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                                 Abstract

    The responses of gain functions in the frequency domain and time domain

are characterized by the zeros of circuit determinants. It is very difficult to

solve higher order equations. However, the author obtained approximate

expressions for dominant zeros and deduced a means by which to determine

whether the dominant zeros are real or complex when the condltion of dominant

zeyo is satisfied. Some examples are presented which have complex dominant

zeros and real dominant zero.

                             1. Introduction

    The responses of gain function in the frequency domain and time domain

are characterized by its poles which are the zeros of circuit determinants,

however, since the circuit determinants are of a higher order in complicated

electronic circuits using high frequency transistor models, it is very diflicult

to obtain zeros. If the condition of dominant zero is satisfied, the minimum

zero and the sum of reciprocal of other zeros are necessaryi). The former is

the dominant zero and the latter is the excess phase coethcient. In the case

of real dominant zero a simple expression is knowni), however, in the case of
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170 Teiichi KuRoBE
complex dominant zeros it is not known. The author deduced a method by

which to determine whether the dominant zero is real or complex and obtained

the approximate expressions of dominant zeros and excess phase coethcient in

the case of complex dominant zeros. More accurate expression than that

known was also deduced by a different method in the case of real dominant

zero.

                Z. Discrimination of Dominant Zeros

    Let a circuit determinant be of the nth order,

        D=H(1+b,p+b,p2+b,p3+･･･+b.p'i) (1)

whereHis constant. ･
    From the relations between zeros and coeflicients, we obtain

        b, .= -£ 1
               t-1 Pi

        b, --S£!mL . (2)             n.'=-1o-=i+1lba P,'

        b,--£X i ili
               i-1J"-!i"kro'+! lt)i lf)j Pth

Pi, Pj, pk are the zeros of D and their real parts are negative in stable circuits.

Let lpi1s{; ]p2K lp,]･･･fi{ lp.1, the condition of dominant zero is lpii< lp2K lp3K

･･･ (in the case of real dominant zero) or lpil==Ip21<lp3IS･･-(in the case of

complex dominant zeros).

    From equation (2), bi!b2 is

         b?- (Tl+T2+to)2
         b, TiT2+(T!+T2)4+A

                 1+,Ti+T2tb+ tg....+(+TZ

                      T,IT2 2TIT2 2T･IT2 ,
            ==:2 1+T,+T,tb+Arm (3)
                          T2T2 T'IT2
where

         Tl=--IL T2===-1 to==-£1
               2bi P2 i-･-31bi                                                                (4)

        A..,S£ ii
            i-3,'--i+1 Pi Pj

    In the case where the mlnimum zero is real, ((+T:)!2TiT21}ll and in the
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case where the minimum zeros are complex, (Tr+r:)12riT2s{ll. When (T?+TZ)1

2TiT2=1, the bracket component of equation (3) is

              2+Ti+r2tb+ tg
                   rl'or2 2qT2
                                                          . (5)         Ao =
       ' l+T'+T2t,+A
                   rlr2 TIT2
In the case of reai minimum zero,

         bi

         b,

In the case of complex minimum zeros,

         bi

         b,

    Since A in the equation (5) is unknown, Ao is not decided. In the case

of A==O, Ao is Ao... and the values of Ao... are shown in Table 1 where

4 is the parameter. In the case of ri=max., Ao is Ao.i.. The condition of

A==max is as follows:

        A = T3 (r4 + Ts + ･･･) + T4 (Ts + T6 + ''') + Ts (TG + T7 + ''') + '''

                                         '        T3+r4+'''+T7e :=" to

Therefore

        A==T3(to-T3)+r4(t6-T3-r4)+rs(tb-r3-r4-Ts)+･-･

The conditions of A=max. are

         OA
             =:= to - 2T3 - T4 - Ts - ''''''''' = O

         OT3 1
                   tt         OA =t,-tA-2T4-rs-'''''''''=O
         OT4

        -{24r == te - T'3 - T'4 ny 2Ts - `'`'''''' = O

         OTs :
         6A .,.,%-r,-",'Ts-''' nv2Tn =O

         OTn

From above relations, we obtain

        r3=T4 == Ts=,"- =::: T,, === --(b-- (s)
                                n-2

The value of A which satisfies equation (8) is
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        Amax= (. lg2), ("22 -gn+3) (g)

                           n24

The values of d... are O.25 tg (n-4), O.33 tg (n-:5), O.38 tg (n ==:6), O.42tg (n-8)

and O.5t3 (n=oo). The values of Ao.i. in the case of n==oo are shown in

Table 1. In the case of n=2, Ao=2 and in the case of n==3, Ao is equal

to Ao...(n;})4) as shown in Table 1. Ao.i. of n==4rvoo are the values
between Ao... and Ao.i. (n =: oo).

                   TABLE 1. Values of Aoma,x and Aomin

-"
   A

Yo

to

Ao

Aomax

Aomin

  3

24

oo

O.1 bl O,2 bi O,3 bl

1,72 1.56 1.50

1,69 1.47 1,33

    Using Ao.,. and Ao.i. instead of Ao in equations (6) and (7), we have

         2i'22Aomin (reaiminimumzero)

         Si'g2Aomax (complexminimum.ero) (iO)

If the real minimum zero is dominant zero, b?lb2>2Ao... which will be clear

later, therefor we can discriminate the dominant zero by equation (11).

         b?
            >2Ao.ax (realdomipantzero)
         b,
                                                               (11)
        -i/sg 2/lo... (complexdominantzeros)
         b,

           TABLE 2. Relations between Amax, Aminl.-oo and ct)iloi

     wllol XXx{Lx

o

1

2

4

O.1 bl

Amax Amin

1.72

1,02

O.46

O.14

1.69

1,OO

O.45

O,14

O,2 bl

Amax Amin

1.56

1.06

O.54

O.18

1,47

1,OO

O.51

O.17

O.3 bi

Amux Amin

1,50

1,13

O.65

O.24

1,33

1.00

O,58

O,21
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    If the complex dominant zeros are p,,p2==ai±jui, the bracket component
of equation (3) changes due to the value of tuila!. Let the bracket component

be A... where A=O and A.i. where A:=A..., the relations between A...,
A.i.(n= oo) and toi!ai are shown in Table 2. A.i. of n==4n･Joo are the values

between A... and A.i.(n=: oo). b?lb2:=2A.i.N2A... and differences between

Amax and A.i. are very small.

       3. Approximate Expressions of Complex Dominant Zeros

    If the dominant zeros are complex conjugate,

        bi == Ti+T2+to (12)
        b,=T,T-,+d, (13)
        b3=Tir24+"2 (14)
         'where

               11 11        Tl=:-r=i- . Tz=--==- .-               Pi al+ywi P2 al-ywl
        Ai==(Ti+T2)to+A

                    n7t 717t7t
        A2=::(Ti+Tz)£ Z TtTj+Z Z Z TiTjTk
                   t,=3j-i+1 i-3d-i+lk=j+1
ta and A are equal to equation (4).

    From equations (12)N(14), we obtain

        a'=-m}Ti.',.,T2==-S(b,b-'Arm,-(bb,3iAd321 (i5)

             b,-ri, .

    The values of ni and A2 are unkndwn, so that the approximate expressions

should be derived. Since (Ti+T2)to>A under the condition of dominant zero,

we assume zi= O in the first term of equation (15) and since the second term

of equation (15) is considerablly smaller than the first term, we assume that

the second term is b,!b2{b2-aAd=o}. Then ai is

        ffi cr-; 2I (,-.l.-,il,iil-.,,] (i7)

              .twhere

        K,..-b3 K.=b?
                           b,              bi bz
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  ' Since (1-A21b3)1(1-Ai!b2) is nearly equal to 1 under the condition of

dominant zero, to will be

             bz

The value of to! is

         tu?= b,IA, -a?cr b,{1-K,;?,a-K,)} Ta? (19)

When toi==O, the dominant zeros are real and of a second order. When of<O,

the minimum zero is real and dominant if lwil is near ioil･

    Since the above approximate expressions were assumed A=O or Ai==A2:=O,

their errors must be examined. For this purpose we compare equations (17)

and (18) with equations (15) and (16) where A=Amax, Ai=A!max, A2==A2max･

ri... is equal to equation (9) and Ai... is equal to {(bi-to)to+d...}･

    From -(o2A-;:g-= OaA.: =･･･ === -ll/4:2:= o, the condition of A,==max is

         T3=r4='''=T.=: tO (20)
                          n-2

Then A2... is

         d2max == (bi-to)(nl'2 )2(-21121 - 52n +3)

                                  n>m4

                +(.k,)3(('52 - 7SZ +6) -(-II;2 - 9,'i +io)

                                n>5 n>6

                +(n22-1±nn+ls)+(rl's12ny1.322zL'+21)+･･･] (21)

                        n>7 n>8
    As oi and 4 of equations (15) and (16) where di:=:Ai..., A2 =A2max (n= oo)

are assumed to be true, the errors of equations (17) and (18) are shown in

Table 4 where bl!b2=2A.i.I.=.... The errors of toi are of the same order as

ai. The true ai and 4 are larger than the va!ues of equations (17) and (18)

and smaller than the values of equations (15) and (16) where Ai=Aimax,

id2==A2ma.･ Since the errors in Table 3 are considered to be maximum, the

true errors will be smaller than these.
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Errors of Equations (17) and (18) (%)

b?!b2 = 2Aminln-oq
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N to       x-         x-       Eq.
tu1/al

o

1

2

4

0.1 bl

(17) (18)

< O.5

< 0.5

< O.5

< O.5

18,3

9,9

4,3

1.4

O.2 bi

(17) (18)

 1,6

< O,5

< O.5

< O.5

33,6

20.0

9.1

2.9

O.3 bi

(17) (18)

r

 18,O

 3,4

< 0,5

< 0.5

46,O

30,1

14.5

4.8

If

where

From

   4. Approximate Expression

 the dominant zero is real,

  bi=wu 1 +to
         Pi

  b,=- tO +A
        Pi

  ,=-£i A...£S .-L
        a=-2P,t i-2e'--n;+IPi

equations (22) and (23), we obtain

         b,-Vbr-4(b,-a)

of Real

L..l...

pj

Dominant

       2bi 2(b,-A)

        t, - g {b,-Vbr-4(b,-A)

Since a<b, under the condition of

       Pi cr - 2bb', (1-V7i: 4bb?2

        t, ! ; [b,-V'E2,-4b,l

If bZ>4b,,

               1
       Pi st -
              b,

        te : b2

            b,

}

1
J

dominant zero,

Zero

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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           aA oA oti             ..=...--.-=･･･= .-==O,theconditionofA==max･isT2==:T3='''    From
                           6Tn           OT2                 OT3
= T7t = to!(7Z - 1).

    Then A... is

        Amax=(.{t'1)2(gtZ2'-3S'Z-+1) (3o)

    As Pi and to of equations (24) and (25) where d=a... are assumed to be

true, the errors of equations (26) and (27) are shown in Table 4 where n= oo.

The smaller n is the smaller the errors are. The relations between errors and

n are shown in Table 5 where bZ==4.5b,. The true pi and to are smaller

than the values of equations (26) and (27) and larger than the values of

equations (24) and (25) where A=ts...･

         TABLE 4. Maximum Errors of Equations (26) and (27) (%)

                               7Z =:= oo

b lb,
..t
xO (d == O)

Eq.
(26) (27)

12

8

6

5

4,5

L
i
l

O.092 bi

O.146 bi

0211 bi

O.276 bi

0,336 bi

E

E
E
i

O.55

1,41

3,30

7.13

11.60

5.75

8.95

14,10

22.90

30.40

TABLE 5. Maximum Errors of Equations
  and(27) (%) b?!b2-4.5

(26)

x 'x X-  x..Il

Eq.
Xx-x-  i.1

Hl

(26) (27>

3

4

5

6

oo

7.73

9.23

9.79

le.25

II,60

18,3

22,7

24,5

25,9

30.4
L

5. 1

                        5.

Shunt-peaked Amplifier

Fig. 1 (a) is the shunt peaked

Examples

amplifier and its equivalent clrcult is shown
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     &
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     L
td
Tv a; <Ili>

    SL,,V
&

            (a) (b)
                  Fig. 1. Shunt-peaked Amplifier

as Fig. 1(b). Solving this circuit equation, we obtain the circuit determinant

as follows:

           g,+1----- -gb o
               R.+pL
      D=: -gb gb+ga+p(c.+c,,) -pc. (3i)

                O g.,-li)C. GL+.zbC.,
where

      gb==1 g,=1 Gr.=2"
          7Ab 7',l .RL
From equation (31), we obtain

      b, :- R.(C.+C,)+ L+ C;ii'ti ,Z.,: tt, 'vft.- gb"d) (32)

      b, - c.c,,R.R.+ L'A't{C(t'S.i]ilii,l-ii, {l"iR.'･-9"RL)} (33)

      b,= LC.C,,R.RL (34)
            rb + RB

where

      R-=L7Ad(7Ab+RB)
        '" r,i+rb+RB

   Let rb=:=509 r,t=250S2 g,,,==O.2as C.=5pF C,=100pF
R.==759 R.==50S2 L=O.3ptH.
   Calculating b,, b2 and b3, we obtain

   b,=:=1.038×10un8, b,==3.288×10-i7, b,==5×lo-27
   Since to cr b,lb, == 1.52 × 10"'O == 1.47 × 10 '2b, and brlb, = 3.28,

w･e have complex dominant zeros.
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    Since Kl-b,lbib,-O.O147, K===b?lb,-3.28, KIK>(1-K,)-O.0475,

        a,cr-ibi =-i.s7×ios
                2 b,

        toicrVi,--(2b3,)2 -=7.ss.Io7

        %,t b3 ,=1.s2×lo-ie
             b,

5.2 Transformer-coupled Tuned Amplifier

    Fig. 2 (a) is the transformer-coupled tuned amplifier and its equivalent

circuit is shown as Fig. 2(b) where Gi and C, are input conductance and

capacitance of transistor 2, and G2 and q are output conductance and capaci-

tance of transistor 2i which include the external capacitance, the losses and

the capacitances of transformer, Li is the leakage inductance and L. is the

magnetizing inductance of transformer and ni: n, is the turn ratio of an ideal

transformer. Therefore Fig. 2(b) turns into Fig. 2(c) where

T v,

a,

Tva

Q,

(a)

LeIll

vl

@q9mv, C,Lm

Ill:n2

c, G, TvG

Cb)

F

Lz

@GzC? Lm c;, cl,

Fig.

               (c)
Z. Transformer-coupled Tuned

T

Amplifier

k, va
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        Cl=(-iii,.)2c, G{=(-ii,i.2)2G,

    Solving this circuit equation, we obtain the gain function

denominator is shown as equation (35). Therefore its zeros are

gain function and correspond to the zeros of circuit determinant.

        D- :lij",e (L,L.C(Cl,p`+(L,L.,qG{+L,L.,C{G,)p3

            +(L,L.G{G2+Liq+L.,C(+L.,q)p2+(L.,G{

            + L.G2 + LiG2)P + 1l

where L=Li+L"b

    Let Li==O.1L L,,,=O.9L G2=G( L=O.12ptH
Ci=100pF C,:=100pF R,-2009 R,-6309 g.,-=O.04es
(ni!n2)2=3.15 Cl=31.8pF.

    Calculating b,, b2 and b3, we obtain

    b,=3.36×10"iO b,==2,69×10-i6 b,=4.70×10-27

Since tocrb3!b2=1.75×10"ii==O.0522b, and b?!b,=-:4.27×10-`,

we have the complex dominant zeros. Since Ki=b31bib2=:=O.052,

--4.27×10-4, KIK(1-K)-2.1×10-5,

        a,st--Lbi ==6.2sxlo5
                  b,               2

        tui '-WV i, -(2bbi,)2 :- 6.lo.Io7

        t,tb3 =1.75×10-ii
            b,

The tuned frequency is

        tuocr L-=6.1×io7
             V bz

5.3 Current Mode Logic Circuit

    Fig. 3 (a) is the current mode logic circuit (CML) where 4 is

current source. Since the transistors operate in the active region

transient state, its equivalent circuit is shown as Fig. 3 (b). Solvin

equation, we obtain the circuit determinant as follows:

179

z,21vi which

the poles of

(35)

K> - bi/b,

the constant

at switching

g this circuit
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        + vac

     aR
               va <ll}
   pa

      h<g> F

       (a)
            Fig. 3.

  [gtt'(8,lt.'P,.iC.",'c9,i`'

D=- O
     g. -pC.

   gb+pC. -(g,t+i>C,t)

     O 2(ga+g.,+IS)C,t)

    -PC,, -g7n,
    -PCa imgwb
where gb= 1- g,,=-1-

        1-b 7-,l
  From equation (36), we have

     b,,,f,-C..c÷.9.i. +

       gb g.+g,t
     b,::-. .C.gCrt .+. .m
       gb(g., + g,t)

       "GC.#' ' 2GCi ("C,-]Z'+

       +           G2. gb(gb + g(i)

rFeiichi

tL

KUROBE

Cc

ig

- ve
Cl,

lb

. va
th

iLnlfO O9mva

R,

rg

a

R,

e

                 (b)
       Current Mocle Logic Circuit

     -(g.+pC,,) o
    2(ga+g.+PCd) -(g.+g,t+lbC,i)

     -(g,t+IS)Ca) g,i+gb+P(C.+C,t)

       -g. O
       -g., g.-lbC,,
            o -pC.
        -(g.,+ga+pC,,) O
        g,t+gb+P(C.+C,,) pC.

            O G.+pC,.
          g7n,-PC. O
       G,-..L
          R.

       {;'.-S/';- +L3.-ttt---+-,,- ketxC-,rif-t/:i

       Cfi(Ce±-Cfr.). +.C...c-(-Ct:+Crt)

     (g.+gd)(gbll!ga) g.(gb÷gd)

         g"bC+f' bll' " X// '+ Cgllt )

(g,.,GL.:.:..g,.g,i-gbGL)C.ft..+ g.,C,.C,,

             GL(g.+gd)(gb+gd)

 -pCc

  o
  o
G.+lt)C.

  o

  o
  o
 -pCc

  o
q+pc.I

  ol
  ol
 -pCe i'

  o
G. +pC.i

(36)

(37)

(38)
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    Let rb--50S2 r,,-250S? g,.-=O.2as q=-5pF C,,-=100pF RL-=IK9.
Calculating bi and b2, we obtain

    b,=:5.68×108 b,=:6.77×lo--i7

Since b?lb2==47.4, we have the real don3inant zero. Therefore

        p, :! - -1- =r. -1.76×lo7
                b,

        to`''bb2,- ==1.19×lo-g

                            6. Cozzciusion

    When the zeros of circuit determinant satisfy the condition of dominant

zero, the author deduced a means by which to determine whether the dominant

zero is real or complex and obtained approximate expressions of complex

dominant zeros, real dominallt zero and the excess phase coeMcient. The

higher the dominancy of zero is, the smaller the errors of approximate expres-

sions are. In the case of t,gO.1 b, their errors are very small. From Tables

3N5, the utility limit of approximate expressions is determined. The author

showed some examples in which the dominancy is very high.

                               Reference

 1) Pederson, D. O.: Electronic Circuits, preliminary edition (1965), pp.74-80 McGraw-Hill.


