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Application of the Maximum Principle to a Continuous

Path Determination Problem

Ryoichi MIURA*, Takashi OHNO**
and Mamoru YAMAGUCHI***

1. Introduction

Recently some technical methods based on the maximum principle have
been developed. Most of them, however, seem to require a considerably
extensive computer system to determine the initial conditions of the auxiliary
vectors in comparison with the conventional PID control method, and seem
to lack in investigations on the relationship between the cost required for such
a computer system and the benefit derived from this type of control system.

To clarify these problematic points, it is necessary to investigate the
problems : 1i.e. the operational time of the computer system, identification of
the plant, non-linearity of control elements, disturbances to the control process,
correction of errors resulting from component apparatus of the system, etc.

The authors have developed a uniqgue method by which the optimal
control technique in the linear system by Pearson and Chaudhuri et al.®® is
applied to the general solution of the system derived by the Pontryagin’s
existence theorem and thereby the time (7') required for the condition of the
plant to be changed optimally to the target value is obtained directly. That
is, a method has been developed by which 7' is increased or decreased in
accordance with the determination of error function' as to its sign which
varies with varying control process and thereby the optimal value is obtained,
in an attempt to simplify the computer system involved. As a result, the
. optimal condition can be computed in a comparatively simple. manner on
a digital computer. Furthermore, it was found that an optimal control is
possible, in principle, also with the analog techinque without necessarily
resorting to the digital technique and with no loss of generality.

Then, as an example, the application of this control system to the sub-
marine depth control problem was shown, together with investigations made
to verify the validity. The following is a detailed report of this subject.

* TFaculty of Engineering, Hokkaido University.
**  Electronic Application Industry Division, Nippon Electric Co., Ltd.
#%k  Electronic Application Industry Division, Nippon Electric Co., Ltd.
T &(7T) in the report.
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2. System description and analysis

The maximum principle was established basically by Pontryagin in 1956.
Since then many theories concerning this principle have been developed. In
practice, however, most of them require an extensive computer system to
determine the initial values of auxiliary variable vectors which determine
optimal values of the system and can not replace the PID control system in
the general process control.

The purpose of this paper is to present a method to obtain by the zero
method, initial conditions of auxiliary variable vectors which are encountered
in the application of the maximum principle to the general process control, to
eliminate the complexity of the computer system and to derive a procedure
for controlling with sequential correction of any deviation of the path which
may occur during control operation.

The characteristic of the plant is assumed to be described by an #-th
order linear process variable vector as shown in Eq. (1).

X=AX+BU=f(X,U)

or

(1)
2= Z Ay T+ Z b‘ijuj :fb(X> U) > Zzl) 23 R {2
=1 =1

Now consider the case where the process changes between #=0 and ¢="1T.
Since the generality of the theory is not lost by taking X(7) at £=7T at the
origin of the coordinates, let X(7')=0, and the cost function is generally
given as

J= S:'F(X, U) dr (2)

Then, control U that makes J minimum can be obtained by controlling H
given by the following equation so that it is always maximum by the maxi-
mum principle.

H= g}ogbi F(X, U)—F(X, U) (3)
where  go=—2  i=1,2,3, - n
0x;

Eq. (3) is rewritten in vector form as
H=¥"f(X,U)-F(X,U) (4)

The cost function J is given as
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J= ST(X”CX+2 U\l de (5)
0
where X772 transposed matrix of X
C : constant matrix
A . constant

WUP=Uf+ U+ +U.
Substituting Eq. (1) and Eq. (5) into Eq. (4) gives
H=¥"AX+ BU)—(X"™CX+|U|») (6)
The necessary condition for making A maximum with respect to U is

obtained by differentiating Eq. (6) by U and finding such U that satisfies
0H|[?U=0. Therefore, the optimal value of U, U°, should satisfy

UO — LBT}EW . ( ’7 )
22
On the other hand, from Eq. (4)
¥ =— AT +2CX (8)

Denote initial conditions of X and ¥ by X(0) and ¥'(0) and let ¥ (z) and R(z)

be the fundamental matrixes of X=AX and ¥ = — A, respectively, then

the following relations hold true.

d(0)=A0@®), ©00)=[1], X@®=0o@X(0) (9)

R@)=—A"R@®, RO)=I[11, ¥@®=R@T(0) (10)

@~ (¥) = R*™(z) (11)
)

Denoting the solution of Eq. (1) by the fundamental matrixes (1) gives

X(1)= 0()(X(0) + St@’l(t) BU:) (12)

0

Under the optimal control, X(7")=0 at =T, hence the following equation

—0(T) X(0) = @(T)ST@“(t) BU(») dt (13)

0

The scalar product of Eq. (13) and X(0)¥Y(T') is given as

—X(0)-X(0) = STX(O) .0-1(2) BU(2) dt Gy

0
Substituting Eq. (7) and Eq. (11) into this gives

1

—~X(0)-X(0)= -

S X(0)- R7=(8) BB™ (1) di (15)



4 Ryoichi MIURA et al.

Substitute Eq. (7) into Eq. (1) and solve it simultaneously with Eq. (8), then

we have
2
- 16
v 20 —A™ v 16)
Denote the fundamental matrix of this equation by V(¢), and Eq. (17) holds
true
X X(0) ]
=V 17
[ v0 1= 7] v o

where V(#) is represented by a matrix of 27x2n. Denote each element of
V(&) by v,; and put V(2) as

V=V, Ui = Vigin
, y by
vfj = Ugini » 'UZ,;/' = Vsingin s LJ= 1’ 2) 3) PR
and
Velt)  Veu(9) ]
Vi) = [ (19)
Vsﬁf?(t) Vw(t)
then
X(2) = Vau(2) X(0) + Vi () 7'(0) (20)
V(1) = Vyult) X(0)+ Viu () 7'(0) (21)
Putting =T in Eq. (20)
Vao(T) U (0) = — Voo (T') X(0) (22)
V(0)= — Vi (T) Vil T) X(0)
as X(7T)=0, which shows the relation between ¥(0) and X(0).
Substituting Eq. (21) into Eq. (15) gives Eq. (23).
—X(0)- X(0) = Z%STX((» - R7R(2) BB ( V(1) X(0)+ V(&) W(0)
0
(23)
Now put R(#)=[r;;] and Eq. (24) holds true.
n 2 I n n n . n 7 ‘
—223% (,0) = | 5 20)(% 20 5 085 5 71 3 bus b
J=1 0¢=1 J=1 m=1 Z=1 k=1
+ 35 65(0) 35 vits 7 3 s b )t (24)
J=1 m=1 =1 k=1 .

Therefore, putting
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wiz(T) = _go mzlvm Z 7] Z bl/cbmkdt B : - (29)
wiy (1) = 50 ZI"UMZ 7 Z b,,cbm,cdt "~ (26)
[0 (T)] = Vol (T) Vel T) (27)

gives Eq. (28) and E ( 9).

7«

—222 (xj<o>> - g:cxm (% 20 wh(T)+ 3 ¢:0) wii(T)) (28)

Since Egs. (25) through (27) are determined, as the characteristic of the plant
is determined, substituting Eqs. (25) through (27) for the characteristic of the
plant is permitted. Thus, the initial conditions based on the maximum prin-
ciple can be obtained easily by obtaining 7' or ¥,(0) at the time when the
solution ¥,(0) of Eq. (29) satisfies Eq. (28) as T is increased.

3. Application to the actual control system

For the purpose of this article, a control system may be divided into
blocks as shown in Fig. 1. The problem considered here is that the coef-
ficient of Eq. (1) should be obtained from the signal given by the input of the
plant within the block marked Identification, and the system be controlled to
eliminate the difference hetween the output X(¢) and the set value X;(0) when
the process of computing wi3(7T), wif(T), w,;(T) (where 4,7=1,2,3, -, n,

Identification -

X0, X0, | computer | ZW0) | control |_U) d)'"i'fﬂfcs Xit)
o system : devices plant

Fig. 1. Block diagram of general control system
Note: X(0)=X{(z)—Xz(0)
X(#) : out put vector
Xr{t): in put vector
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T=0, 4¢, 24¢, ---, pde, -+, nde) is in effect. Since the generality of error X(0)
which occurs when the set value X;(0) is given is not lost if the end value
of X(r), X(T), is taken at the origin of the coordinates, it follows that

X(0) = — (X,(0)— X (2)) (30)

If X(0) is given as the input to the computer system, ¥,(0) is obtained by
simultaneous solution of Eqs. (28) and (29), and by calculating it as the initial
condition for Eq. (16), the system is controlled to satisfy Eq. (7), then it is
the optimal control. However, the actual control is affected by indentification
of the plant, non-linearity of control elements, disturbances, etc. and it is very
difficult in many cases to carry out the control as computed. At this point,
the problem of path determination arises which carries out the correction of
initial condition X(0) sequentially. The block diagram of Fig. 1 illustrates
this method. The computer speed is increased to determine control U(0) by
the initial condition ¥'(0) at the present time, and then similarly, by a new
initial condition at the next time. This will be described in the following.

3.1. Determination of optimal time by error function
If the optimal time T is given in Eq. (29), it is immediately possible to
obtain ¥(0) from X(0). In general, however, the value of 7" which must
satisfy Eq. (28) can not be obtained easily. Now, put arbitrary 7" in Eq. (23)
and denote the resulting difference between the right and left side (hereinafter
referred to as error function) by (7). Let «(T") be

euv=X@X@H§;Ymmﬂmm33%wMamm+mem»ﬁ
0

(31)
then, ¢(T) is zero T=T"° and ¢(7T") must not be equal to zero for any T
meeting the relation '

0<T<T® (32)

Because, if T'=7) which satisfies Eq. (32) exists and ¢(7})=0, it means that
a control with a control interval shorter than 7 is possible and this fact is
inconsistent with the optimal time 7. If, therefore, T is taken for the
abscissa and ¢(7") for the ordinate as shown in Fig. 2, ¢(T") intersects the
abscissa only at 7T'=T"° for any T which satisfies Eq. (32). Therefore, the
sign of ¢(7T") is inverted between T'=T°+4¢, that is, when T is changed
slightly in the positive direction from optimal time 7'=T"° and T=7T"°—4¢,
that is, when the change is in the negative direction. The sign of (T is
not inverted for 0<<7'<T® as mentioned above. Thus, the following equation
holds true.
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Em
\
To
-7
W04
Fig. 2. Characteristics of error index ¢(7T")
sign {e(T)} = —sign {e(T°+At)} (33)

for 0<T<T".
Since Eq. (33) must hold true even if T approaches zero infinitely, it can be
put that

sign {lim e(7)} = —sign {¢(7°+ 48)} (34)

-0+

On the other hand, the value of lim ¢(7") when T of &(T') approaches zero

70+
infinitely is obtained as follows. First, the procedure for obtaining of 7%

from Eq. (31) will be shown. Give T'=7T, and find ¥ (0) from Eq. (22).

U (0) = — Vo (T0) Ve T7) X(0) (35)
Substitute this into Eq. (31).
e(Ty) = X(0)- X(O)+2LXSTZ.X(O)-RTR(t) BB™® (V,bx(t) X(0)+ V,,(2) Yf(0)> dt
(36)

Let T be increased by the relation T,=T;+ 4¢ until ¢(73)=0, then the
following relation holds true for e(4z).

e(dt) = ¢(0)+ dte(0)

increase or decrease 7" in accordance with the determination of ¢(7") as to
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= X(0)- X(0)+ lim—2176X(O) . R?(3) BB (V,,(3) X(0)

60

— Vi (0) Vi (6) Vi) X (0)) + 2%111:)((0) - R7%(0)

x BB (V,,(0) X(0)— Vs 0) Vi (42) Vel dt) X (0)) (37)
In this equation, from the definition of fundamental matrix,
R™(0)=[1], Vaw0)=1[0], V,(0)=[1] (38)

Since the value of V,.(4¢) is the value at £=4¢ given as the solution of Eq.
(16),

Vi (dt) = [1]+ Adt (39)

The same applies to V,,(5).

Since V.}(4t) is the inverse matrix of V,,(4f) and V,.(4¢) is the solution of
Eq. (16),

Vi (dd) = 4t L BBr*
22

Therefore, it can be put that

Vi = S BBr (40)
Substituting Egs. (38), (39) and (40) into Eq. (37), we have

e(df) = — X(0)- X(0)— 4£X(0)- AX(0) (41)
If 4z is selected sufficiently small in Eq. (41),

e(dt) = —X(0)- X(0)<0 (42)

The equality holds true only when X(0)- X(0)=0. However, X(¢) is initially
zero, and therefore, there is no need of control. Then,

—sign {¢(T°+42)} = sign {lim ¢(7T)} = sign {Eitr_r}) sy} <0 (43)

70+
From the result so far obtained, a method is conceived to seek the optimal
time 7° of 7, by which T is increased or decreased toward 7% based on
a judgement
(TY<0: T=T+4t
(T)>0: T=T—4 ‘ (44)
(TY=0: T=T°

or an important relation is derived by which a servo mechanism which can
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positive or negative sign, if constructed, will enable a continuous obtaining of
T°. Throughout the description given above, ¢(7°") was assumed to intersect
abscissa 7" at T'=7T"° as shown in Fig. 2. A special case is conceivable where
¢(T") is tangential to abscissa 7" at T=T°. Under this condition,

e(T°+45) <0 and & (T°+45)<0
or (45)

e(TH=0 and (7% =0
That is, since the condition of ¢'(T") that satisfies Eq. (44) is reciprocal to Eq.
(45), the following relation must hold true when 77 is taken in the vicinity
of T

(T >0 (46)
That is, the conditions of Eq. (47) must be satisfied.

X(0) R™(T") BB (Vo (T")+ Vo (T") Vil (T") Vo (T7) X(0) > 0 (47)

The authors checked Eq. (47) for mere confirmation in marking the judgement
on Eq. (44), but have no experience with a case reciprocal to Eq. (47), that
is, the problem of tangential (T°), in controlling many initial conditions of the
submarine mentioned later. This special case is of considerable interest to us.
In practice, however, it presents no significant trouble in the control because
scanning is made from 7'=0 and such T'=7T" that makes ¢(7")=0 is obtained.

3.2. Computing procedure

A linear plant has the characteristic given in the form of Eq. (1) in
general. When non-linear elements are involved, the plant is controllable by
the present method if Eq. (1) is given approximately as an equation of small
perturbation. When Eq. (1) is given, the values of A and B are determined.
Thus, by solving.

1 4 ‘1
[EEE P o (RN P
I[ \\\\ //// " } \\\ /// E 1 \\\ /// :
(Z [ ~ S { - { N, ! I N . :
% 735(2) 1 b Gy ! ! 7;(8) !
dt ; . N { LN L !
bl N b N by N
o (t) —————————— 7 ym(t) Apy-—--—-- —un T (t) """""" 7 nu(t)
(48)
for the initial conditions
.7.11(0) ?‘171.(0) 1 ———————— 0
N - | ) 1
oo R
75(0) 1 = | 1
]
] i
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we can obtain r,(Z), (=0, 4¢t, 24¢, nd).
Next, rewrite Eq. (16) in the form of Eq. (49) and obtain v,; by solving

Eq. (49)

d b Ty
i v,
dt I Ppree “ ~o :
U (t) ___________ Unn (t)
(“11(\112 _______"allu d1[1d12'"‘"'“*‘:d1n U (8) vy (8) ~—-—-—- '('}hz(t)
| ~ . i N i { N /0
) \“:ijf 1} | “dyy ! AN s
e S~ ! i S ! . S
L A £ (Zmz \\ / .
= , Uy (t)_——_v'ij(‘t) ____rv'ln(t)
2C,2Cy——- 2C,, — = — AN
| e N ! S \
! 9 dyg SN 7 : J/ AN
| chj ! Ty ) N
I y - N : - AN 1 / .
. ~ | ST § A P -
\ 2Cn1 ________ Z,Cnn L o Uni (t) Unn <t)
(49)

for the initial conditions
[04,(0)] = (1]
1
(] 7 [0 [04]
Classify v,,;(t) (¢=0, 4t, 24¢, 34¢, ---, ndt) obtained from Eq. (49) as shown

by Eq. (18) and obtain v55(2), v¥4(2), v45(¢) and v§5(¢). Using the result, calculate
wi(T), wi(T) and w ;(T) from Egs. (25), (26) and (27). The authors have

Ll B
X0 n z n 7 n
o) E(T)Zﬂg;(lj(o)) + 2 Xieo) (g] Kol (T) + & Z/O(oyw?'J?”(T))
!%i‘.’.ﬂ |: J= J= J
H i
Knto) t J
""""""""""""""" "Moo
A Yi(on N
n Y 4 S
X0). % ==5 1,0-w;p(T) [theo o0 > U0)
° A . £=0
x,:(a) l/’,.=(m £

T=T +4¢t, when £<0
T=T—4t, when >0

7

Fig. 3. Computer system for optimal control
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applied the Runge~Kutta~Gill method and made the calculation of Egs. (25)
through (27) by the trapezoidal rule, that is, Sb flz) dx=%( fotf). The

@

block Identification shown in Fig. 1 represents the process up to the obtaining
of w. In Fig. 1, if a difference X(0) between the set value X,(0) and output
X(#) occurs, it is sent to the computer where the optimal control U(0) corre-
sponding to X(0) is calculated. This block is shown in detail in Fig. 3.
Referring to the figure, when X(0) is given, a certain value of 7 is set and
in block A, ¢,(0) is calculated by Eq. (29) and the result is used in block B
to calculate ¢(7°). The calculation is repeated by the relation T'=T+4¢ or
T'=T—4t depending on whether ¢(7T)<0 or ¢(7")>0 until ¢(7")=<0, that is,
T=T" is obtained. Now, close the switching circuit .S and send ¥'(0) to the
next stage, then ¥(0) becomes the initial value of the initial variable vector
for X(0)-¥'(0) given in Fig. 3 is once held in Fig. 4.

: Yo, o),
y(. hold U(0) , =n . Uz(0) U0)
e I o | Ui =<5 3 by ¥i(0) [T pe—
circuits oo 2 2 74 7 T
Y0 Un(0)

Fig. 4. Network of control devices

If control u; is given by

5(0) = = 23 bushc(0) (50)
24 =1 '

the optimal value of «; is obtained. The action of u; is fed back to X(0)
through the characteristic of the plant and is given as input in Fig. 3, thus
completing a closed control loop. This means that a chance is given for
repeated correction of errors of the entire system including the computer
errors. On the other hand, a certain optimal value 7% is given by the
judgement on Eq. (44) and thereby an optimal control U, (T%) is given.
Thereafter, give T,=Ti—4dt as the estimated value of the initial value of
T, for the second time onward, and the operation time becomes shortest.
Generally, it is possible to limit the number of repetitions of calculation of
Eqgs. (28) and (29) to zero or 1 so that practically no repeated calculation is
needed, by using

T,=1Ty ,—4t, (p=L12, -, n) (51)

for the initial value of T,
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4. Application to the 4th order linear model for
submarine pitching motion control

It is already well known that the pitching motion of the submarine can
be represented by the 4th order linear equations®. To be noted is that the
equations of motions of the submarine have coefficients which are a function
of ship speed and so vary frequently. When a digital computer is introduced
in the control system, Egs. (25) through (27) can be calculated easily and no
problem arises in the calculation of these equations necessitated by any change
of data given by the Identification. In the case of analog control, however,
it is difficult to change the values of Egs. (25) through (27) as described later
and this may make the control impossible when the characteristic of the plant
changes largely. In the case of the submarine, it may be assumed fixed as
a result of normalization of the motion®, and generally the following expres-
sion may be used.

AJl + Agh + A3b + A40 + A5ﬂ = Aeﬁeu_AﬂBef 1

. ) i . 52
Blh —“Bzh -+ B30 + B4H_B50 = Beﬁen + B7‘Bef [ ( )
where ¢ : pitching angle in degree
h: depth in meter
Bes: angle of stern plane in degree
B.:: angle of bow plane in degree
Now put
x=h, x,=h, x3=0, x,=0 ] (53)
U= ,Bea i Uy = ‘Bef r

then the following relations hold true.

au:_i(Az + ASBZ) aa1z—l—<Bz +——BIA2)
A Al AlBS ’ A Bg B;;Al
__ 1 A4_AaB4) __L(@_ BA,
Ty ( A, AB) T 4B BaAl) (54)
414:_L(A5 +—“——”A3B5)> a34:—1*(B5+B1A5
A Al A1B3 A Bg B3A1 J
by =L ( Ag ASBG) by = L <36 BIAG)
4 \A  AB)’ 4 \B, B,A, 5)
bm___l_(fh A3B7) b32:i<_§7_+BlA7)
4 \A,  AB,)’ 4 \B, B,A,
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where 4= (1 — %)

A1B3
Take for example a 1,000 ton class submarine to show values of A and B in
the following.

—0.03739 0 -—0.02431 —0.001671
1.0 0 0 0
= (56)
0.1361 0 —0.1113 —0.002615
0 0 0 1.0
0.0003664 —0.0003043
0 0
B=| 0002267 0.001067 &7
0 0
R(#) shown in Eq. (10) is the fundamental matrix of the equation expressed as
T(t)=— ATV (1), (58)
where T transposed matrix of A
Now let ¥,(0), ¥,(0), ¥,(0) and Z,(0) be
1 0 0 0
ro=|, [ mo=|, | no=, no-| | )
0 0 0 1

then, [r4] (i=1,2,3,4) is the solution of Eq. (58) for the initial condition
taken as ¥,(0). Generally, [r,] (i=1,2,3,4) is the solution of Eq. (41) for
the initial condition as ¥,;(0) (¥,;(0)=1 if j=¢ ¥,;(0)=0 if j=i). For [vy],
the solution can be obtained similarly from the eight initial conditions and
Eq. (16). Fig. 6 shows the difference between the conventional automatic
steering and the steering on the maximum principle presented when the ship
is to change its depth 5m in a horizontal travelling conditions. The tontrol
conditions are as follows.

(1) Automatic steering
In Eq. (62), let the relation between S, and g, be
Bor = 2eu (59)
Assume a feedback to be represented by

Bow = — ki +Eh—kb (60)
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J
-40.2
Ky=4.0
=0 |
30{{ 2035
! 0.7
- ’ ey
o~ ! K,
l
\
4 L
X
! . " { i QO 0
-0 —0.1 0
Fig. 5. Root locus for submarine control system
horb
(m) or|(degree)
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4
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//
2.0r //
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4
1O+ /’ // \\
4
’ /// \\\\\
e S~
e g T
- e
0.0 == 5 o S n oy 1 ¢
0 20 40 60 80 100 120 140 .
mn se¢

note 3 ———~— proportional control
maximum principle

Fig. 6. Comparison of proportional control and optimal control
for submarine in longitudinal motion
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Then, for various values of elements %, %, and %; of this feedback, the
root locus for the control system is as shown in Fig. 5. If the values of %,
k, and k; are selected to correspond to the dot, that is, k=2, k,=1 and
k;=5, then the result of control of this system is as shown by the dotted
line in Fig. 6. ‘

(2) Steering on the maximum principle

The solid line in Fig. 6 shows the result of control obtained, by the
calculating method shown in Fig. 3 and Fig. 4 for such data as [C]=[1],
2=1 and 4t=2.0s in Fig. 6. Since the value of ¥(0) calculated for X(0) in
Fig. 3 is once held before being supplied as U(0) in Fig. 4, the steering
shown in Fig. 7 takes a stepped form, and the path shown in Fig. 6 is an
approximate solution of the optimal path.

Baa OF Bey in degrees

301

20

Fig. 7. Values of stern plane and bow plane

5. Extension of the scope, and control mode discussions

In the application of the maximum principle to the general process control,
Eq. (5) may be construed as follows.

(1) Normal control Ji= ST<Z4: 2E() + ZZ: uﬁ(t)) de
0 ‘j=1 %=1

i} 25(8) d

in

r

(2) Minimum deviation control JZ:S
0
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(3) Minimum # control Jg=ri ui(2) de
0zZ=1

(4) Shortest time control J4=STdt
0

The normal control and the minimum x control can be determined
uniquely by the method described in 3, whereas the minimum deviation control
and the shortest time control can not be determined simply because of the
restriction imposed in the derivation of Eq. (7). If such a control in which
2 in Eq. (b) approaches zero as near as possible, is called the minimum devia-
tion control, a considerably precise approximation of it can be obtained by the
path correction method described in Fig. 3. The minimum deviation control
in the strict sense shows up as a fluttering control, while the minimum devia-
tion control modified as defined above to have 2 which is selected very small
allows the restriction on u to be alleviated so that calculated value of u is

h(m)

501 e
4.0~ /
3.0+ /

20 !

in sec

Fig. 8. Sub-optimal minimum error control
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accordingly large and a saturation may be considered for it. Thus, the
difference between the calculated value of » and the saturated value u,,, can
be corrected by the path correction to a considerably presice approximation.
As an application of this concept to the submarine. Fig. 8 shows the result
of control for the data

C=[10], 2=0.001 } 61)

Uimax = Usmex = 25.0 degrees
when the submarine changes its depth 5m.

This figure indicates that the control speed is considerably faster than the
path of Fig. 6 shown by the dotted line and that each control becomes
satuated. The minimum # control corresponds to C=[0] in Eq. (5) and the
control method equivalent to the normal steering may be used for this control.
Fig. 9 shows the result of this control for the data C=[0.0] and 1=0.001.
In the case of the shortest time control, it is impossible to apply the path
correction in this limited condition where 1 approaches zero and other methods
should be resorted to. Generally for the actual processes, however, the
shortest time control should hardly be needed if the minimum deviation control

m. or degree

o.h

5.0
4.0}

3.0

Bes (x10)
Beq (X10)

. t
0 20 40 7 80 100 in sec

Fig. 9. U minimum control
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and the minimum..« control are possible. - Especially in the-.case of a sub-
marine,. therg. is -ahselutely “no :need iof .this econtrol, because depth hunting
must be avojded-for: safety purpose; thus the meaning of: the optimal condition
becomes. -ambiguous in this: limited case.where the characteristics ..change
severely, and the fluttering control is always accompanied by hazards: ‘it is
only necessary to change the mode of normal steering between specific ranges
of 2. Fhis description, however, does not mean that the shortest time control
is meaningless, but that for the purpose of simplifying the computer system
and offering a generalized approach in place..of the.conventional PID,system,
as-.‘intelnded, by: the: authors, the shortest time control may be. discounted from
the consideration. - From the discussion given above, it is seen that the com-
puter system shown in Fig.-3 and Fig..4 can.be applied in the same form to
normal control, minimum deviation. control and minimum #. control, and that
the generality -of- the control exists including the.cases where saturable control
elements are. involved. and -measurement errors of the plant are present.
Especially,. in the latter case of the measurement errors e, very precise control
is ~obtained if the characteristic of the plant is simulated precisely by the
Runge-Kutta=Gill method and w is calculated by the first approximation of
the Newton—Cotes’ integration formula, that is, the trapezoidal rule. The last
problem left in the application of the control method to general process control
lies in the mode of simplification of the computer system shown in Fig. 3 and
Fig. 4. At this point, the authors considered an analog computer system and
have proposed a system for continuous control.

6. Control by analog computation

Taking for example the control of a submarine, it means that the control
on the maximum principle can be carried out entirely by analog computation.
Fig. 10 illustrates the technique for a fourth linear control system. A total
of 48 potentiometers to generate function w,,, wiy and w4y (i,7=1, 2, 3, 4) are
prepared (the number 48 will be used here for the clear explanation of the
relationship between Fig. 3 and Fig. 4 although only 32 are actually needed)
and mounted in such a manner as to interlock with each other on the same
shaft which is driven by a motor supplied from the comparator which detects
the polarity (+ or —) of ¢(7T"). Since the angular displacement of the potenti-
ometer shaft is proportional to 77, potentiometers provide outputs w,, (7)),
wi(T) and w%(T). As can be seen in the figure, composite output of
potentiometers 1wy, Wy, Wi, Wy, appears in the output of amplifier F; and
corresponds to ¢ (0) which satisfies Eq. (29). Similarly, composite outputs of
War, Wi, Wasy Wayy *+, DA Wy, Wi, Wi, Wy appear. in the outputs of amplifier
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b e e e il-3d L+J !
! rotate earch o | e | i
1 potentiometer :
! =/
! [N_1Fre ]
i - MPY|
H 1=2 i
| el
1 =3 ™
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: ‘f' """"""" -
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' !
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A\ 1 & A

e I e =
T b AN ——
servo motor  compatator 20zE 0
T L AMAWA—

Fig 10. Analog computation technique

F,, Fy and F, and correspond to ¢,(0), ¢5(0) and ¢,(0), respectively. On the
other hand, outputs of amplifier F, F,, F, and Fy obtained from (wff, wif, wiZ,
wiy), -, (wif, wi, wiy, wif) and outputs of amplifiers Fy, Iy, Fy; and F}, obtained
from (xoff, wif, wif, wff), -, (wif, wi, wif, wif) are summed appropriately in
the output of multipliér MPY where. sums are multiplied by input a;(0),
2,(0), -++, 2,(0).  Multiplier outputs are summed together in amplifier A to
which another input 22(z%(0) +23(0) +x%0)) is also applied. Then, amplifier A

provides output &(7") which satisfies Eq. (28) and is sent to the determinant
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mechanism where it is used to shift the potentiometer shaft so that T for
¢=0, that is, the optimal control time 7°° is obtained. - When switch groups
Sy, 55, S; and S, are turned on, the calculated result ¥'(0) is provided at the
output to determine the value of control properly. The potentiometer used
for this control is required only to have an ordinary class of precision for
practical purposes: a slight difference between the potentiometer setting and
the characteristic of the plant, if present, may be corrected by the path
correction as mentioned previously. Similarly, a servo system having an
ordinary degree of delay may be used with almost no inconvenience for the
control of a submarine. Furthermore, as mentioned in the preceding section,
once 1" is determined, the control may be continued in quite the same way
as a general servo, or rather smoothly as compared against the digital system.

The analog control system, as compared with the digital system, is
characterized by its very low cost for new installation : in this regard, it may
be considered as one of the .conventional mechanical servo systems of single
function type, being convenient for the control of a submarine. To simplify
the system of Fig. 10, substitute Eq. (29) into Eq. (28) and we obtain

7n

—223% (2,(0) = 2 2(0)(E 2,0) wis(T)

i=1 J

Noting that
wy(T) = wf§(T)— 33 wih(T) w,y(T) (63)
-1

it is possible and yet practical to simulate by means of two sets of potenti-
ometers of w,;(T) and w$,;(T), w},(T") being used for the generation of
functions by potentiometers.

7. Conclusion

In summary, on-line application of a control device based on the maximum
principle in place of the general PID control device is not so difficult, and
especially upon the development of analog control systems, it has been found
that the principle of conventional servo systems seeking continuously for the
optimal value by zero-method can be applied also in this case. Whether the
PID control device or the control device based on the maximum principle is
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superior can not be said generally, but, most PID control systems require
various tests which are repeated after the device is manufactured to determine
the optimal value and moreover, it is impossibly to determine at present
whether the result of control is truly optimal or not. This difficulty increares
in intensity in a complicated multi-variable control system. In contrast, the
application of the maximum principle is advantageous in that most procedures
are eliminated and that optimal control is insured even for a complicated -
system.

Notation

J: Cost function
X: Process vector, X=[z,], j=1,2, -, n
X7: Transposed matrix of X

C: Constant vector

2: Constant

U: Control vector, U=[u,], j=1,2, -, n

A: Constant of the plant, A=[a,;], 4,/=1,2, -, n
B: Constant of the plant, B=[b,,], i,j=1,2, .-, n
T: Optimal time required for the proccess change
t: Time

¥ Auxiliary vector, ¥'=[¢;], j=1,2, -, n

H: Hamiltonian

AT: Transposed matrix of A
B?: Transposed matrix of B
@ : Fundamental matrix of X=AX
R: Fundamental matrix of ¥=— A7¥
V: Fundamental matrix which satisfies Eq. (16)
wiy . Characteristic equation represented by Eq. (25)
Characteristic equation represented by Eq. (26)
w;;: Characteristic equation represented by Eq. (27)
¢: Error of the determinant
A;: Coefficient of the equation of motion of the submarine, i=1,2, ---,7
B;: Coefficient of the equation of motion of the submarine, 1=1, 2, ---, 7
0 : Pitching angle in degrees
#: dfldt (deg/sec)
A : Depth in meters
h: dh/dt (m/sec)
Ben: Angle of stern plane in degress
Ber: Angle of bow plane in degrees
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k- Pitching-angle gain; B./0
&yt Depth gain, B,/h

“ki: Pitching angle velocity gain, B../6"

[
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‘Appendix
(1) Flow chart for computation

The flow chart is shown in Fig. a=1. The coefficients a; and b,;, and
initial conditions z,(0) must be stored automatically from external sources.

(2) Symbols

Symbols employed in the computer are shown in Table 1.

Signal How
ljne#ioignfa:_ Qij, bij B stored }w——@stem of Identification j
1 initial :setting, T#=0 l
1 . >

{ calculate 77, Vij ]

| calcuite wff, wl? |

calcufate [U{j:r: i=l~n,j=n+~2n J

I i

caloulate €(T)

@

Supply X(0), from external
signal source S

store u; to output memory

i

search, INDEX>

repeat again | .

;o
H

out /}ut

Fig. a-1. Flow chart



24 . Ryoichi MIURA et al.

TABLE 1. Table of symbols employed in the computer

AUXW (L, T, J) ooveevvvniennnns wfj‘(t-lrdt)

AUXW (2, I, J) veevereeeresenncns ivf}"(H— 4

AUXW (3, I, J) roreeenerverveones wey 2+ A)

AUXWO (L, I, J) cvevvvrrmnnenes wis (1)

AUXWO (2, T, J) crrvvverenaanes w5 (2)

AUXWO @B, I, J) oeeeeeeeenn wij{t)

UMAX(J) coreeerrenemcnanennns upper limit of

QR(I, J)

QVI(L J)

QAL J) auxiliary variables

OX{(L, 1)

AUXV(L; D)

DIF symbols «oeeoerreeeiaeninnns employed in subroutines

COmPULET  «+ereereermemerarines NEAC 2800 (NEC's scientific and engineering
purpose computer)

Compiler «reoeeerrreenonenes AUTOMATH 3800

(3) Main program
The main program determining the initial condition ¥(0) and the optimal

control U is shown in Table 2. (as this program contains repeats itself causing
a waste of time, it should be rewritten into a well-formed chart.)



® & @ AUTOMATH 180D SDURCE PRDGRAM LISTINGe & @

®
i [ i 1EN EEN PROGRAMY  SURS 1081 CENTER PAGEY 0}
[ I 0091 DIMENSION FO(4)1A(644)9B(498)3X0(4) +D(848)
LoR1A1a) vAR (41 G) 9V (ByB) QY (BeR) ,AUKNO(3 408
2eAUXH {34438} sAUXY(4+4) 2 01FK(B) (DIFR(8),DIFU(B)
@ 34D1FA(B848)4,01FB(B4B)yDIFY(B)DIFQ(B)DIF
40ALBYR) SOTFX(B) QIFC(BA)IFD(4,8]
5,U0(4) JUMAX(8) JUX(4)
® 0002 DELTATR240 (= o)
0003 108240
Q004 ALFA=0.]
© 00g% RAMDAZ1.0 (=X)
naos Allaliee0,03739
0607 Alls210e0
® 0010 Afl9d)=2~0402431
001} 41148)2=0.001671
. 9812 A{2¢l)=100
® 0843 A124212040
Dol4 4{2+3)80,0
1318 4124818040
S  001s Al3sli=0a136]
ool 113y2)50.0
0020 L At3e31meD4) 113
® 002} 403,4)2=0,002615
0022 A{841)18040
0023 TA(442)20,0
@ 0024  Al4y3)=1.0
3025 Afa4¢4)%0.0
L 2026 8{111)%0+0003664
® 0027 B(142)=-0,0003043
0030 81312040
0031 Bl1ed)8040
i 0032 _ Bl241180,40
0833  B(242)20.0
' 0034 B(2431%0,40
o 4035 Bi2s4)30,0
4836 B¢3y1120.002267
0037 B(3s2)20.001067
® 0040 Bididinbald .
2041 B344}20.40
0042 Bl8:3120.0
a3 B(4s2)20.0
PRET:S Blas3)ug,0
Jgas B(Asa)a0.0
_® 0046 _UMAK{Yy=1000030,0
aua? UMAX 1212100000040
i It 4950 UMAX (312100000043
® 0051 UrAK1a) 2100000043
20%2 15PD=0,001 ,
0053 1001 DgPTHaz,%
B . 0% 1002 0 1903 (=lvs
. 3055  Xbtli=n,0 .
- 3056 Uptlyi=g,0 .

W01 UOHBUILLINA(] YIBg Snonunuor) e 0} 9[dpullg wnurxey oy} jo uonesrddy
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Ll , ®_® 5 aUTOMATH 1800 SOURCE PROGRAM LISTINGs s o
8 LEN ERy __PROGRAMI  SUBSK. . | . 1083 . CENTER
i W 0057 . atipign.o. .
0060 1003 CONTINUE . . ; ,
il | 0061 .. .. DEPIH™Z 0eDEPTH
® 0062 X0(2)=DEPTH e
D083 mrmrm—»n.mi.i.m:n
0064 1004 sTOP ‘
- p0as 1 Y8040
0066 DO 11 J=is4
9087 DO B I=1s4
® 0070 Ril4d)12040
0671 QR{1s0180.0
9072 5 Diledd=a(led)
] 0073 DI{1+324)=0.0
0074 Diletyded)==Aldal)
2 0075 8 CONTINUE
@ 0076 DiJedy ) 32,0
0077 10 Ridadlelal
0100 11 CONTINUE
8 0iol D0 20 Jzls4
0102 DU 19 Islsa
0i03 AN=0.0
® 0104 15 DO 17 x&les
91905 AWz AW+B (]aK)®B(JaK)
0106 17 CONTINUE
L ] 0107 D(Laded) 2AW/ (2 0PRAMDA)L
0110 19 CONTINUE
gli1 20 CONTINUE
] ali2 00 27 Jml8
. gira 00 25 1=1+8
oll4 Y(1s4d12040
@® glis o QY{I1Jd) =040
0lls 25 CONTINUE
. eil7 Yldedi=1s0
® 0120 27 CONTINUE
Q12 115 10 122 Jsly4
0l2z DO 121 12l,4
L ] 0123 00 120 K#l4d
0124 AUXHO(KeTsu?=0.0
0125 AUAWIR1T4J)=0,0
L ] olzs 120 CONTINUE
0127 121 CONTINUE
0130 122 CONTINUE
® 0131 200 0o 2085 Jxl.4
G632 DO 205 I=l.4
S 0133 . DIFA(Lvd)®=Atdel)
® 0134 DIFBITJi=R(1sJ) SUBROUTINE INITIAL SETTING
0135 DIFQA(LsJYmQR(T ey
0136 205 CONTINUE
[ ] 0137 DIFXA=T
i 0140 DIFX0ARDELTATY
L 0lal NDIFA=4
®

T8 32 VANTN 1YR104y



- e ° ® auToMATH 1800 3OURCE PROGRAM LISTINGe e »®

9 . ~ ,
1EX EEN PROGRAM:  SUAS 1081 CENTER pagEy D3
8 . a'se2 KUiFAs] SUBROVTIE INITIAL SETTING o - o
91423 210 GU T0 9840 — oy . . | ~
L 0144 9051 fin 218 del,s = SUBROUTIAE FOR CALEULATION SF HOMOKENOUS EQUATION . L
@ 0145 DO 215 Isled ..
Nis8 SRIYyaRIFRALY 0 0)
0147 RUL,J)sDIFBLTJ) (SoluTioN oF %, ) (
@ 0150 215 CONTINUE |
g8y 00 221 J=1,8
L . Dle2 DO 221 1%1.8 /
® 0153 DIFA(I J)2D(1ss)
als%4 d BIFRSlsd) =V (Tadl : L
0l55 220 ULFQA(IsJ)eRublad) YinrTiaL SETTINGS FOR 59BROUTINE
i L tise. 221 CONTINUE . i \ i
0157 DiFxasT . '
® lnigh | onrenpenbiear 0 LD ; , .
L 0161 NDIFAx8 . .
0142 225% KDIFA=2 i
0163 60 TD 9840 TION &f Hom oil% Ten
® 0163 9082 00 231 Jm1.8 PUBRGHTINE PR BiEi 0D o8 BEERE e re i
068 BC 231 (21,8 .
| 0186 RY{Ird)=DIFQALL )
® q167 230 V(14J)=DIFBUIed)  (SetuTioN oF V)
0170 231 CONTINUE .
4171 300 10 321 K¥=ls2
® gliz, 30 304 J=l,4
0173 JJIEJedn (kV=1)
9174 00,308 [=]l.8
® 6175 1111210
Q0175 AUXY (T d) =¥ (i el d)
0Lr? 304 CONTINUE
® 0200 305 N0 321 JElek
0201 DO 321 lel,4
o) 0202 Aw1=0,0
£ 0203 DO 318 Mal,4
0204 AW2=0,7
0205 310 00 316 L=1,44
L 0206 AM3=0,3
0297 DO 314 K=l,4
021¢ AW3EANIB (L +K) OB (MIK)
o gzil 314 CONTINUE
Q212 315 AW2sAnWZeaW3®R (L]}
0213 316 CONTINUE
@ Q214 AWL=RWLeAK2OAULY (HyJ)
0215 318 CONTINUE
0216 AUXH (KV oLy d) SAUXW (KVoTad) ¢ CAUKKO(KYyloJ)+AN1) ®DELTAYT /240
® 0217 320 AUXHO(KValgd)=an]
4220 321 SONTINGUE
- 0221 T=DIFXA
£ ] Q222 IF{T-TO+DELTAT/240) 20V+200¢328
I 0223 328 Aza
LR 0224 400 DO 403 J=lsa INITIAL SETTINGS FOR SuBROUTING
®
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L e s s auTOMATH | 1800 SOMRCE PRDGRAM LISTINGe e e

LFY L PROGRAMI  SUBS ..4oA3 CENTYER oaGEY 04
ogza,. - | nnrénl ltl.?
02z2e . DIFCtIeddEV(Islea) NITIAL SETTINGS SUBROD i
g2 403 CONTINUE i i e e , i
0230 NDIFC=4 .
0231 405 ¥DIFCay
0232 GO ra BEdg R o
el o041 90 410 Jrli4 e—— SUBROUTINE FOR CAL TION OF INVERSE MATRIX
0234 00 410 I=l.4 5 4
p2is. | AUXY (19J)EDIFCATad)  SOLUTION oF [ ]
023s 410 CONTINUE
02371 D0 418 J=1,4
0240 DO 418 12144
0241 " AW=0.0
0242 DO 416 K=1,.4
0243 L 815 AW=AMeAUXY(Tv 1%V {KeJ)
0244 416 CONTINUE
9238 AU (3yladymad
0246 418 CONTINUE
- pe4r : DO 425 lel.4
9256 420 AW=0.7
w251 .. DO 423 J=1,4
0252 AWzAW=AUXN (39 1,d)9X0 ()
0253 423 CONYINUE
0254 FOUL1)=aN

825 OONYINUE L. %
500 AWiz0.0
. B0SQT 1u]a4
- hd i
DO 595 Jsl.8

: AW2EANZ «AUXW LLaleg) ok () wAVXN (24100} ®FO ()
D05 CONTINUE

: AR1=AW1+A8W2%X 7 (11 +2,00RANDACKD (]} 092

507 CONTINUE

8 19 VAIA Y2104y

. 60 10 515
ford . 509 IF(ERROR1IZ2004514,514
9210 . 514 G0 10 600
L = ge7l. 515 ERRORi=awl . (= €())
0272 | AH2g.0
o . oza - DO 519 Juled
® 827% | AMBAWeAUXW (390021 2AUXN (29200
04215 i %19 CONTINUE,
- getle. . . FERRDR272,08RAMDAvAUXW(1,242) =8l . ' ' :
& ... gr¥r . GO TG "0 . -
0300 600 60 10 601
e @301 . &0l 60 70 602 | . o , ik .
® 0302 602 TFINEsT®TSPD .
0303 PRINTAQA.T . TFINELFRROR]
0304 604 FORMAT(1H4y5X43E1244) . :
-9 . 838 | PoINIA06sIFU(Jladn]l 8 . . . L oo L i o e
G306 . 606 FORMATIIH245%44E12.4) i '
S e G302 PRINTACES LXDLS) vl q) -




727 60 10
728

9011 DO 735 Jsl,

737 a=h

CONTINUE : . ,
126 v:vrxweervn -
lf(T’E:O~D!k!k¥/2‘93IZ&,IZG:?Z?

b

735 CONTINUE

736 60 10
9021 paust

9922 PAUSE 9022

9023 PAUSE
9024 PAUSE

9001
9021

9023
3024

9025 PAUSE
9026 PAUSE
9027 PausE
9031 PAUSE

9025
9026

9027
9031
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