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An Approximate Method to Calculate the Local Heatflux
From a Nonisothermal Flat Plate Across

a Turbulent Boundary Layer

Ryoji ISHIGURO -

Assistant professor,
Department of Mechanical Engineering

Abstract

A simple approximate method based on the Spalding function to calculate
local heat flux from a nonisothermal flat plate is developed in this paper. A
technique to cancel the major approximation errors is included. A diagram
for the calculation covering a wide range of Prandtl number is made by using
the Gardner and Kestin’s solution of the Spalding function. Formulas on
which the diagram is based are also attached for a desire to use a computer
for the calculation. The method is checked by the Smith and Shar’s solution
of the Spalding’s equation for a specified flux condition and it is shown that
the results are sufficient for practical purposes.

Nomenclature
C;/2, friction factor;
C,, specific heat at a constant pressure of the fluid;
E, approximation error;
h, coefficient of heat transfer;
k, thermal conductivity of the fluid;

P, Prandtl number, 0C,v/k;

glx), wall heat flux at point x;

R.., Reynolds number, u.x/v;

R,,, Reynolds number, u&,/v;

S, limit of integration, defined by equation (15');
S Spalding function;

S

” Stanton number, 2/Pu,C,;
t, difference in temperature between a point in the boundary layer
and the mainstream ;
Lo difference in temperature between wall and mainstream ;
t, mainstream temperature;

u, velocity in boundary layer, parallel to surface;
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Uy, velocity of mainstream ;
u*,  dimensionless velocity in boundary layer, defined by equation (22');
z, co-ordinate of distance along the wall; :
x", dimensionless distance along the wall, defined by equation (3);
g, dimensionless ‘te'mperature, tty: '
v, kinematic viscosity of the fluid;
&, unheated length of the wall;
o, density of the fluid;
Ty shear stress at the wall;
Subscripts

i, general expression of a segmented point;

-0, leading point of the first segment;
n, trailing point of the final segment;

Introduction

Spalding [1] showed that heat transfer across a turbulent boundary layer
can be reduced to a simple partial differential equation. Kestin and Persen [2],
Gardner and Kestin [3] solved the equation with the boundary condition of
isothermal surfaces for a wide range of Prandtl number and named the solu-
tions the Spalding function. Smith and Shar [4] solved the equation with
a boundary condition of a specified flux condition.

The problem of heat transfer across a turbulent boundary layer of a flat
plate was previously solved by Rubesin [5], Seban [6], Reynolds et al [7],
Tribus and Klein [8]. However, these are based on both mathematical and
physical approximations, and one of the major shortcomings is said that neglect
of the laminar sub-layer.

In many engineering applications, problems for the calculation of local
heat flux from a nonisothermal wall temperatuer are interested. In such cases,
it is well known that Eq. (1) in the following paragraph is used in which
h(x, £) is the heat transfer coefficient for an isothermal surface. But the
evaluation of the integral of Eq. (1) becomes {requently difficult inasmuch as
the temperature can be completely arbitrary. Hartnett, Eckert, Birkebak and
Sampson [9] developed a method in which the plate is subdivided in a stream-
wise direction and the temperature is approximated to a linear function of the
stream-wise co-ordinate in each segment, in such a way that the Seban’s or the
Rubesin’s formula can be applied to each segment.

A utilization of the Spalding function for the same purpose of approxi-
mation is attempted in this paper. The technique to approximate the tempera-
ture distribution is changed to suit the different nature of the Spalding function
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from the Seban’s or the Rubesin’s formula, and the method is developed in
this paper. At some peculiar points, un-negligible errors may possibly appear
by the approximation and an additional calculation to cancel the errors is
necessary. The method of the cancellation is also developed. Finally, some
results by the present method are compared with known heat flux distributions
and the reliability is proved to be sufficient for practical purposes.

The Approximation
1. Basic calculation;

The local heat flux from a nonisothermal flat plate exposed to steady flow
is calculated by, [10],

¢ di,(€)
x) =\ hix, &) 7251 4, , 1
afe) = [ i & 5 (1)
In this equation h(x, &) denotes the heat-transfer coefficient at location x for
an isothermal flat plate in which the first part with length & is not heated and
has the same temperature as the free stream.

The Spalding function, S,, is defined by

S,-P,

S, =
TG

and the numerical solutions are given by the function of =* and P, by Gardner
and Kestin [3]. Here, the variable z* is a reduced length co-ordinate and it is

x*zjwi@dx E (3)

& v

(2)

Having Eq. (2), the heat-transfer coefficient, A (x, &), can be expressed by the
Spalding function.

b, ) =L us, @', P)ICJ2 (4)
For a turbulent boundary layer the friction factor, /2, is, [11],
C,/2 = 0.0296 (f‘{i) (5)
Eq. (1), Eq. (4), and Eq. (5) gives
ale) = 00296 £ R [ 5,00, P) Ll g (6)
z ), de .
or q«m=:4002m§{§1¢:j;5;mf,11)d%g5>7§§;dw+ (7)
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Here, .S,=0.1912 R%® (8)

The form of Eq. (7) is more preferable than Eg. (6) for the following
calculations, because the solutions of the Spalding function are given by the
functions of x* and are not given by the functions of €.

The integral in Eq. (7) may be a form which can not be evaluated with-
out some tedious numerical calculations. The approximate method is essentially
a technique to avoid the tedious calculation procedures. The idea is that the
co-ordinate is subdivided in many segments and (d%,(£)/d¢)- (dE/dx?) is assumed
to be a constant in each segment (in other words, in each corresponding x*
segment). The usual technique for this type of approximation assume that
(dt,(&)/dE) is a constant as being seen in the paper by Hartnett et al [9].

A comparison of those two conditions will be clear by integrations of
both assumptions. The former is

dt,(§) dé

4(15 _d — = constant (9)
x
From Eq. (3) and Eq. (5)
E— * \/T—a;/-p— — 4/0.0296 <£>o.g 0.9 £0.9 10
* L Y dx 0.9 v (@ =4") (10)
dd§+ = < | (11)
T 0.0296 (”)
v
dtw (E) i _ —&! dt, (5)
@ d= 15,0296 (L> T
v
—0.9 dt,,(€) (12)

) 40.0296 (l‘_) d(&-)

v
Finally, the conditions of Eq. (9) can be written as
0.9 dt,(§)

— = constant (13)

f0.0298 (1) I

v

An integration of Eq. (13) gives the form of
(€)= C&*+C, (14)

where C, and C, are constants.
On the other hand, the later condition is
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= constant

dt.,(§)
dg

t.(6) =Cé+C;

Although the assumption of Eq. (14) looks somewhat peculiar, it is not
much different from the later assumption for a small segment size and for

practical purposes.
Eq. (7) can be expanded with Eq. (12).

x+
{) Sp(x*, Pr)dx*
| OF pmppers
EH W {1k
10° |
|O4 = = 4
Pr=1000 A
] O3 == Z
Pr= IOO 3 I, .III
N ,/’ @ I
2 i 5
|O E Pr=3o :::F
|10
= He \Pr=7
, Ho N\Pr=l
A A an Pr=0-7I
I O-' 7' et
102 107" o 10% 10® 0%t (0°

Fig. 1. Integrated values of the Spalding function
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glx) = —O.9Lf (M) | JS‘Sp(xiRv)dx*'

! l 0.9 __ £0.9 J 5,

+ <M) J'SZS (x*, P)dz"+ -
2 —E 84
+ ( t’w(é'é)_t'w(sifl) \) j‘Si Sp(x*‘, R)dx+ e

0,9 __ £0.9
k2 [ 28}

. (Q;'(é;)' b6 ) j - -

0.9 _ £0.9
n 7n-1 8y

In this equation &, denotes the location where i-th segment ends. By the same
token, &, denotes the end point of n-th segment. As the n-th segment is the
last segment, &, denotes the same location where x is located. The z,(&,) is
the wall temperature at £=¢; and .S, is

8=t (x, &) = 0.1912(R% — R%) 15

As £ is on the same axis of x and they both have the same origin, one can
rewrite Eq (12) to be

g(x) = —0.9-% ’21(40(&)—@0(&—1)) JS”' Sy, B)dzt  (16)

0 & 09 __ 0.9
X =1 Z; T iy

If j% S,ylx", P)dx" is tabulated for a wide range of x", g(x) can be cal-

culated for any distribution of wall temperature. The numerically integrated
values of the Spalding function are shown in Fig. 1. The method of the
integration is explained in the appendix.

2. Cancellation of Errors;

For the purpose of checking the reliability of the method, ¢(x)'s are cal-
culated by Eq. (16) in which the wall temperature distribution is theoretically
led from the Smith and Shar’s solution [4] of the Spalding’s equation corres-
ponding to a known heat flux condition. The given flux distribution, the wall
temperature distribution, and the calculated g(x) are plotted in Fig. 2. The
stream is an air flow, having the free stream velocity of 100 ft/sec and the
free stream temperature is 80°F. '

As may be seen in this figure the calculated g(x)s resulted in close
approximations of the given heat flux condition except for the regions where
a big heat flux jump occur at. These errors originate thus in such regions as

(dt,,(€)/dE) changes so drastically that (dt,(€)/dE)-(d&]dx") can not be considered
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1300
calculoted flux
60| 1200 a =
w \ = given flux
é 1100 X temp. distribution
g N A by Smith and
50 1000
5 I Shar’s sol.
= o~
E + 900
? 40l £ 800 £
S N -
= |2 ‘
g CD' 700 ;
c @ !
§ 30| § 600 v i
£ |5 / |
I » 500 7 1
o L ’I |
£ 20|58 400 T —
§ o ! \
oé 5 300 i X
z
L0 L—i 200 l! :
£ - ! >
k<] | —=
g 2 100 A
5 9§ ©
£ 3 d
(=} ~100
s 5
E -200 wa
-300 B
12 13 L 14

X, Distance from Leading Edge, Inches
Fig. 2.  An example of #» with a given flux and g(x) by Eq. (16)
as a constant even for a interval of small segment size 4.
An additional calculation is required to cancel this kind of error. The
procedure is as follows; - .

— 0 No0a k 0.9 “ + dt'w(S) - d‘f +

- . rRe:c Sp > P7 I
glx) = 00296 - j R R (7)
qlx—dx) =

J0.0296 JT (M)o'grﬁzgp(xv»,g)% dg drt

X—A4x 14 £=0 ds dx™

e oy AE\ T oy dele) dE
— J0.0296 £ Res (1A% S, (xt, ))& 4
‘/ £ ( .CC) lje:u (x ) dé dx+ *

_ ’ + dtw(s) d& +1
jé:z-dmsp(x ,R) df,& dx* dz J

= (1-25) "t

X
— J0.0296 £ Re (1 - ﬁﬁ) J TSzt p) Gl A g
x x f=z—-dm d& de
17)
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dq(x)= qlz)—qlx—dx) = {1— (1—~Z’£> gl

X
+40.0296 & oz (1-—"—"”6)4’" " Sy, Pl &g
x X VS dg dx+
(18)

If the condition of Eq. (9) is applied for the same formulation as above,
the resulting dg(x) will include the errors which are desired to be cancelled

here.

k 0.9 Ax \ dtw(&) df + +
. 6-; ex 1'_"-‘—‘ » bl r

1+ 0.0296 % R ( > ( e H S,(a*, P)dx
(19)

Sp 1

Substract Eq. (18) from Eq. (19).

E = 00296 ng: (1 ) [ S (@, p) Hele) g
deé  dxt
P)dx* j]

0.9 7L 1 + (th(fs) dE *
= 4/0.0296 ——R Splat B)= 0

( dtw

—const,J n_lSp(x*, P,.)dx*] (20)

The const, in Eq. (20) can be calculated.

dt, (&)
dx*

t.,(€) = const, - x* +const,

Gl —tele) 21

n-1

= const,

const, =

(dt,(€)]dE) - (dE|dx*) in the first integral of Eq. (20) will be formulated from the
definition of the Spalding function. The definition is, [3],

S,lwt, Py = — ( N ) o (22)

where 0=1¢/t,
and wt = uly .0 (22')
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ot
( 80 ) (ﬂ g au ) _ v 1 ( 8y )1/:0 (23)
out -0 wt=0 Us 1/ Cf/z Ly

dy Ou ou’
Eq. (22) can be

v (EL)
" ay =0
Sy{x*, P) = ——t v 24
A o7 - 24
A local heat flux is calculated by
gle)— % (ﬁf-) (25)
0Y | y-o

From Eq. (24) and Eq. (25),

gle)= %J(Tz S,z P)tal6)

»

£ulg) = -2 £ | (26)
Coousd G2 Sy(z", P,)

It means that if a heat flux jump 4g(¢) occurs at a point é=x—dx and
the (dq(€)/C,0u, C,/2") is maintained at a constant value in the region from
g=x—dx to &€=z, then the wall temperature increase (or decrease) in the
region is '

4q(¢) P,
t?l) (E'n)—t'w (571*1) = i ' (27)
CoPusif Co2 [Sy(x*, P)leese S
where [S,(x", P.)]se-4. 18 the value of the Spalding function corresponding to
the value of x* from the point é=x to &=x—dx. For a small x*, the
Spalding function is well approximated by the asymptotic solution of z*—0.

. 0.53835
Sylx*, P,) = W

The segment size, dz, is usually small enough to use Eq. (28) to evaluate
(S,(x™, Plles s And Eg. (27) becomes

pus (28)

oo G [Sple”, P)lsse
Colu G2 {tlen) — tuléass) T

0.53835

= (e =)} Gy o po

This result is substituted in Eq. (26).:
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0.53835 P,

tw(é) = {tw(sn)_tw(gnfl)} SI/B PZ/Q S (x,IL P)

With Eq. (28),

tole) = {rule 2ol } LI (30)
dtw(E) — tw(gn)’_tw(én—!) i[\/00296 ﬂ o 0.9 (4n 0.9 ‘*2/3
de S, 31 09 ( Ny ) ("~ (e day?)
« 10,0296 (“8)“54-4 (31)
\ v f
Eq. (11) makes Eq. (31) to be
dt,(§) . d¢
dE dx*
_ tw(gn)—'tw(snfl) f}J00296 (ﬂi) 0.9 os 0.9\‘72/3
35 L 09 |\ (6~ —da)?),
= Gl =) (g ey (32)

38,
The error can be calculated with with Eq. (20), Eq (21), and Eq. (32).

xX

E— 00296 * Rop (1 _ "i)
X

v [ S7Z“1Sp(x+,P,,.) t:o(57L~x)_tzu(5n) (S,L_l—.ff)*z/adx*

o 352,
» Belbeltulbun) (P05, o, Pt ] 83
By applying Eq. (28) again,
E— JW%R;: (1 —%) " (tulgn )= t(6) (053835 P)

o {%“-Sn_x (x+)_1/3S;1/13 (Sn_l_x+)—»2/3dx+ _LJS7L_1(x+)—1/3d$+}

4 (34)
Put =S, .- X into the first integral of Eq. (34).
S‘Sn—l (x+)_1/3 . (Snul)ﬂ/a . (Sykl _x+)7z/sdx+ - S,:{3 j‘lX_l/a (1 _X)w/a ax

=S, B(2/3,1/3) =3.6273 S, (35)
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Accordingly,
E=10.0296 -* Riz (1 - "i) b~ tale)} (05385 P
X x
« 136273 Sy 8851 (36)
l 3 2
From Egq. (18)
Adq(x)— f1— (1_4:2) - q(z)
l x f
=002 LRz (122 [ s, ) el
x x ¢=a—du de
— — 00206 * Re (1_4’i>
x x
 {tulen-) = tule)} (053885 Py) S35t (37)
Divide Eq. (36) by Eq. (37).
| 35,4
E 2 _1-02406 (38)
dg(x)—[1— (1_£’£> lglz) 302735.2
l x J 3

Looking at the left hand side of Eq. (38), the numerator is

E= Q(x)an _Q(x)

and the denominator is

dglz)—{1- (1 ——‘:{ji) Tl (39)
— —glz—dx)+ (1—43) el

Here, q{x)e. denote the results by Eq. (16).
With Eq. (39) and Eq. (38), the corrected heat flux is

q(X)ear. +0.2406 q(x— dx)
1+0.2406 (1 ~£’£)

X

qlz) = (40)

Except for cases in which the correction is desired to be done near the
leading edge of the plate, dx/x is usually small enough to be neglected from
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the denominator of Eq. (40).

q(Z)ear. +0.2406 g (x— 4x)
1.2406

glx) = (41)

3. Practical procedure of the calculation ;

If a temperature distribution corresponding to an unknown heat flux dis-
tribution is given, the x co-ordinate must be divided into small segments, each
of which is 4x. This division should begin from the leading point where the
wall temperature departs from the free stream temperature. The preferable
size of a segment (i. e. the vaue of Ax) will be discussed in a later paragraph.
Then calculate g(z)’s of every end point. of segments by Eq. (16). An example
of the procedure is the calculated g(x) curve in Fig. 2.

The next step of the procedure is to correct every ¢(x) by Eq. (40) or
Eq. (41). This correction should begin from a point where the g(zr—4x) is
known with certainty. Such a point can always be obtained where he heating
(or cooling) starts. An example of this is the corrected flux curve in Fig. 3.

1300
F calculated flux|
1200 ‘ by Eg (I6)

1100

= given flux
\ |

1000 = = corrected flux
by Eg(40)
900 >

800

700

600

500

400

300

200
100

o \

o -100 ] /

Local Heat Flow ot Plate Surtace. Btfu/hr. #?

-200

=300

12 13 14
X, Distance from Leading Edge, Inches

Fig. 3. A given flux, ¢(z) by Eq. (16) and the corrected
g(z) by Eq. (40)
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Discussion and Conclusion

The temperature distribution in Fig. 2 is a Smith and Shar’s solution for
a plate which is in an air flow of 100 ft/sec and 80°F. The plate is partly
heated from a location of 12 inches downstream of the leading edge to 13
inches. The heat flux is 1000 Btu/h-ft* at the beginning of the heating section
and is continued at the condition of [g(x)/0u,C,y{ C,/2 |=constant until the
end point of the heating section. In Fig. 3 the given heat flux, calculated
g(x) by Eq. (16), and corrected g(x) by Eq. (40) are plotted.

Comparing the corrected g(z) with the given flux, the biggest error on
the heating section is only less than 295 of the given flux. The accuracy on
the unheated section can not be discussed by the percentage of error, because

1300 |
[ 2
/43 I : given flux
R4 :
1200 2: Ax=1/32
3: Ax=1/16
1100 |— 4:Ax=1/ @
R |
bt %
g 1099 S S -~ ]
N
E)
m
s 900 }
Q
£
=1
w
®» 800 e
5 L J
&
-
o
k3 "" e
' 3
“ 100
(=]
3]
hs
El
S o]
G
-100f r— (
-200}—| =
%3
2
-300

12 13 14
X, Distance from Leading Edge, Inches

Fig. 4. Effect of the segment size on Eq. (16)
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1100

| 1
2 1: given flux
© 3, 2: Ax=l/32
€ 000 VLA |3 Ax=1/16'
g >§§“%$ 4: Ax=1/¢"
3 SN 5: Axe=l /4"
m
s 90
[&]
2
5
7]
o 800 —
2
[=] —
o
-
o
H i T
“ o0
8
3 0
: AW
¢ N
3 |? 4
-100

2 13 14
X, Distance from Leading Edge, Inches

Fig. 5. Effect of the segment size on Eq. (40)

the given flux is zero. However, it may be recognized from the figure that the
errors are in the same order of the heated section.

For the purpose of determining the effects of segment size 4z, g(x)’s by
Eq. (16) and the corrected ¢{x)’s by Eq. (40) for several segment size are
plotted in Fig. 4 and Fig. 5, respectively. As stated in the previous para-
graph, the errors in a segment which has a big heat flux jump, are originating
by that the (d¢,(8)/d¢) changes so drasticly that one can not approximate
(dt,(8)/dE)- (de/dx™) to be a constant. Accordingly, the segment size becomes
smaller, and the error is larger.

As seen in Fig. 5, the errors are almost completely removed by the pro-
cedure of the cancellation. And better results are get by finer segment size.
However, the error at the next segment of a big flux jump becomes compara-
tively large for a finer segment size. This also can be corrected by the same
idea of the first segment if no flux jump occurs between the first and the
second segment, but this procedure is too tedious for the purpose of the
approximation. The best way seems to be in the selection of a segment size
in which the second segment errors are in the same order of the first segment
errors by the expense of the first one. According to the author’s numerical
trials, such a size are obtained by selecting the 4x which makes S,_, to be
arround 250.
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Appendix

The Spalding function by Gardner and Kestin is expressed by the follow-
ing equation.

Splx*, P) = a,+a,log,x" +a,(log, 2"+ a,(log,x* )
+a,{log,.x*) + as(log,x*) + a,(log, 2" (a)

In this equation ag,~a, denote constants and those values are shown in Table
1. Average departure of the Spalding function by Eq. (a) from the Gardner
and Kestin’s numerical values was looked to be less than 0.5%. Eq. (a) also
gives very close values for small x£* to the values by Eq. (28), which is the
asymptotic solution for x*—0.

The integrated Spalding function is obtained by integrating Eq. (a).
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|7 Sy(at, Pade’ = {ataloge’ +allog,f + alog
+Cy (10g¢x+)4 + ¢ (logqx+)5 + ¢ (loge 't )e} x* ( ﬁ )

In this equation ¢,~c¢; denotes constant which values are also shown in Table
1. Fig. 1 is made from Eq. (8) for the convenience of the caluclation.



TABLE 1.
P, 0.71 1.00 7.00 30.00 100.00 1000.00
ag + 4.79583 x 10~ + 5.37717x10-1 + 1.03029 -+ 1.67454 + 2.50085 + 5.38379
a — 1.59709x 10-* — 1.79129 x 10-? — 3.43143x 10-? — 5.56759x 101 — 8.30628 x 10 — 1.78636
a + 2.68254 %102 + 3.00194x10-2 + 5.67714x10-2 + 9.19087 X 10-2 -+ 1.37635x 101! + 2.98293x 10~
az — 3.02140x 103 — 3.37464x10-3 — 6.41328x 102 — 1.04983x 102 — 1.58345x10~2 — 3.45639x 102
ay + 2.57458 x 10—+ + 2.90721x10-4 + 5.80052x 10—+ -+ 9.50482x 10—+ -+ 1.40320%x 103 + 2.94493 x 103
as — 1.41127x 10-5 — 1.61920 X 10-5 — 3.36835x10-% — 5.39714 X105 — 7.62916 X 10-5 — 1.49540x 10—
as + 3.34684 X 10-7 + 3.88516 x 107 + 8.21612x 107 -+ 1.27518 X 10~ ¢ + 1.72388x10-¢ -+ 3.15297 X106

C3
Cs
Cs

Cs

+ 7.19185x10-1
— 2.39602x 10!
+ 3.99463%x10-2
— 4.37365xX10-3
+ 3.38062x10-4
— 1.61208 X10~-5
+ 3.34684x10-7

+ 8.06325x10-*
— 2.68608 x10-*
+ 4.47396 X 10-2
— 4.90673x10-3
+ 3.83021x 10-¢
— 1.84601x 103
+ 3.88516 X107

~+ 1.54401

— 513720 10~
+ 8.52887 x 10-2
— 9.50575x10-3
+ 7.73118 X 10-*
— 3.86132x10-®
+ 8.21612x10-7

+ 2.50831

— 8.33772x 10!
+ 1.38507 x 10-*
— 1.565327 X102
+ 1.25859 X 102
— 6.16225x10-°
+ 1.27518x10-¢

-+ 3.74583

— 1.24498

+ 2.07175x10-1
— 2.31800x10-2
+ 1.83637Xx10-32
— 8.66349x 103
+ 1.72388 x10-¢

+ 8.06501

-- 2.68122

+ 4.47431x 101
— 4.97128 X102
+ 3.78722x10-*
— 1.68458 10—+
+ 3.15297x 10-°¢

689 91B[d J8[,] [BUWLISYIOSIUON B WO XNPIBIL] [BO07] 2} 93B[N0(R)) 03 Poyely rewrxoiddy uy



