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Abstract

The responses of gain functions in the frequency domain and time domain
are characterized by the zeros of circuit determinants. It is very difficult to
solve higher order equations. However, the author obtained approximate
expressions for dominant zeros and deduced a means by which to determine
whether the dominant zeros are real or complex when the condition of dominant
zero is satisfied. Some examples are presented which have complex dominant
zeros and real dominant zero.

1. Introduction

The responses of gain function in the frequency domain and time domain
are characterized by its poles which are the zeros of circuit determinants,
however, since the circuit determinants are of a higher order in complicated
electronic circuits using high frequency transistor models, it is very difficult
to obtain zeros. If the condition of dominant zero is satisfied, the minimum
zero and the sum of reciprocal of other zeros are necessary’. The former is
the dominant zero and the latter is the excess phase coefficient. In the case
of real dominant zero a simple expression is known?, however, in the case of
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170 Teiichi KUROBE

complex dominant zeros it is not known. The author deduced a method by
which to determine whether the dominant zero is real or complex and obtained
the approximate expressions of dominant zeros and excess phase coefficient in
the case of complex dominant zeros. More accurate expression than that
known was also deduced by a different method in the case of real dominant

Z€ero.
2. Discrimination of Dominant Zeros
Let a circuit determinant be of the nth order,
D=H(+bip+b,p"+bp*+ - +b,p") (1)

where H is constant.
From the relations between zeros and coefficients, we obtain

by=—3 1
=1 P,
b, — 5 Z ii (2)
i=1d=i+1 p, Py
i=1j=i+1k=3+1 D, p; P, ’

P Ps» Pr are the zeros of D and their real parts are negative in stable circuits.
Let |p| <|ps] <|ps]--- < |pal, the condition of dominant zero is |p;] < |pa] < |ps] <

~(in the case of real dominant zero) or |pi|=|p,| < |ps} <+ (in the case of
complex dominant zeros).

From equation (2), 6%/b, is

ﬁ — (T1+Tz+to)2
b, Tnt{ntn)h+4
2 2 2
1+. T+ Ty £+ I T 71+ 75
_5 T1Ty 27Ty y 27Ty (3)
1+ 0T %y 4
TaT3 T1T2
where
1 1 zo 1
e
n 71 1 1 ’ (4)
4= —
2=3F=4+1 P& pj

In the case where the minimum zero is real, (¢! +7)/27,7,2>1 and in the
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case where the minimum zeros are complex, (c?+17%)/277,<1. When (z§+13)/
27,t,=1, the bracket component of equation (3) is

2
24+ 0% 4y 2t°
T1Ty T17Ty
Ay = Tttt 4 (5>
14+ g+
T1Ts T1T3

In the case of real minimum zero,

2
L >24 6
5 =2 (6)

In the case of complex minimum zeros,

B 9a, (7)

2

Since 4 in the equation (5) is unknown, A, is not decided. In the case
of 4=0, A, is Apmax and the values of Ay, are shown in Table 1 where
t, is the parameter. In the case of d=max., A, is Agmin. The condition of
Ad=max is as follows:

Ad=r1i(ts+7s+ )+ lrs+re+ ) Frs(eoe+ o+ )+
Tyttt =1

Therefore
A=t (ty—13) +1,(ty—13—14) +5{lo— 13— T4 —T5) + -+

The conditions of 4=max. are

o4 :to“‘ZTg—T4_T5— ......... = ()
03 !
4 =y — Ty 2T — Ty e =0
87.'4
Aa{L:to_n_u‘Zfs_ ......... =0
Ot :
. to—z'g—z;4—z'5— v =27, =0
or,,

From above relations, we obtain
=T =g e O (8)

n—2

The value of 4 which satisfies equation (8) is
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2 #n? 5
Dy =B [ 5,3 9
(n—2) (2 2" ) 9)

n>4
The values of 4,,,, are 0.25 (n=4), 0.33# (n=5), 0.38# (n=6), 0.42# (n=28)
and 0.5# (n=o0). The values of Ay, in the case of n=oc0 are shown in
Table 1. 1In the case of #=2, A,=2 and in the case of n=3, A, is equal
to Aomax(7>4) as shown in Table 1. Agnm of n=4~00 are the values
between Agnax and Agpy, (2= 00).

TABLE 1. Values of Apmax and Aomin

\
4}
\ ~ 0.1 b 0.2 by 0.3 b
a0

Ag 3

1.72 1.56 1.50
flOmax > 4
Aomin oo 1.69 1.47 1.33

Using Agmax and Agmi, instead of A, in equations (6) and (7), we have

2
b—l > 2 Awmin (real minimum zero)
bj (10)
L < 2 A (complex minimum zero)

2

If the real minimum zero is dominant zero, 5%/b,>>2 Agmax Which will be clear
later, therefor we can discriminate the dominant zero by equation (11).

2
1

> 2 Aimax (real dominant zero)
b, '
b2 (11)
—b# < 2 Aomax (complex dominant zeros)
2

TABLE 2. Relations between Amaxy Aminln-w and /o,

N 0.1 &4 02 b 0.3 &y
A -
wl/lfl \ Amax Amin Amax Amin Amux Amin

0 1.72 1.69 . 166 1.47 1.50 1.33
1 1.02 1.00 1.06 1.00 1.13 1.00
2 0.46 0.45 0.54 0.51 0.65 0.58
4 0.14 0.14 0.18 0.17 0.24 0.21
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If the complex dominant zeros are p,, p,=0,-jw,, the bracket component
of equation (3) changes due to the value of w/s,. Let the bracket component
be A,.. where 4=0 and A,;, where 4=4,,., the relations between A ..y,
Anm(n=00) and /o, are shown in Table 2. A., of n=4~0c0 are the values
between A,,. and Ayn(n=00). bby=2A1n~2Amx and differences between

AL and A, are very small

3. Approximate Expressions of Complex Dominant Zeros

If the dominant zeros are complex conjugate,

by=r,+7,+1 (12)
by=r115+ 4, (13)
by =112ty + 4, (14)
where
. 1 1 _ 1 1
3 B Tp=——— = — A
2 oyt jan 22 gy —jun

Al - (TI+Tz)t0+A

7 7 n n n

412:(‘51“‘72)2 PHEASEDINDIEDY TeTiTk

§=34=2+1 i=3f=i+lk=j+1

t, and 4 are equal to equation (4).
From equations (12)~(14), we obtain

D S Tk SO S N S 2 15

& 2 o, 2 {bz~4 (bZ—A,)Z} (15)
by— A

t J— 3 2 16

C b—4, (16)

The values of 4, and 4, are unknown, so that the approximate expressions
should be derived. Since (r;+1,)4 > 4 under the condition of dominant zero,
we assume 4=0 in the first term of equation (15) and since the second term
of equation (15) is considerablly smaller than the first term, we assume that
the second term is b,/b,{b,—4)s6}. Then o, is

o~ — 1 O { 1—K, } (17)
2 by \1—KK(1—K))

where

K, - K, =2
" b, b,
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Since (1-4,/b)/(1—di/b,) is nearly equal to 1 under the condition of
dominant zero, £, will be

- b
Ly ~ 2 18
o (18)
The value of o, is
2 1 2 1 2
= g~ - 19
YT, T B I —K KK 1)

When w,=0, the dominant zeros are real and of a second order. When w?<0,
the minimum zero is real and dominant if |w,| is near |o,|.

Since the above approximate expressions were assumed 4=0 or 4,=4,=0,
their errors must be examined. For this purpose we compare equations (17)
and (18) with equations (15) and (16) where d=4nux, di=dimax, 4s=domas -
Amax 18 equal to equation (9) and din.. is equal to {(b;— o)ty + dinax} -

From oy 04y 0y 0, the condition of 4,=max is
0ts or, 0z,
t '
T3:T4:---:T7l: 72_02 (ZO)

- Then 4. is

Azmax - (bl_to) ( to >Z< nz - _5_71_ + 3)

n—2 2 2
n>4
b V(7 _Tn g\ (9 g
n—2 )1\ 2 2
n>5 n>6
2 2
YA S VST A D (L (TS AR (21)
2 2 2 f
n=>7 n>8

As g, and ¢, of equations (15) and (16) where 4, =4imax, do=domax (1=100)
are assumed to be true, the errors of equations (17) and (18) are shown in
Table 4 where 02/b,=2An)n-. The errors of w, are of the same order as
o,. The true ¢, and ¢, are larger than the values of equations (17) and (18)
and smaller than the values of equations (15) and (16) where 4,=4,,,
dy=4,n,,. Since the errors in Table 3 are considered to be maximum, the
true errors will be smaller than these.
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TABLE 3. Maximum Errors of Equations (17) and (18) (%)
b%/bz = ZAmin‘n:oc
T~ % 0.1 by 02 by 03 b
T T

wi/oy (17) (18) (17) (18) (17) (18)
0 <05 18.3 1.6 33.6 18.0 46.0
1 < 0.5 9.9 < 05 20.0 3.4 30.1
2 < 0.5 4.3 < 0.5 9.1 < 0.5 14.5
4 <05 14 <05 2.9 <05 48

4. Approximate Expression of Real Dominant Zero

If the dominant zero is real,

b, = — L + 1,
2
by— — D 44
y2!
where
to — 7 1
=2 Py

From equations (22) and (23), we obtain
b B, 1)

= —

2(by—4)

1 L TE T
%_E{& O —4(b,—4) |

Since 4« b, under the condition of dominant zero,

_ﬂfl_

b=

It b8y 4b,,

2b, |

Ly~ % {bl - «/-E“lbz }

(24)

(25)
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od _ o4 _ . _ o4

= P2 =0, the condition of 4=max. is t,=1;="-"
ar, 075 T

=7,=fh/(n—1).

From

Then 4,,. is

Amax — < 2 >2 (_.712 — 3,71 + 1) (30)
n—1

As p; and £, of equations (24) and (25) where d=4,,,, are assumed to be
true, the errors of equations (26) and (27) are shown in Table 4 where 2= co.
The smaller # is the smaller the errors are. The relations between errors and
n are shown in Table 5 where #?=4.5b,. The true p, and #4 are smaller
than the values of equations (26) and (27) and larger than the values of
equations (24) and (25) where =4,

TABLE 4. Maximum Errors of Equations (26) and (27) (%)

7 = oo
\\ Eq. (26) 27)
b3/b2 L2 (4=0) —
12 i 0.092 b, 0.55 5.75
8 \ 0.146 b, 141 8.95
6 i 0211 b, 3.30 14.10
5 0.276 b, 7.13 22.90
4.5 0.336 b, 11.60 30.40
TABLE 5. Maximum Errors of Equations (26)
and (27) (%) bib, =45
g | (26) (27)
n \\\J‘
3 773 18.3
4 9.23 227
5 9.79 24.5
6 10.25 259
oo 11.60 304

5. Examples

5.1 Shunt-peaked Amplifier

Fig. 1 (a) is the shunt peaked amplifier and its equivalent circuit is shown
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L L

=

(a) (b)
Fig. 1. Shunt-peaked Amplifier

as Fig. 1(b). Solving this circuit equation, we obtain the circuit determinant
as follows:

1
4 e — Yo O
N g RB+PL g (31)
_ gb gb + g(l +P(C( + Czl) - PCr
0 G —pC. G, +pC, |
where
1 1 1
() = a = G =
[ ) Ga . r R,
From equation {31), we obtain
b= R.(C,+C,)+ L+ CoraR (s — g7a) (32)
r,+r.+ Ry
b,=CC,R.R,+ Lr, {C,z +C.(1+g, R, — gMRL)} (33)
7o+, Ry
by — LC.CR.R; (34)
r+ Ry

where

R_ —_ 7‘(1 (7‘7; + RH)
i Ta + I -+ RB

Let =500 r,=2508 ¢,=020 C,=5pF C,=100pkF
Rp=7502 R;=502 L=03pH.
Calculating b,, b, and &,, we obtain

b, =1.038x107% b5,=3288x107Y, b,=5x107"%
Since £, = b,/b, = 1.52x 1072 = 1.47 x 10°%, and b%/b, = 3.28,

we have complex dominant zeros.
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Since K, = by/bib,=0.0147, K, = b}[b, =3.28, K.K,(1—K,)=0.0475,

o= — L O — _157x10°

2 b,
~ 1 (0N —755x10°
""—\/bz <Tb>
b

o~ 2 =152%x10""
b,

5.2 Transformer-coupled Tuned Amplifier

Fig. 2 (a) is the transformer-coupled tuned amplifier and its equivalent
circuit is shown as Fig. 2(b) where G, and C, are input conductance and
capacitance of transistor Q, and G, and C, are output conductance and capaci-
tance of transistor Q, which include the external capacitance, the losses and
the capacitances of transformer, L, is the leakage inductance and L, is the
magnetizing inductance of transformer and 7, : 72, is the turn ratio of an ideal
transformer. Therefore Fig. 2 (b) turns into Fig. 2 (c) where

©

4 aQ

|1
|
—
<

TVr

1 T ngr 'lc’ ["' 0’l0 s

gmv, 6= oo

B
~
3
S,
XS
11
M
«
—
S
<

(c)
Fig. 2. Transformer-coupled Tuned Amplifier
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YO n

a- (2o o= (2o

Solving this circuit equation, we obtain the gain function v,/v, which
denominator is shown as equation (35). Therefore its zeros are the poles of
gain function and correspond to the zeros of circuit determinant.

D=L {1, COp +HLLCG+ LL.CG

(4

+(L,L,G:Gy+ L,Cy+ L,,Ci+ L,,Cy)p* + (LG,
+L,G,+ LG)p+1} (35)

where L=L,+L,,
Let L,=0.1L L,=09L G,=G; L=012pH
C,=100pF C,=100pF R, =200 R,=6302 g¢,=0040
(my/n,)! = 3.15 C;=31.8pF.
Calculating b,, b, and b,, we obtain
b, =336x10"1° b,=269x10""% b,=4.70x10"%
Since ty=byfby = 1.75x 10" = 0.0522b, and b3, — 4.27 x 104,
we have the complex dominant zeros. Since K,=5,/b,b,=0.052, K,=0bi/b,
=4.27%x 107, KK,(1—K)=2.1x10",

1o

~_ — 6.25 x 10°
. 2 b,
~ L _[0Y _g10x10
@ "\/ b, <2b2>
£~ bs — 1.75x 101
b,

The tuned frequency is

= L —61x10
Jb;
5.3 Current Mode Logic Circuit

Fig. 3(a) is the current mode logic circuit (CML) where I, is the constant
current source. Since the transistors operate in the active region at switching
transient state, its equivalent circuit is shown as Fig. 3(b). Solving this circuit
equation, we obtain the circuit determinant as follows:
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(a) (&)

Fig. 3. Current Mode Logic Circuit

0t 9.+p(C+C)  —(g.+pC) 0
~(gat gt PCs) 2000+ ¢+ 9Ch)  —(gun+g.+pC,)
D= 0 *(Ga “‘PC(/) Gu+gu +P(C.~, + C(,)
g —2C. — G 0 G,+pC,
0 =G gn—PC.,
g0 +pC. —(ga+pCy) 0 —C,
0 2(ga+ g +0C0)  —(gn+gat+pCo) 0
= 0 0 g+ g, +p(C.+C) pC,
—C. —Gn 0 G+pC.
—pC, — G gn—1C. 0 G.+pC,
1 1 1
where ¢,= . i~ o G,= '

From equation (36), we have

2
bl : 7?{:» + Cll + Cw -+ Crl + ;—iC( + gmg

D) Jom + Ju Ju + GJu GL Gl(gb + gr)

. CcCr[ _ "|‘ Crl (C( + Cﬂ) + Cc (Cr! + Cr{)
gb(gm + grl) (gm + g(() (gb + grl) gm <gb + g(l)

L C, oG <c L G, GG, )
GZL Gl s Gm + Gu gy -+ Gu
+ (0.6 —009.— 9.G)C. 9.C.C.
e

GZL{/L(Q&"‘Q:A) GL(C/7,L+Q(1>(QII+Q(£>

(38)
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Let 7r,=5080 »,=25002 ¢,=020 C,=5pF (C,=100pF R,=1K£.
Calculating b, and b,, we obtain
by =568x10°% b,=6.77x10""

Since b%/b,=47.4, we have the real dominant zero. Therefore

b= — RS IR
b,

t~ " 119%10
b,

6. Conclusion

When the zeros of circuit determinant satisfy the condition of dominant
zero, the author deduced a means by which to determine whether the dominant
zero is real or complex and obtained approximate expressions of complex
dominant zeros, real dominant zero and the excess phase coefficient. The
higher the dominancy of zeroc is, the smaller the errors of approximate expres-
sions are. In the case of #<0.1 5, their errors are very small. From Tables
3~5, the utility limit of approximate expressions is determined. The author
showed some examples in which the dominancy is very high.
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