 1.6344
(1.4688) - ”
pindss/ ZA(%)i 132 12.8 114 102 Q _

Fig. 19.

The fact is already revealed in another paper that the ratio of resultant
reaction to total load at the point support at the slit end is 134.6%. Though
a relatively large normal force acts on the actually sloping stair slab which
closely resembles the above mentioned slab in the mode of bending, the bending
is still decisively large among design factors compared with normal force as
apparently seen in Fig. 19.

Hence the reaction at the point support for a flat slab with all edges fixed
and with point support at slit edge may be negligibly small since its bending
actions should resemble that of a beamless stair slab.

Change in Stresses Due to Elongation of Flight

In Fig. 20 are shown stress diagrams for a stair slab with Z,//, variable
from 5/3 to 8/3, by flight length. It is noted in this diagram that the bending
in cantilever direction (z) of the flight shows a remarkable variation along its
center line (in direction y, parallel to slit). It is, however, a matter of course
as long as it is treated as a cantilever.
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Comparison of Author’s Values with Other Workers

In Fig. 21 values at major points over the flight by his analysis are
compared with those over the three-edge fixed, one-edge free slabs by their
analysis.

The values by the author and those by Yokoo are fairly close to each
other except in bending moment in y-direction, M,,. This gap in the value
may presumably be caused by the author’s gross subdivision of the landing into
only three segments for the shorter direction. Therefore, the assumption of
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regarding the flight as an anisotropic slab with three edges fixed may sufficiently
close.

Further, bending moment M,, at the tip of free edge is always larger
than bending moment M,, for three-edge fixed slabs, but for stair slabs a larger
rigidity in a-direction than y brings about M> M, .

And M, for orthogonally isotropic slabs and that for anisotropic slabs are
considerably different, so that the use of three-edge fixed slab design diagrams
for design of flights should be carefully made. -
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Comparison of Bending Moment for Anisotropic Flight Slabs with that
for Three-Edge Fixed Isotropic Slabs with 1./, =1.

Four-Edge Fixed
Isotropic Slabs with 7./I,=2 and for Two-Edge Fixed Beams

In Fig. 22 bending moment along the border line of flight and landing
and that along the extention line of slit are respectively compared with bending
moment for three-edge fixed slabs along center line of shorter edge (derived by
Yokota) and that for all-edge fixed slabs with 7,/7,=2 or two-edge fixed beams,
all under a uniform load.

Qg:l’l’s/a

ﬂ\j:f'x =2

Byiln=ls

4.0z =%

M« REFERRED TO ANISOTROPIG PART

Py fx =2 ,
By:lx= % . /
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7
Duiln=2 ,’/
t} \ I/Zg‘:llﬁ/z . u,?ﬂ
ty:da=% ’\ B
Uy=5 N = \ o
byta=Ys T-e-- tyshs %
!?g:f1=5/3
=2 NI
bt ke s )
015
o104
PE B
RS o5t M -
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3 UNIFORM LOAD-
2 .
i oL afty fuita=
MARKED © ARE YOKOTA'S THREE-EDGE FIXED, ONE-EDGE FREE'™ 4
VALUES { ALONG FREE EDGE) UNDER UNIFORM LOAD
Fig. 22.

Lg:lx =2

This comparison obviously shows that the conventional assumption which
has it that the longer fibres of a landing be a beam with unit breadth, is

inadequate at least for the longer direction.

Field cracks over landings near

the end of slit which are encounterd frequently, are considered to be caused
by this bending (principal moment).

Bending moment for this slab along the shorter center line fairly resembles
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that for all-edge fixed slab along that line and also that for two-edge fixed beam
spanning along that line. So our design of landings should be refered to as
‘beamed’ value.

Further, as shown in Fig. 22 the positive moment for x-direction for flight
is notably large near the border line of landing and flight (ca. 1/8 w£?).
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13242
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Fig. 23.

Comparison at Main Points of Isotropic Slitted S'abs With Point Support
at Slit End With the Same Demensioned Beamless Stair Slabs, All Under

Uniform Load

In Fig. 22 stresses at main points are compared between a stair slab and
a plain slab with an identical dimension and load condition. Tn the former
both bending moment and reaction are concentrated in transversal direction of

the flight and in the latter stresses are prevailing for sloping direction of the
flight and for both directions of landing.
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