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Department of Mechanical Engineering

                              Abstract

    A simple approximate method based on the Spalding function to calculate

local heat flux from a nonisothermal flat plate is developed in this paper. A

technique to cancel the major approximation errors is included. A diagram

for the calculation covering a wide range of Prandtl number is made by using

the Gardner and Kestin's solution of the Spalding function. Formulas on

which the diagram is based are also attached for a desire to use a computer

for the calculation, The method is checked by the Smith and Shar's solution

of the Spalding's equation for a specified flux condition and it is shown that

the results are sufficient for practical purposes,

                            Nomenclature

    Cf12, friction factor;

    C., specific heat at a constant pressure of the fluid;

    E, approximationerror;
    h, coefllcientofheattransfer;
    k, thermalconductivityofthefiuid;
    R., Prandtlnumber,PC,,v/k;
    q(x), wall heat flux at point x;

Rex,

Reei,

S,

S.,

St,

t'

4v,

4,

u)

Reynolds number, u,x!v;

Reynolds number, u,ei/p;

limit of integration, defined by equation (15');

Spalding function;

Stanton number, h/Pu,Cp;

difference in temperature between a point in the boundary

and the mainstream;

difference in temperature between wall and mainstream;

  .mamstream temperature;
velocity in boundary layer, parallel to surface;

layer
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    u,, velocityofmainstream;
    u", dimensionless velocity in boundary layer, defined by equation (22');

    x,co-ordinateofdistancealongthewall; '
    x", dimensionles.s distance along the wall, defined by equation (3);

          dimensionlesstemperature,tit,.; '    e,

    v, kinematicviscosityofthefluid;
    e, unheatedlengthofthewall;
    P, densityofthefluid;
    T,., shearstressatthewall;
Subscripts

    i, generalexpressionofasegmentedpoint;
    O, leadingpointofthefirstsegment;
    nf trailingpointofthefinalsegment;

                             Introduction

    Spalding [1] showed that heat transfer across a turbulent boundary layer

can be reduced to a simple partial differential equation. Kestin and Persen [2],

Gardner and Kestin [3] solved the equation with the boundary condition of

isothermal sqrfaces for a wide range of Prandtl number and named the solu-

tions the Spalding function. Smith and Shar [4] solved the equation with

a boundary condition of a specified flux condition.

    The problem of heat transfer across a turbulent boundary layer of a fiat

plate was previously solved by Rubesln [5], Seban [6], Reynolds et al [7],

Tribus and Klein [8]. However, these are based on both mathematical and
physical approximations, and one of the major shortcomings is said that neg}ect

of the laminar sub-layer.

    In many engineering applications, problems for the calculation of local

heat flux from a nonisothermal wall temperatuer are interested. In such cases,

it is well known that Eq. (1) in the fol!owing paragraph is used in which

h(x,g) is the heat transfer coefllcient for an isothermal surface. But the

evaluation of the integral of Eq. (1) becomes frequently difficult inasmuch as

the temperature can be complete}y arbitrary. Hartnett, Eckert, Birkebak and

Sampson [9] developed a method in which the p}ate is subdivided in a stream-

wise direction and the temperature ls approximated to a linear function of the

stream-wise co-ordinate in each segment, in such a way that the Seban's or the

Rubesin's forrnula can be applied to each segment.

    A utilization of the Spalding {unction for the same purpose of approxi-

mation is attempted in this paper. The technique to approximate the tempera-

ture distribution is changed to suit the different nature of the Spalding function
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from the Seban's or the Rubesin's formula, and the method is developed in

this paper. At some peculiar points, un-negligible errors may possibly appear

by the approximation and an additional caiculation to cancel the errors is

necessary. The method of the cancellation is also developed. Finally, some

results by the present method are compared with known heat fiux distributions

and the reliability is proved to be sufflcient for practical purposes.

                          The Approximation

    .1. Basic calculation;

    The !ocal heat fiux from a nonisothermal flat piate exposed to steady flow

is calculated by, [10],

        q(x)-S:h(x,e) Citk(e) de ,. (i)

In this equation h(x, g) denotes the heat-transfer coeflicient at Iocation x for

an isothermal flat plate in which the first part with length e is not heated and

has the same temperature as the free stream.

    The Spaiding function, S., is defined by

           un s,･e.

and the numerical solutions are given by the function of x' and R. by Gardner

and Kestin [3]. Here, the variable x' is a reduced length co-ordinate and it is

        x'-S`,UMh-."IP du '･ ,' (3)

Having Eq. (2), the heat-transfer coeflicient, h(x,e), can be expressed by the

Spalding function.

        h(x, 6) -= k u,S.(x', R,) VumCf/2 (4)
                  v
        '
    For a turbulent boundary layer the friction factor, q!2, is, [11],

        q12-o.o2g6(U;X)-02 (s)
    Eq. (1), Eq. (4), and Eq. (5) gives

                                      '                                                                   '        q(x)-vo･o2g62R2fegS:z,s.(xe,R,)d4de,(eLde . (6)

or
 q(x)-vo.o2g6-l;-R2le"Sl,s.(x',R)dtt(8),inde,.cin:' (7)
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Here, sSb-=O.1912R2i9 (8)
    The form of Eq. (7) is more preferable than Eq. (6) for the following

calculations, because the solutions of the Spalding function are given by the

functions of x' and are not given by the functions of 6.

    The integral in Eq. (7) may be a form which can not be evaluated with-

out some tedious numerical calculations. The approximate method is essentially

a technique to avoid the tedious calcu}ation procedures. The idea is that the

co-ordinate is subdivided in many segments and (d4.(e)!de)･(delcin') is assumed

to be a constant in each segment (in other words, in each corresponding x'

segment). The usual technique for this type of approximation assurne that

(d4.(e)1de) is a constant as being seen in the paper by Hartnett et al [9].

    A comparison of those two conditions will be clear by integrations of

both assumptions. The former is

         dt,.<6) de                    =constant (9)          de du+

From Eq. (3) and Eq. (5)

        ,.+ .. Si VTf fP ,in,, .., VO'oO.2g96 (Z;s)a9(.og-eo g) (lo)

          de -eo･i ,         `l3C' = vo.o2g6 (u, >O'g (11)
                        Xvf

         dt,.(e)de- -sO-i dt,.(g)
          de de' VO,0296(Z{,)O･9 de

                               XVI
                    = vo.o,g-60)9u,>o･g [f3(zlg,g] (i2)

                               Xv!
Finally, the conditions of Eq. (9) can be written as

         rm O･9 d4e(e)=constant (13)
           VO.0296 ( U,)O･9 d(gD.g)

                   Xv/

An integration of Eq. (13) gives the form of

        4,(e) =- C,60･9+q (14)
where Ci and q are constants.
    On the other hand, the later condition is
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         d4. (e)
               = constant
          de

        t. (e) - CG + CE

    AIthough the assumption of Eq. (14) Iooks somewhat peculiar, it is not

much different from the later assumption for a small segment size and for

practical purposes.

    Eq. (7) can be expanded with Eq. (12).

  LX'sp(×',pr)dx"

lo6

lo5

Io4

i ci3

lo2

IO

l

I o"-i

   1 O'2 lo--l 1 Io

 Fig. 1. Integrated values

   lo2 go5 i
                x+

of the Spalding function

04 [ o5



678 Ryoji lsHIGURo
        q(c) -: -o.g .ig,, (( `t"iiil--f2g"l6o))jS:s,,(x',R)ci2:"

               +(tiviiigigsisi))slis,(x+,R.)ciu++･･･

                 ------------------------------i----t----ny-------

               +(4v(2i),i4,LS,ii-i))Str,-,S.(x+･E･)ciT++･･･

               +('}j"'`'i;lii,E''ltlilij-'i")'jiltll'g)'(li';:,'E･lc'in'''-J (is)

In this equation ei denotes the location where i-th segment ends. By the same

token, e,, denotes the end point of n-th segment. As the n-th segment is the

last segment, 6. denotes the same lecation where x is located. The 4.(et) is

the wall temperature at e=:=ei and Si is

        S,-x' (x, e,) -: O.1912 (R2le9-R2i:.) (ls')
As e is on the same axis of x and they both have the same origin, one can

rewrlte Eq (12) to be

        q(x)-=-O･9ge,,tl/,(`2V(.ti2,--tE.i,lui))S:-,S.(x',R)de' (i6)

        +    If S," S.(x', R,)clx' is tabulated for a wide range of x", q(x) can be cal-

culated for any distribution of wall temperature. The numerically integrated

values of the Spalding function are shown in Fig. 1. The method of the

integration is explained in the appendix.

     2. Cancellation of Errors'
                             '
    For the purpose of checking the reliability of the method, g(x)'s are cal-

culated by Eq. (16) in which the wall temperature distribution is theoretically

}ed from the Smith and Shar's solution [4] of the Spalding's equation corres-

ponding to a known heat flux condition. The given fiux distribution, the wall

temperature distribution, and the calculated q(x) are plotted in Fig. 2. The

stream is an air flow, having the free stream velocity of 100ft/sec and the

free stream temperature is 800F.

    As may be seen in this figure the calculated g(x)'s resulted in close

approximations of the given heat fiux condition except for the regions where

a big heat flux jump occur at. These errors originate thus in such regions as

(d4,(6)/de) changes so drastically that (dt,.(e)/dlr?)･(de!de') can not be considered

1



An Approximate Method to Calculate the Local Heatflux from a Nonisothermal Flat Plate 679

.Li-

e
e
OL

u
.E

oE

2
v

e
l

co
o)
ts

D
y
e
E
g
E
s
,E

8
8
ts

t
'o-

g
-

60

50

40

30

20

10

e

          Fig. Z.,An
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    An additional calculation

procedure is as follows
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      ' a interval of small segment size Ax,
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                         t.

  £R2blgS:=,s.(x+,e,)dt:e(8),d[li.dx+ (7)

.-feA. (us(x,-dx))O"Sll,d"s.(.+,a) dt:v(e) df. d.+

S R2leg (i- A.X)-Oi(S!=,s.(x+,p;.) `iide(e) df. dxf

s.(x',R-) d4
d'
e(G) d{li. dx']
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                                            17)
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        aq(x)=g(x])-g(irc-A:x)-(1-(1-A,,`C)MOi]q(a,)

            +vo.o2g6 -i:"R2･.g (1- A,.C)LO'Sk,L,s.(rc+,R･)ifE(etiiE)-(e) dude. de+

                                                             (18)

    If the condition of Eq. (9) is applied for the same formulation as above,

the resulting Aq(x) will include the errors which are desired to be cancelled

        A9(X)+E= (1- (1- A.X)-O'ilq(.)

            . vo.o2g6 -:ll.R2.･g (1 - n.x )LO'( dtk(e ,lcit, 3,. ) SU,.,s.(x+, a)ain+

                                                   '                                                   'Substract Eq. (18) from'Eq. (19).

        E-Vo.o2g6 -Si-R2te" (1- A.X)LO'i[Si'i-is.(..,R.) dtt(g) ,intiig. de+

                  '                '            -(dtti,(e)duck?.,)sgn"'s.(.+,e.),IT+] '

          =-vo.o2g6'{imR2leg (1- A.x)2o"[sri-is,(.+,.p;.) dt:v(e) ,lttl,6. ,lt,+

            -const,S,qt"s.(x+,E)de-] .(2o)

The consti in Eq. (20) can be calculated.

         dt,. (e)
              = consti
         cl u'

        tw (e) = consti･x' + const2

        const,= tw (<ln-i)-tzv(en) (21)
                    Sn-r

(d4,(g)!de)･(ta?/clx') in the first integral of Eq. (20) will be formulated from the

definition of the Spalding function. The definition is, [3],

                                                  '
' Sp(X',e-)=- (oO.0.)..=, ' (22)
                                   '
where 0=ny4.
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        (aO.0+),,.=,::=(gO,･gz･,o.".)..=,- .v, vi;;i, (oOy`,,lv-o (,,)

    Eq. (22) can be

        s.(x+,R.)-ic,l2s (oOy`,,)y-o (24)

    A local heat flux is calculated by

        q(e--k(oayt),=, . (2s)

    From Eq. (24) and Eq. (25), '
        q(e) - CpP"s V C,12 ･S.(x',R.)t,,(G)

               R.
                                                t tt ttt
        4v(e)-c.p.q,S)qf2s.(.R.,.',2,) ･ (26)

    It means that if a heat flux jump Ag(e) occurs at a point e=x-dx and

the (Aq(6)!C.Pzt,VCrt!2) is maintained at a constant value in the region from

e==x-dx to 8=x, then the wall temperature increase (or decrease) in the
                                               '   --
        t,.(e.)-4,(g.-i)-q,pg,,qv(e2r!2 [s.(..,ei)].,.",. s'//. (27)

where [S.(v',R,)].,.Tti. is the value of the Spalding function corresponding to

the value of x' from the point e=x to e=:x-Aho. For a small x", the
Spalding function is well approximated by the asyrpptotic solution of x'-.O.

        s.(x+,a)-Otg3.,?,9,5.p;y3.,.･ - (2s)

                               '
The segment size, Ax, is usually small enough to use Eq. (28) to evaluate

[Sp(x',R)].,.Ld..AndEq,(27)becomes ･. ･
         c.p:gEt/2==[4v(e.)-4.(e.-,)][Sp(x',f.･)]x,x-d. ,

                            tt
                  ;"::{tio(en)T4v(6n-i)lg'.9t,3,Iliti?, ., ' ,;(29)

This result is substituted in Eq. (26).:
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     tw(8) = [ti"(6'i)Nt2"(6"-i)] &'.?i-33,Ii[tii53 s.(xR+iR,)

With Eq. (28),

     t,.(s)=(t,.(e.)-t.(g,-,)] (`sC',yl,ii,3 (3o)

     dt:v(e) = tw(en)s-,yiiv(Gn-i) S (VOo02g96 (u.,)e9(s,,-(,..A,,),,)}-213

          xlvo.o2g6(ZSs)O'9e-o-il (3i)

Eq. (il) makes Eq. (31) to be

     dt.(8) de
         ,      cig de"
     = - `iv(engiift;,(6n-i) (VO･oO.2g96 (.;,:Epts)O'g (eog-(,,-A,,), ,)}-2!3

      == - ttv (e7Sgi,!ii(8n-iZ (S.-,- c+)m2!3 (32)

The error can be calculated with with Eq. (20), Eq (21), and Eq. (32).

     E-Vo.o2g6 2 R2leg (i- A.x)20t

      × [Srzrmis.(x-, R) ttv(6nsig)ii,,ttv(gn) (s,,-,-.+)-2!3,,l,.+

        + t" (e')s-.ii,v (6""') Si"-i S.(x', R.) dx'] (33)

By applying Eq. (28) again,

            i( lx     E = VO･0296 'R2le9 1-nd) 'Oi(t,v (e.-i)- t. (6.)) (O.53835 e'i3)

       ×(t.i"i't-t(c+)-ii3s,-,1i,3(s.u,-Jc')-2i3de+-si",Si"t"(c+)-ii3cdeu+]

                                     (34)
Put x'=S.-,･X into the first integral of Eq. (34).

     Sri-i(v')-i/3･(S.-,)-'i3･(S.r,-c")-2!3dc'==S,Il{3S:X-i!3(1-X)J2!3dX

                -S,-,1i,3･I9(2/3,1/3)-3.6273S,-,1i,3 (35)
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Accordingly,

        E=VO･0296rrli-R2le9(1lj'A.X)-Oi{tiv(en..i)"tiv(6n)}(O･5385RY3)

            .(3.62733S,T,!･13-3Ss-,lf',3,] ･(36)

                                      '    From Eq. (18)

        A9( c) - (1 - (1 - A,,`U )-O il q(c)

           =VO･0296 g R2la9 (1- ".X)MO'S:..",.s.(x',R,) dtt(6) de

                                                            tt           = -VO･0296 -IIIrR2leg (1- A.x)-Oi

             ×[tiv(en-i)m4,(g.)](O.53s3sRl!3)3'62733S,-,1'i3 (37)

Divide Eq. (36) by Eq. (37).

                                           3S;Ili,3

         Ag(x)-(1-(IE- A,.x)-Oi}q(,,) = 3627i3 s,T,M3 -1=O2406 (38)

Looking at the left hand side of Eq. (38), the numerator is

        E = q(x),.i. -q(x)

and the denominator is

        Aq(Jc)-(1-(1-A,,C)-O'ilq(jv) (39)

           = ww9(JCm"rc)+ (1- A,,`V)LO''q(,.)

Here, q(x)..i, denote the results by Eq. (16).

With Eq. (39) and Eq. (38), the corrected heat fiux is

        q(,,)=q(c)cai.+O'2406q(`VmArc) (4o)
                 1+O.2406(1-                               A c ) -o.i

                          X XI
    Except for cases in which the correction is desired to be done near the

leading edge of the plate, Ax!x is usually small enough to be neglected from
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the denominator of Eq. (40).

                                       '         .t        ij(c)'- q(to)cai･'+ Oi'.22440o669(`U-A`t) (4i)

                                                tt
     3. Practical procedure of the calculation;

    If a temperature distribution corresponding to an unknown heat flux dis-

tribution is given, the x co-ordinate must be divided into small segments, each

of which is Ax. This division should begin from the leading point where the

wall temperature departs from the free stream temperature. The preferable

size of a s.egment (i. e. the vaue of Ax), will be discussed in a }ater paragraph.

Then calculate q(x)'s of every end point･ of segments by Eq. (16). An example

of the procedure is the calculated q(x) curve in Fig. 2.

    The next step of the procedure is to correct every q(x) by Eq. (40) or

Eq. (41). This correction should begin from a point where the q(x-Ax) is

known with certainty. Such a point can always be obtained where he heating

(or cooling) starts. An example of this is the corrected flux curve in Fig. 3,

                     i300
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                      Discussion and Conclusion

    The temperature distribution in Fig. 2 is a Smith and Shar's solution for

a plate which is in an air fiow of 100ftlsec and 80eF, The piate is partly

heated from a location of 12 inches downstream of the leading edge to 13

inches. The heat flux is 1000 Btu/h･ft2 at the beginning of the heating section

and is continued at the condition of [q(x)!Pu,C,,VCrtt(2]=constant until the

end point of the heating section. In Fig. 3 the given heat fiux, calculated

q(x) by Eq. (16), and corrected q(x) by Eq. (40) are plotted.

    Comparing the corrected g(x) with the given fiux, the biggest error on

the heating section is only less than 2% of the given fiux. The accuracy on

the unheated section can not be discussed by the percentage of error, because
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the given flux is zero. However, it may be recognized from the figure that the

errors are in the same order of the heated section.

    For the purpose of determining the effects of segment size Ax, q(x)'s by

Eq. (16) and the corrected g(x)'s by Eq. (40) for several segment size are

plotted in Fig. 4 and Fig. 5, respectively. As stated in the previous para-

graph, the errors in a segment which has a big heat flux jump, are originating

by that the (dt,,(e)!dEl) changes so drasticly that one can not approximate

(d4.(8)/de)･(delcin") to be a constant. Accordingly, the segment size becomes

smaller, and the error is larger.

    As seen in Fig. 5, the errors are almost completely removed by the pro-

cedure of the cancellation. And better results are get by finer segment size.

However, the error at the next segment of a big flux jump becomes compara-

tively large for a finer segment size. This also can be corrected by the same

idea of the first segment if no flux jump occurs between the first and the

second segment, but this procedure is too tedious for the purpose of the

approximation. The best way seems to be in the selection of a segment size

in which the second segment errors are in the same order of the first segment

errors by the expenSe of the first one. According to the author's numerical

trials, such a size are obtained by selecting the lkv which makes sS?,m, to be

arround 250.

2
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                             Appendix

    The Spalding function by Gardner and Kestin is expressed by the foliow-

mg equatlon.

        Sp(x',e.)=ao+ailog,x'+a2(log,x")2+a3(log,x')3

                     +a4(log,x')4+as(log,x')5+a,(log,x')6 (a)

In this equation a,Na, denote constants and those values are shown in Table

1. Average departure of the Spalding function by Eq. (a) from the Gardner

and Kestin's numerical values was looked to be less than O.5%. Eq. (cr) also

gives very close values for small x' to the values by Eq. (28), which is the

asymptotic solution for x'-->O.

    The integrated Spalding function is obtained by integrating Eq. (a).
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 [i'Sp(X',R)cin)'=[co+cilogex'+c2(Iog.x')2+c3(log.x')3

 ,
                 +c4(log,x')`+cs(log.x')5+c,(log,x')6}x' (P)

equation coevc, denotes constant which values are also shown in Table

 1 is made from Eq. (P) for the convenience of the caluc}ation.

i



TABLE 1.

Pr

ao

al

a2

a3

a4

as

a6

co

Cl

C2

C3

C4

C5

C6

O.71

+4.79583×1O-i

- L59709 × 10-i

+ 2.68254×10-2

- 3.02140 × 10-3

+ 2.57458× 10-4

- 1.41127 × 10-5

+ 3.34684 × 10-7

+ 7.19185 × 10-i

- 2.39602 × 10-i

+ 3.99463× 10-2

- 4.37365 × 10-3

+ 3.38062 × 10-4

- 1.61208 x lO-s

+ 3.34684 × 10-7

1.00

+5.37717×10-i

- 1.79129 × 10-i

+3.00194×10-2

- 3.37464 × 10-3

+ 2.90721 × 10-4

- 1.61920 × 10-s

+ 3.88516 × le-7

+ 8.06325 × 10-i

- 2.68608 × 10-i

+4.47396×10-2

-4.90673×10-3

+3.83021×10-4

- 1.8460! × 10-s

+ 3.88516 × 10-7

7.00

+ 1.03029

- 3.43143 × 10-i

+ 5.67714 × 10-2

- 6.41328 × 10-3

+ 5.80052 × 10-4

- 3.36835 × 10-5

+ 8.21612 × 10-7

+ 1.54401

- 5.13720 × 10-i

+ 8.52887 × 10-2

- 9.50575 × 10-3

+7.73118×10-4

- 3.86132 × 10-s

+ 8.21612 × 10-7

30.00

+ 1.67454

- 5.56759 × 10-i

+ 9.19087 × 10-2

- 1.04983 × 10-2

+ 9.50482 × 10-4

- 5.39714 × 10-5

+ 1.27518 × 10-6

+ 2.50831

- 8.33772 × lo-i

+ 1.38507 × 10-i

- L55327 × 10-2

+ 1.25859 × 10-3

- 6.16225 × 10-5

+1.27518×10-6

100.00

+ 2.50085

- 8.30628 × 10

+ 1.37635 ×10-i

- 1.58345 × 10-2

+ 1.40320 × 10-3

- 7.62916 × 10-5

+ 1.72388 × 10-6

+ 3.74583

- 1.24498

+ 2.07175 × 10-i

- 2.31800 × 10-2

+ 1.83637 x 10-3

- 8.66349 × 10-s

+ 1.72388 × 10-6

1000.00

+ 5.38379

- 1.78636

+ 2.98293 × 10-i

- 3.45639 × 10-2

+ 2.94493 × 10-3

-1.49540×10-4

+ 3.15297 × 10-S

+ 8.06501

-- 2.68122

+ 4.47431 × 10-i

- 4.97128 × 10-2

+ 3:78722 × 10-3

- 1.68458× 10-4

+ 3.15297 × 10-6
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