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                  Stability of a Reactor with an

                      External Control System

                            Yuichi OGAwA
              Laboratory for Nuclear Reactor Engineering, Faculty of
                       Engineering, Hokkaido University.

                                Abstract

    When a reactor is externally controlled, the parameters governing the

control must be chosen in close connection with the nuclear and thermal pro-

perties and the out-put of the reactor, in order to attain a stability in the

vicinityoftheoperatingpower. '
    To obtain this relation, non-linear integral equations containing the effects

of fast and slow responding internai feedbacks and delayed neutrons are adopted

and connected with the external control system. The method of introducing

the special Liapunov's function which was developed by LuR'yE et al. is applied

to the entire system and the required relation was obtained. The results of

numerical caluculation are presented in the form of diagrams. These relations

and diagrams will be usefull for the designing and operation of external control

systems for reactors.

    This paper also deals briefiy with some modifications on the reactor dy-

namic equations to obtain a more concrete representation of the dynamical

behaviour of heterogeneous reactors. It is desirable that the equations directly

contain the effect of the moderator temperature, which consists of three thermal

time constants and is the solution of heat equations between the heterogeneous

elements of the reactor. The new equations are solved by expansion, and the

region of stability was determined.

                           I. Introduction

    When external control is appiied to the nuclear reactor, the values given

to the parameters which govern the external control must be properly chosen

in close connection with the nuclear and thermal properties and the out-put

of the reactor, in order to maintain the entire system, which now includes the

external control system, in a stable condition,

    To actually obtain the relations, the reactor kinetic equations of the non-

linear integral equation type is first adopted. These contain the effects of

two kinds of internal feedbacks and that of the deiayed neutrons.
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One side of the feedback responds to the variation of the reactor out-put rela-

tively rapidly mainly due to the variation of the fuel temperature and the

coolant density, and the other side responds relatively slowly, chiefiy due to

the variation of the moderator temperature.

     Next, in order to obtain equations which describe the dynamical behaviour

of the entire system, the above mention,ed reactor kinetic equations are converted

into non-linear simultaneous differential equations from which two specific equi-

Iibrium points can be obtained, one of which corresponds to the "zero power"

and the other corresponds to the "non･-zero power" of the reactor out-put.

Then, these are joined to the equations which describe the dynamics of the

variables of the external control system.

     In order to examine the stability, especially near the operating power of

the reactor, the system of equations is expanded in the vicinity of the equili-

brium point which corresponds to the "non-zero power" and are converted to

approximate linear simultaneous differential equations, by means of neglection

of the terms of higher orders.

     Then the methods of introducing the special Liapunov's function, which

was developed by LuR'yE et al is applied to the linearlized system of equations

and, as a result, the relations which are required to satisfy the stability of the

entire system near the operating power of the reactor were obtained.

    These relations were numerically calucuiated by varying the values of the

nuclear and thermal constants and the out-put of the reactor over a wide range,

and the results are presented in the forms of diagrams. These relations and

the diagrams are considered to be quite useful for the practical designing and

the operation of the external control system of the reactor.

    Other problems connected with the stability of the heterogeneous reactor

are also discussed briefiy in this paper. The dynamic equations of reactors

with only internal feedbacks was dealt with by ANDREiEv et al, but in order

to obtain the region of stability in a more concerete form, it would be desirable

that the equations of the heat exchange between the heterogenous constructing

elements are directly connected to the reactor kinetic equations. From this

point of view, it was clarified in the dynamic equations that the internal feedback

of a relatively slow response is governed chiefly by the temperature of the

moderator which is given as the solution of the thermal equations and is

expressed by a form which includes three thermal constants. These new e-

quations are solved by a more expanded method and more concrete regions

of stability are gained and shown. The case where the external control system

is added to the above expanded reactor kinetic equations is also discussed
briefly.
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                          Il. GeAeral Principles

    (1) Dynamic equations of a reactor with internal feedbaeks only

      Taking into account the effects of the two kinds of internal feedbacks

  and the delayed neutrons represented by the equivalent one group, which were

  stated in the introduction, and under a condition where the out-put of the

  reactor does not change extremly rapidly, one can adopt the fol}owing reactor

  kinetic equations
                                    i
          W(t)= T,{pEp(t)} S'n..W(t')eXP(- t[ ,t')dt' (1)

          P(t):-Po+Ew(t)+Fj`-.zv(t')exp(-tit')dt', (2)

where,

       w(t)=out-put of the reactor,

       P(t)=reactivity at time t,

         Po=reactivity at the time of the initial start up (cold reactor),

         T=:=thermai time constant of the reactor,

         To=mean generating time of the de}ayed neutrons,

         E=coeflicient of the internal feedback which corresponds to relatively

            quick response,

         F=coefficient of the internal feedback which corresponds to relatively

            slow response.

      Now, by means of the substitutions, w(t):=arX and TTb(t)=xi, Equations

  (1) and (2) are reduced to the fo!lowing non-linear simultaneous differential

  equatlons

           Cinl
               =X(Xi, X2*)
           dt
                                                                 (3)
           cinS 1
           dt==TXi ,

  from which one can obtain the fol!owing two equilibrium points in the phase

  plane, one of which corresponds to the "zero power operation" and the other

  to the "non-zero power" operation of the reactor

      EquiiibriumpointA: (xio==O, x2o==O)

      Equilibrium point B: (xi,=O, x2,:==-Pol(E+FT))･
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    Then by means of expansion of Equation (3) in the vicinity of the equi-

librium point B, and the neglection of terms of higher orders, one obtains the

following !inear simultaneous differential equations

         cinrl
             = al!Xl + a12X2
         dr
                                                                (4)
         ckv2

         dt==a21Xl ,

wherein x2 is the variation of the reactor out-put from the equilibrium point

denoted by

        x2=x2*-x2p, (5)
and the coefficients are given by the following expressions

                {l7'" @zs+ i) +i

        an = - - (-Zs, s+ 1)T

                   Po
                  -m        ai2-- (f, P,.,). (6)

              1
        a21 === -
              T

        a22=O '
In equation (6), m and s are the abbreviations for

        m-rlTo, s-El(E+FT). (7)
    If one views xi, x2 as the components of the 2-vector x and a!i, ai2, a2i,

a22(=O) as the elements of the 2×2 matrix A, Equation (5) can assume the
following simpler aspect

    The characteristic roots of Equation (4) and hence of Equation (8) are

gained from the relation

         IA -2Tl =:: O, (9)
and are represented by the following expression
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        R (ms+i)+i]±V[-:e-(ms+i)+il2-4!Zi'L.(-{il;,L,+i)

                                 2T (-(iii'Ls+ 1) . .

                                                                (10)

    A reactor with internal feedbacks only can be ascettai'ned to be stable

near the equilibrium point which corresponds to the "non-zero power" operation

by knowing the fact that both of the characteristic roots (10) have negative

real parts,

  (2) Dynamic equations of a reactor with an,external control system

    When an external control system is applied to the nuclear reactor, the

equations describing the dynamical behaviour of the entire system near the

equilibrium point, which corresponds to the "non-zero power" operation, are

given by the following expressions

         de
             = anxi + ai2x2 + hie
         de

         clT2
             = a21Xl         dt

         d6
             - f(a)
         dt

        a = gixi + g2x2 - r8

where 6 is the amount of

the control mechanism is actuated

controi system whose values should

designing and operation of the

represents the characteristic of the

following properties

        of(a)>O (a¥O),

    If one transforms xi and x2 to

             CtUl de2
        Yi== dt, Y2== dt'

Equation (11) is converted into the

,

(11)

control given to the reactor, a is the signal by which

         and r, gi, g2 are the parameters of the

          be decided properly in the course of the

      external control system. The function f(a)

         servomoter and is assumed to possess the

f(o) - o

the new

the

varlables

following

yi and

equatlons

y, by the

(12)

relations

(13)
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        dy1
            =aiiYi+ai2Y2+hif(a)
         dt

        dy2

            =a2iyi (14)         de
                                '
        de
            =giYi+g2Y2-lf(ff) .
         dt

Equation (14) is also shown by a simpler aspect

        fZt( -Ay+hf(.) .
                                                             (15)
        do
            =g'y-7fla) .
        dt

wherein y is the 2-vector whose components are yi and y, and both h and

g are also 2-vectors which are denoted by

        h===[hoi], g'-=[g,, g,]. (16)

    In this transformation of the variables, the stability situation in the new

variables is the same as in the initial variables under the satisfication of the

following condition

        r+ g'A-'h 2F O. (17)
    Now, the special Liapunov's function which is denoted by the following

      .expresslon

        V(y, o) =- y'By+Sgf(a)do (18)
is applied to Equation (14) or (15). If this function satisfies the following

conditions

                             '
        v(o,o)-o (a)

        V(y,a)>O (b) (19)
        ti'(y,a)$O (c)

near the equilibrium point corresponding to the "non-zero power" operation,

the stability of the entire system near the equilibrium point is established under

the satisfication of Condition (17). In Equation (18), the matrix B is an arbi-

trary posltlve symmetrlc matrlx,

    By virture of the fact that f(a) is restricted by Condition (12) and also
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the fact that the matrix B is the positive symmetric matrix, the Condition (a)

and (b) in Equation (l9) are obviously satisfied, and only the Condition (c)

remains to be examined. Hence after differentiating Equation (18) and intro-

ducing a symmetric matrix U which is defined by the following relation

        C--(AtB+BA)-C', (20)
one obtains

        V' -= -y'thJ-711C(a)+2uC(a) (Bh+ -ll= g) 'y so (21)

and hence,
                                                  '        2 (Bh+ -} y) 'Cri (Bh+-} g) (22)

is the necessary and sufficient condition to obtain the stability of the entire system.

  (3) Derivation of the conditions required for the stability of the entire

      system

    In order to maintain the reactor with an external control system in stable

condition in the vicinity of the operationg power, the numerical parameters

hi, r, gi and g2 must have suitable values which should be chosen in such a

way as to be closely related with the nuclear and thermal properties and out-put

of the reactor.

    These relations can be derived in the following two noteworthly special

cases; one is the case where all the characteristic roots of the reactor system

are real and negative, and the other is the case were the characteristic roots

form conjugate compiex roots whose real parts are negative.

    (a) The characteristic roots are all real and negative

    We set the characteristic roots (10) as

        2,=-cr+S l
                                                                (23)
        R,-=-cr-6 f,

where cr and 6 are given by

a ==

L,
B

2T(
(ms+1)+1

f' s+i)

6 =-

V(-Ppo (ms + i) +il2-4 -ll;'L m (-IZ;'L s+ i)
(24)

2T
(-iZi'1s+1)
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    In Equation (24), the quantity under the square root sign is positive in this

case.

    If one uses the transformation of the coordinate x* =Px, choosing matrix

P as

        P=[:a2,i, [a2i,], (25)

the matrix A is reduced to the following diagonal matrix

        A*==P-iAP==[2oi2].; . (26)

and the vectors h and g' are also transformed to the following vectors

      '                         h,
                 '                                       '                         26 '
        h*==:Pmih- h, (27)
              ･-･･,20 ,
        g*==g'-P=[-giRi-g2a2i,-gi22-g2a2i]. . (28)

Then, if one chooses an arbitrary diagonal matrix for ()(, the matrix B is

obtained likewise as the diagonal matrix frorn the Relation (20).

    Now, in order to obtain the minimum valUe of r which satisfies the previ-

ously gained Relation (22), the values given in Equations (26), (27) and (28)

and also the above mentioned matrix ,B* and C* are substituted into Equation

(22), In the course of inquiry for the minimum value of r, all elements of

the matrix C* and B* are eliminated and the required relation which satisfies

the stability of the entire system is obtained as

         ill,i;: ;il: Tol-Sli- +s], (2g)

    It is noticeable that Equation (29) does not contain parameter g,. This

fact means that the control signal depends on the amount of the variation but

does not depend on the variational speed of the reactor out-put in this case.

    (b) The characteristic roots are the conjugate complex whose real parts

        are negatlve
    In this case we set the characteristic roots (10) as

        R==:-cu+i6' l
                                                                (30)
        2=-cu-i6' f,
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where 6' is equiva}ent to i6.

    Now, if one uses the first transformation of the coordinate

choosing the matrix .Pi as

                       -.        Pi=[:al,, JaR,,], (32)

the reactor system is converted into the following diagonal gxpressions

                      '         dx
               '         k-[39][;.], " (33,
         dt

where z and £ are the pairs of the conjugate complex variables denoted by

        z = ul +zu2 l
                                                             (34)        E =:= u-iu, i .

Next, by the introduction of the another matrix P2 denoted by

        p,==[l li], . (3s)
Equation (34) is represented by the following matrix form

        .-, -- P,2t. (36)
    If one combines Equation (31) with Equation (36), one obtains the relation

        y= P,P,lt. (37)
Equation (37) indicates that the matrix PiP, is again the matrix which trans-

forms the real coordinate y into the real coordinate te{ and therefore PiP2 is the

real matrix. In transformlng Equation (14) by this rnatrix .PiP2, one obtains

        A*=.[-6f :6I] (3s)
        h* -= -P,-iP,-ih =:=[h,/026,l (39)

        g* == g'PiP2 -= [2(gia-g21T), 2gi6'] . (4o)
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                                       '
By virture of the special form of matrix A*, if one chooses an arbitrary di-

agonal matrix for a the matrix B becomes also the diagonal matrix.

    Substituting Equations (38), (39) and (40) and also the above mentioned

.B* and C* into Equation (22), an inquiry for the minimum vaiue of r which

satisfies Condition (22) follows. In the course of inquiry for the minimum

value, all elements of the matrix B* and a* are eliminated as before, and one

can obtain the required relation to satisfy the stability of the entire system, namely

      ;;:,;: )-Tot,liilrei'.::, ,l'Iti'i2piTl",SiiSi-;pi.;,t91,:]2+(gt/)2+g;

                                                             (41)

It is noticeab!e in this case that the relation includes gilg2 as a parameter. This

fact does mean that the control signal depends not only on the quantity of

the variation but also on the variational speed of the reactor out-put. The

vaiue of gi/g2 is considered to piay the rol} of the "method of the external

control".

  (4) Improyement of the reactor kinetic equations

    Although Equations (1) and (2) are fairly concrete equations which take

into consideration the effects of the heterogenuity of the reactor, to make the

argument more practical, it would be more desirable to take into account the

phenomena of the heat exchange between the heterogeneous constructing ele-

ment ostensibly into the kinetic equations of the reactor. In this respect, it

is made ciear in this section that the internal feedbacl< of the relatively slow

response is mainly governed by the temperature of the moedrator which is

given by the solution of the thermal equations and hence includes three thermal

time constants therein. '
    The equations of the heat exchange between the heterogeneous elements are

given for the unit length of the representative cell by the following expressions

   d7}･e
C"t dt --pt.w(t)+Hh(7'b-7b,)

   dTf
q dt :==gefw(t)+it(71,-TY)

Cb dill,lt =:= JIL(7-lf-7-b)+Hli(71･･erm 7'lg)' LSS- Cb(CZ-bout-7-bin)

7b' :' Lll-(7MZr.ut+7-bin)

(42)

,
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where,

      T= statistically weighted mean temperature,

      C= heat capacity per unit length along the channel,

    w(t) == power production per unit length aiong the channel,

       pt === proportion of power generated,

     a == heat transfer coeMcient between the fuel and the coolant,

     Hh = heat transfer coeflicient between the moderator and the coolant,

       u = coolant velocity,

      L = channel Iength,

and the suthxes 1 m and c are related to fuel, moderator and coolant re-

spectively.

    Solving Equation (42), one obtains the temperature of moderator as

        7-Lb =: t9.,Bijiw(t')exp(- ti,t')dt', (43)

where, Bi is the constant which is given as the function of oniy the thermal

properties of the reactor.

    Assuming that this temperature contributes mainly to the internal feedback

of the relative!y slow response, one obtains new reactor kinetic equations which

contain the effects of the heat exchanges between the heterogeneous eiements

        w(t) = nEe'[pEp(t)l S:w(t')exp(' ti,t')dt' (44)

        p(t)-p,+Ezv(t)+F'jgt".,B,w(t')exp(-ti,t')dt,. (4s)

    By means of the fol!owing substitutions

        w(t)=xi,mb(t)=x,,tE,(t)=:=x,,W(t)==x,, (46)
one can reduce Equation (44) and (45) into the following non-linear simultaneous

differential equations

         fk9,i =:::il:2,IX.llS`l*l )

         Sgt2 == c, (

                                                                (47)
         de3
          dt =X2

         dei
          dt ::=X3
                                   ,
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where, f(xi, x2, x3, xi) and g(xi, x2, x3, xi) are the polynomials regarding

the four varial)les xi, x2, x3 and xi, and the maximum orders of them are

six and five respectively. The coefficients of these polinomials are all obtained

as the function of the nuclear and thermal properties and the out-put of the

reactor.

    From Equation (47), one obtains the foliowing two equilibrium points in

the (xi, x2, x3, x4') space, one of which corresponds to the "zero power" and

the other corresponds to the "non-zero power" of the reactor out-put, namely

    Equilibrium point A': (xio==O) x2o="O, x3o=O, X4o==O)

    Equilibrium point B': (xi,=::O, x2p==O, x3p=O, X4p=-as/cri)･

In the above equilibrium point, cri and crs are the coefficients of the terms of

xi6 and xiS in the polynomial f respectively.

    Now, expanding Equation (47) near the equilibrium point which corresponds

to the "non-zero power" operation, and neglecting the terms of the higher

orders, one obtains the fo!Iowing simultaneous linear differential equations

         Cin1
                 -rl -r2 -r3 -r4 xl          de

         IZti2 1ooo x,

         `indt:3 O1OO x,

         {S9t4 oo1o ,c,,

where, x4 is the amount of variation of the reactor out-put from the equilibrium

point B' denoted by

        x4=x4*-x4p, (49)
and the coeflicients ri, r2, r3 and r4 are given by the following expressions

      cr4X4p+a14
-r, =
      Pi X4p + P4

      cr3JC4p+CU12
ne
 r, ==

      PiX4p + P4

      cr2 x4p + ag
-r, :==
      Pi X4p + P4

        - CUs-r, =
      Pi X4p + P4 .

(50)
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In Equation (50), cr2, cr3, cr4, ag, cri2 and cri4 are the coefllcients of the terms of

xi5x3, xiSx2, x4'5x3, xi`x,, xi`x2 and xi`xi in the polynomial f; and Pi and

P4 are the coefllcients of the terms of x,'5 and xi` in the po}ynomial g

respectively.

    One can judge the stability of the system by ascertaining that al! the

characteristic roots of Equation (48) and hence the roots of the following

algebraic equation

        24+r,23+r,R2+r,2+r, ==O (51)
have negative real parts.

    It is not always necessary to obtain the characteristic roots of Equation

(48), if one applies the "Condition to be the Hurwitz's po!inomial" to Equation

(51). The necessary and suflicient condition by which Equation (51) becomes

the Hurwitz's polinomial is given by the following expressions

        ri >O (a)
        r, >o (b)
        r, >o (c)
        r, >o (d)
        rZ-4r,>o ･(e)
 ' r,r,r,-rg-rir,>o (f)
By the investigation of Equation (52), one

geneous reactor relatively easily.

    Because the constants ri, r2, r3 and

functions of the reactor properties, it is

by which the regions of stability can be

and thermal constants and the out-put of

    Now, assuming that the following relation

of the heterogeneous constructing elements, wh

in most reactors (especially in the gas cooled

        q,, ) q) cb,

the r in Equation (52) can be expressed in

of inequality in Equation (52) are replaced

which show the boundary of the stable

that the region which is located on the

true region of stability. After making

and (d) in Equation (52) become quite

(52)

  can judge the statility of the hetero-

 r4 are given as slightly complicated

 desirable to use some approximation

  observed directly from the nuclear

  the reactor.

     exists among the heat capacities

    ich is a relation generally satisfied

     reactor), namely

                          (53)

  extremly simpie forms. If the signs

  by the signs of equality, the curves

  region are obtained. It is obvious

stable sides of all of the curves is the

some simplications, the conditions (c)

identical conditions, and the curves
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corresponding to (a), (b), (c), (d) and (e) are reduced to the following simpie

hyperboias

         Po 1                                  Po -1        Lk7=pt,* (a) -?lf==:G,*+H(c,e)
                                                                (54)

        h;'L=lsi.iJ(b) -:'i==L,*iiM(d) ,

where s* is the constant which is given by the following expanded form of

s in Equation (7)

         s*-:E/(E+t",B,T,Ft), (55)
and H; G, L L L and M are given by the following expressions

      H= s] ;2aBi (T,212To '2 Bi+ 3TT,2iiO B2+ -2TT,g(T+,ltTii:TZ B3]

           t=1

      G -= 1+ -!L, H

              Ta

      eX == tg.i3,B, (T,(T8,T-'2 T,) Bi+ 'lli'-B2+ T?eTi+-Ti) B3] (s6)

      I== L, -J
           To

     M== i TliBi (TIBI+ (Tl+ T22-t2To 'L;I9i) B2+ r22:lgTa B3]

           i=1

    In this simplification the reactor out-put which corresponds to the equi-

librium point B' is obtained as

        x4,=-crs!crif=-p,/(E+tF.,B,T,F'), (s7)

and is recognized to have the expanded form of x2, which have been defined

in II.(1).

    The curve which corresponds to (f) in Equation (54) is obtained after the

s!mplification as follows



              TheStabilityofReactorwithanExternalControlSystem 63

         ai[,P,･ ,'. ]3+ (a,+ ?.2 )[-EJ･ ,', ]2

           + (a,+ sb*3 + sC,3, )[-£J. sl* ]+ (a4+ sb*` + sCi,+ s4t3) == o, (s8)

wherein ai, bt, ci, and da are the constants whose values are obtained as the

reiatively simple functions of the thermal time constants and the mean gen-

erating time of the delayed neutrons.

    It can be recognized that the curve given by Equation (58) is approximized

by the hyperbola in the region where s* has a relatively large value. In

addition, under the assumption that the Condition (53) holds, the coefficient ai

becomes negligibly small and one can negiect the term of the third order in

the region of the practically conceivable values of s* and Po/P. Thus one can

reduce Equation (59) into a more simple form

     Po 1
    - tv     p 'V S*

                                  2(a2+ 9k)

     '- (a,+ es + ,C,3,)±V (a,+ e& + ,C,3,)2-4(a,+?t) (a,+ k + ,C.4, + ,di,,),

                                                                (59)

from which one can obtain the curve directly.

    Now, in order to deal with the cases where the external control system

is applied to the system denoted by Equation (48), one must obtain the four

characteristic roots solving Equation (51) directly. If one deals with only the

cases where the real parts of all the roots are negative, one can use the

methods applied in II. (2), and obtain the relations which are required to attain

the stability of the entire system.

             III. Numerical Caluculation and Discussion

    Equation (29) and (41) are numerically caluculated by varying the values of

the nuclear and thermal constants and the out put of the reactor over a wide

range, and the results are shown in Fig. ItvFig. 5.

    Fig, 1 corresponds to the case in which both of the characteristic roots

are real and negative. This diagram shows the minimum value of r/higi which

is required to satisfy the stability of the entire system as the function of Po!B.

Since the operating power of the reactor is given by -Po/(E+.l7'T), Po!B is the

value which is proportional to the reactor out-put. Fig. 1 shows that the



64 Yuichi OGAWA

   o   o
   4
.As
o
m
ca

yv O
   o
 N -ti"
oo

 -"
×g
  o  o  an

  'o
  o  ov

  o  o  H

s=5

s=1

0 O.I O.2 o.3

Ay
or

L-t
.e.,

'

c-

i

1-

.c-

:-

c
c
"1

Fig. 1.

s=-o.2r)

 s#o

Minimum Value
Non-oscillatory

   -8
ec
  oc
DH

=-

)
  R
  G

  o  9

  o  o  et

tsSo

  .5
o   o.1 o..o. O.･3

(a) 'Lit,= i.o, gilgz =

         Fig. Z.

 of 7Vhig2 vs,

Stable.

polp

...o.?.r,

sr

    S-.-o

     s--.O,l

     o. 4

sfo

 in the Case of

Ac
e
'L

v
#ti

=>
fi

E

c
E

r.

:-

o.:+ o o,! o,:.' o.']

           -
 o,l (b)rAt.=.1.0,{lt!g.

Minimum Value of 7Vhg vs.
Oscillatory Stable.

 .o.
-.e

t.i)

 $=o

s=O.5

 o.11 o
pm

 = O. r,

PolP in the

   o,1. o,:J o.3 o,:l
     -- s.i
{c} 'tPCr,=10, e'l/'ez =1.0

Case of



 g
?2
:,

xJ.

,:,g

--.-, ce

h,

 ,R
 ･:t

 9

 o o rt

  o

    ost

     ",     "o
      .
   0.1

(a) 'ilr.=

,s'

-

  The Stability of Reactor ･with an External Control System

                      o'o .            'ii:Y ?: io･"

            m "-            w"             NO "O            too t]o             -co -co            c=            xx            k"                       '              O. s=o 8              D = nyko                  '                                         '                    '     .--o.orl
              o ...c. .... ....              t-              t Lt               ..                                            e"o
                      ･S'"o o?s
                        -Pv
.,o. et, 'S"o.,1 :t ss-･o..h-
 - }s

o.:2 o.:} o.ti o o,i b.:- o.3 o.it o o,i o.2 o,1
     >-tf] '.xfp                                            -
i,O,e,'i!s':z;tOol O))IZi;l;=JC),a'tlfr,.=O..!] (e>'ofr,=J,O,e)/t:'z

 Fig. 3. Minimum Va!u,e of iVhig2 vs. PolP in the Case of

         Oscillatory Stable,

                          o                       t-s O                        o co                 &o
                 - co               fr w
               "･              to te"o c'vV"
                       e-woO .,o'

         s

65

A8
e
hl;

=p
×g

o
"

o
ou

 o

s"o. 4g

(a)

F･ig.

･z7tl;

4.

           sl "o   'gk sc-o.

 o.s L6
      g: /gz

= 10, -CYp = O.05

M･inimum Value of
Oscillatory Stable.

  o ･ s=O.61  o
 -:t s=O.52     '
       ･ s=o;'65
 g･

       '                  '   O O.5 1.0
      S gt /gt
 .(b) 'ty% = loo, .4f3 = o.o5

fVhig2 vs. gilg2 in the Case of

-gki

 'o.-l

1.0

/



66 Yuichi OGAWA

         A t-h                                   eo         eo                  . oo         ¢o                                   co co         m co
                                          ny          ou NO         sco'o £boh.?' ob         si･s Sk･ (8 .i' p,'
                                              op･

            oo            g, .o
                         th
            8 so.O' s ･s=o.2o
            "t s.,o.tL CV sLO.31.
                                                     s=o.38
                         s--o.79

             O O.5 1.0 O O.5 .!.O'
                 -"------">gi'/gz ------'>gtlg2
              (a)7;1?,=lo,%=o.2 (b)"ah,=loo, 3hr7i=o,2

                Fig. 5. Minimum Value of 7Vhig2 vs, gilg2 in the
                        Case of Oscillatory Stable.

increase 6f the operating power gives a deeper depth of the region of stability.

    The diagrams shown in Fig. 2evFig. 5 correspond to the cases in which

the charact'eristic roots are the complex conjugate whose real parts are negative,

and hence the cases in which the reactor is oscil}atory stable near the equi-

librium point corresponding to the power operation. Fig, 2 and Fig. 3 show

the minimum value of iYhigi versus Po!B, taking T/ro and gilg2 as the numerical

parameters, In these cases s(=E/(E+FT)) has a value which is restricted to

a relatively narrow range, and the smaller the value of s becomes, the narrower

the region of stabiiity becomes. This reduction of the region of stability in

the smaller value of s is extreamly remarkable when the thermal time constant

of the reactor becomes Iarge. Fig. 4 and Fig. 5 show the region of stability,

taking gi!g2 as the transverse axis and PolP and TITo as the numerical parameters.

Fig. 4 and Fig. 5 correspond to the cases in which the values of PolP are O.05

and O.2 respectively. These curves indicate the fact that there exists a properly

chosen value of gilg2 which minimizes the value of iYhig2 existing on the

boundary line, and this fact is considered to be quite important in the designing

and operation of the external control of the reactor. In these diagrams one

also notices the fact that, in the case of the larger thermal time constant of
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the reactor, the inclination of the curves become extreamly sharp and a small

variation of the gilg2 produces a large variation of the depth of the region of

the stability. This is also considered to be an important problem which might

affect the stability of the reactor system.

    Equations (54) and (59) are numerically caluculated for the actual natural

uranium gas cooled type reactor, and the results are shown in Fig. 6. The

stable region is given as the region which is sltuated on the stal)le sides of

all of the five lines (a), (b), (c, e), (d) and (f) which are mutually crossed. This

practical method allows also the caluculation of the effect of the coolant speed

upon the depth of the stab}e region and the result is shown in Fig. 7.

    In summing up, when one applies an external contro} system to a reactor

with internal feedbacks, one must choose parameters governing the control in
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 the nuclear and thermal properties and the out-put of the

  attain stability in the vicinity of the operating power. This

       specially in the course of the designing and operation

      of the reactor, and this paper gives an estimation of
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