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Stress Concentration Factors of Twisted Bars vvith L, T

               and Cruciform Cross"seetions

        Hiromasa ISHIKAWA* and Hiroshi HANZAWA*

                     (Received August 21, l967)

                                 Abstract

    It is wel! known that stress concentration occurs at the root of a fi11et

of the cross-section of a twisted bar used as a structural member. Since the

torsional problems of the bars having T and cruciform section have not been

solved exactly, it has been assumed that the stress concentrations at the fi11et

of these sections are the same as for the L-section.

    In this paper, by means of application of the Schwartz-Christoffels' trans-

formation, the torsional problems of prismatical bars with L, T and cruciform

sections having finite sizes are investigated. In order to calculate the stresses

the digital computor (HITAC 5020) is used. For the purpGse of checking the

results obtained by theoretical calculation, the analogy using the conducting

sheet methed is employed. It is found that the theoretical calculations are in

reasonable agreement with the experimental results.

    Finally, the effects of the Ieg-length, leg -thickness and the fi11et radius

of these cross sections on the stress concentration are discussed.

    It is concluded that the stress concentrations at the fiIIet of T and cruci-

form sections are iiot the same for the L-section. The stress concentrations

for these sections are greatly influenced by the length and thicl<ness of legs.
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 u, xJ, 'w........... components of displacements in x, y and z
                              directions respectively

 * Department of mechanical Engineering, Faculty of Engineering.
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 x, y, z . . . . . . . . . . . rectangular coordinates (z sometimes means x+iy>

 0 ...........angleoftwistperunitlength
 q(x, y) ........... torsion function

 G ...........modulusofrigidity
 ¢(x, y) ........... conjugate harmonic function of q(x, y)
 F(2), Iil (c) . . . . . . . . . complex torsion function

 Txt, Tyx . . . . . . . . . . . shear'stress components

 f(C) ･････..･...mappingfunction
 nZj ...........externalangleofthepolygonin2-plane
 L ...........Ieg-lengthofthecross-section '
 b(orw) ......,... Ieg-thickness of the cross-section

 P ...........radiusofthefi11et
 Ck ...........stressconcentrationfactor

                              1. Intrduction

    It is well known that stress concentration occurs at the root of a fi11et of

the cross-section of a twisted bar used as a structural member. However, the

only cross-section for which the stress concentrations have been obtained is

the L-shaped angle-iron, especially for the case of its leg-length being large in

comparison with its leg-thickness.

    In this paper, the torsional problems of prlsmatical bars with L, T and

cruciform sections having finite sizes are investigated. At first the cross-sections

of the bars in the z-plane are mapped onto the unit circles in the C-plane by

means of Schwartz-Christoffel's transfermation. Then the complex torsion

functions are decided using the Muskhelishvlli's theory.

    The digital computer (HITAC 5020) is used to represent the mapping

function and the complex torsion function as the power series in C. The
torsional stresses and the values of the stress concentration factor for L, T and

cruciform sections are calculated.

    For the purpose of checking the results obtained by theoretical calculation,

the analogy using the conducting sheet method is employed. It is found that

the theoretical calculations are in reasonab!e agreement with the experimental

results.

                2e Method of Analysis. Basic Equations

     Let us consider a loBg prismatical bar with uniform cross-section under

torsion, and fix the z-axis of the Cartesian coordinate axes to be parallel to

the generators of the bar and to pass through the centroid of the cross-sections.

Defining the displacement components as z{, w and w in the x, y and x directions
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respectively, the Saint-Venant assumptions are as follows:

        u=:-0yz, w==0xx, w=eg(x,y), (a)
where 0 is an angle of twist per unit length of the bar and g(x, y) is a function

of x and y which is called the torsion function.

    The non-vanishing stresses are the shear stresses

                                                     '        T..-:Ge(glz-y), T,.-=Go(g:+,.), (b)

                                      '
where G is the modulus of rigidity. Substituting these stresses into the equi-

librium equations, it is easily shown that these equations will be satisfied,

provided that

        gts9,+g'l8 --o (i)
    Now, instead of torsion function g(x, y), let us introduce a function ip(x, y)

which is a conjugate harmonic of and related to g(x, y) by the Cauchy-Riemann

equatlons

        ..0.lr=O¢, 09=-rOrmt (c)         Ox                      Oy               Oy                              Ox

    In terms of function ¢(x, y), the boundary colldition is expressed as follows:

        ¢(x,y)=-li-(x2+y2)+c, (2)
where c is a constant.

    Hence, using the complex torsion function F(z) which is defined as
                                                          ,

        F(z)-g+ip, z-x+iy, (3)
the equation (b) becornes

        Txx-iTyx==Ge[F'(2)-i2M], . (d)
where 2=x-iy
    In the case where the shapes of cross-section are not circular, the torsion

problem may be solved by using the mapping method. Let a function f(4)
be the mapping function which maps the region of the cross-section on to the

circle ICI<1, and be

                                       '                                  '        2-= x+ iy -f(C) (4)
Then the complex torsion function F(z) is given by
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        F(2)-g+i¢-=F[f(4)]-Iil(4), ･ (5)
and f(C) will be holomorphic inside the bonndary. Hence, from eqs. (3) and

(4), the boundary condition becomes

        E(4)-Fi(C) =- if(C)f((-.)+ const. (6)
Furthermore, from eq. (d), we get

        Tx=-iTpa =:= Golfl7¥, (kc//)r -if' (c)l (7)

Therefore, we may solve the torsion problem(i) provided that the mapping

function f(() and the complex torsion {unction E,(4) are obtained from eqs.

(4), (6) and (7).

           3. Determination of the functions f'(C) and II71(C).

 (i) ln the case of L-section.

    Let us consider the L-section with the leg-length L==1, the leg-thicl<ness

b and fi11et radius P, as shown in Fig. 1.

    Applying the Schwarz-Christoffel transformation, a polygon region in the

76?ioaJl):.ngMarllabteiongenerallY Mapped on to the unit circle in the c-plane by the

        -k'iog i2Z ==-4, cij4,･ (s)

where z2,･ is the external angle of the polygon in the z-plane.

                       t7 ,                                                     IP

                              x

                                                                    4

                                Fig. 1.

    At a round corner from C to D in Fig. 1, we assume that the external

angles between tangents at two consecutive points on the arc CD are given
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by zclRj and the numbers of these tangents are increased infinitely. Then the

limiting form of eq. (8) becomes(2),(3)

        -i-g- (!og 2) = -j-e'[,!'-r, '

where 4j indicates the point on the unit circle in the 4-plane corresponding

to the point in the 2-plane at which the tangent makes an angle rrRj with some

fixed line, and the integral must be taken along the curves the tangents of

which are supposed to change monotonically.

    Now,assumingthatCj(R)isafunctionof2suchas '

        (;j(R)-ei(mu'C), (9)
where c is a constant, the points ln the z-plane correspond to the points in

the 4-plane as shown in Table 1. From eq. (9) and the Table 1, we get

        k==4cr1, c==-3cr1

Thus eq. (9) becomes

        c;(R)=et(4tt,A-3cri) (10)
and eq. (8)

         kr iog -dd2 = -[ctli "e71-i ' (t".ia, + c-2-iao

                             +Si'c-et/illiie`ain+cl'i] (ii)

                                TABLE 1

z-plane

A (xA)

B (zB)

C (xc)

D (2D)

E (z.)

F (2F)

O (2e)

C-plane

<A =

CB =

4c :=

CD =

<E ==

CF ==

4o =

LeZ ==i
irro

e

zai iCk+c)
e =e
 -ia, i(S't'c:)

 -tao
e

--ILi

e2 -i
sci

e :=: -1
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The integral on the right-hand side of eq. (11) is

        ji' c-etbiliie4a,Ai =: 4.li4 [log(i-e-aiZ)-log(i-eaiio]

             = 4icluic ,ii.Ii rjl; {(- 1)'t-i(-eLi"i4)" -(- 1)n-!(- eta,c)n}

             == 4tl.cui .Zco...i-li- (ei'tai-e-i"ai] C'i-i =.Zco..i an,'t cn-i,

where , 1･        an == 2cr1'Sln71cr1.

    Then eq. (11) becomes

        ddc iog i: =: -[ci' i+ c-+i2 i+ c-iia, + 4-}e-iao

                            +,,Zoo=, /;t 4n-i+ ,i' ,]･

and integrating the above eq., we can obtain

        li: = ci exp [m -ll- [log (1 + iC) + log (1 - ic) + log (1 - e-iaoc)

                                                     oa t                           + log (1 - e`aoC) + log (1 + C)] - .Z.]L, g;t

            = Ci eXP (,i..,a.C't-,,ZO..a, an;,' 4n)

where a.=l--21EJI-[(-1)n2iIl+(-1)n]in+(-1)n"i-2cosncro]

                                '                               ttTherefore, we get

               1                 (2cosncr,-1) (n=odd)
              2n
        a7t =
               1(2cosncro+2i"+1) (n=even)
              2n

Furthermore, if we write

         oo oot co        .Z,-1an47t M.Z..1 an'2t C't = .Z=1An47t )

then

4n]
(12)

(13)



Stress Concentration Factors of Twisted Bars with L, T and Cruciform Cross-sections 105

               in(2cosncro-1)-i,･Sin2crn,ai (n=odd)

        A"=: 2in(2cosnao+2i"+o-ni,･sin2.ncri (n=even) (i4)

If the exponential function in eq. (12) is expanded in the form of a power

series of 4, we get

        lii -= ci exp (,i..e.,A.4") -= c,,i.O..,b.C" (is)

where bo:=1 and b. are fun.ctions of the coefficients Ai,A2,･･･A..

    Integrating eq. (15) with respect to C, we get

        2==ciSi] bn qnFi-t-c2 (16)
             ntr-1 lz + 1

Thus the mapping function is represented in a power series of 4.

    Now, let us determine the coeflicients ci and c2. If we define 4,== b ,

                                                               n+1
eq. (16) becomes

        z== c,(4+t,C+443+･･･)+c, (17)
Noting that 2=-i corresponds to C=i and z=-1 to C=-i, and z=O to

C-= -1, we get

        c,.=-1+2･1 and c2::=ciw,
                2                     CKE

                     2 tl, Bwhere CKE-1+(-1)%+(-1)2L4+(-1)%+･･･

        W=1+(-1)it,+(-1)2t,+(-1)3ag+...

Substituting eq. (17) into eq. (6) and expanding the function in a power series

in C(n =10), we can obtain the complex torsion function as

        I711 (C) = icic-2 {C + tiC2 + hq3 + t,4` + ･･･t,,4'i}

              +ic,X,[(t,,l,+41,+agl,+t,t-,+･･･+hl,+t,)C2

                     + (t,,l, + 6t', + agl, + ･･･ + agl, + t,) C2

                     +･･･+(t,,tH,+4)49+t,,qiO] (ls)

And the first derivatives of f(C) and Et(4) with respect to C are

{



106 Hiromasa lsHIKAWA and Hiroshi HANZAWA

        2'=f'(C)=c,{1+b,C÷b,(2+b,C3+･･･+b,,4iO} (lg)

        I7¥(C)-icic-i[10tieC9+9(tioli+tg)C8+8(tiol2+%Zi+ts)C'

                    + ･･･ + (t,,l, + t,l, + t,l, + ･･･ + 4Z, + t,)]

              +ic,c-,{]+b,C+b,C2+b,43+･･･+b,,ciO} (2o)

                                                                S Anctt
Since the convergence of the power series in 4 into which the function e't='

is expanded is not good, it is required to take many terms in this series. The

method of expansion is also complicated.

    The program developed for the digital computer (HITAC 5020) may be

used for solving other boundary-value problems by means of the same mapping

function. Some of the programs are shown in Table 2 and 3. The latter

                            shows a part of the program to calculate
        TABLE 2･ the coeflicients of 4 in eqs. (18) and (20)･

25
50

55
65

7o
6o

50

80
40

ALK=1.0
DO 50 L=1,100
IF(I,.GM.15)GO [}O 25
ALK-ALKeeFLOAT(L)
B(L)-A(1),eXL/ALK

GO TO SO
B(L)-O.O
.CONroINUE
DO 40 I=2,100
AJgK-1.0
DO 50 N=1,100
IIii(N.GT.15)GO VO 55
ANK=A'NKXIiiLOA[D(N)
G(N)-A(I)eeXN/ANK
Go TO 65
G(N)-O.O
S(N)==O.O
DO 60 M=1,N
NIM=N-IXM
rF(NIM.GM.O)GO TO 70
IIIi(NIM.LT.'O)GO TO 60
S(N)-S<N)+G(M)
Go WO 6o
S(N)=S(N)+B(NIM)eeG(M)

CONTINUE
C(N)-B(N)'+S(N)

CONTINUE
DO 80 J=1,100
BO)-C(J)
CONVINUE
CONTINUE

These programs can be used for the next
two cases of T and cruciform cross-sections.

(ii) In the case of T-section.

    Let us consider the 'Ii-section with the,

leg-length of L==1, the leg-thickness of b

and w, and the fi11et radius of P as shown

in Fig. 2.

    Let the points O, A, B,･･･, A' in the

2-plane correspond to the points in the C-plane

respectively, as shown in Fig. 2 and Table 4,,

we get

                TABLE 3.

150
120

DO 120 Mrvl=1,1OO
SV(MM)-FLOAT(MM)XT(MM)
)1[MM=1OO-]rm(

IF(MMM.EQ.O)GO TO MO
DO 150 NN=1,ImaMM
MMNN=MM+NN
ST(MM)-ST(MM)+FLOAT(Mrvl)ceO(MIVINN)acT(NN)i
C'ONTIN.UE
CONTINUE



Stress Concentration Factors of Twisted Bars with L, T and Cursiform Cross-sections 107

Br 0f

E'

ly

D
t

E

va

oi
Et

1'

n

B
l

c,

pp/0 B
A'

b

E'

  D
    C
  a3
N ift2

 ai
o
'

B

A

                              Fig. Z.

  k=:2(cri-a2),c==2cr2-cri, (onthelstquadrantofC-plane)

  k= 2(criima2) c=ff-3cri+2a2, (on the 2nd quadrant of C-plane)

Therefore, eq. (18) rnay be reduced to the following form

        r2i'llt 10g t'l:iim -rm - ['zt"' 1 + 4; Il`I,ia, +Sl, <; -fll,(2) + (; ii}.t/iiErm

                    + c+S.i --ia, + 4i-aao + "t2 i"+ Si' 4IIfliil,(2) ]'

where

        Ci(2)=e";(2cr2erri)e2':A<ai-a2) l

        C2(R)=-e-i(3"i-2"2)e2iA(ai'-a,) I'

The integrals on the right-hand side of eq. (23) become

        jl' C-{il2(i) 'Sf' (-{ll,(2) -- r2i(.,i-.,) [-2i(cri-crz)-log<c-e`a2)

                    +log(q-ei"i)-Iog(4+e't"i)+log(4+e=ia2)]

          === 2i(cril- cr2) 7tZO..e.i-jll- [(- 17e"ie"Ma2 -e-i7itri+ e-zna,-(- 1)n-iehta,l 4n-i

              oa t            -= z] -{I.L･ cn-i, (2s)
             nt=1 n

where

(21)

(22)

(23)

(24)

g
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              i(cosncri-cOS7Za2) (n=odd)

        a;,= cri-cr2 (26)               --              smnal-SMncr2 (n=even)
                  CUI - CU2

Then eq. (23) becomes

        2i(i iog lill = -[ci' i + ql' i + 4ieiao + 4+te-fit"e

                        + c--i2,iai + 4-;,i-ia, +,li.ll, Eli't C"-i]

Integrating the above eq., we get

        ,`ll2'l;--c-iexp[m-ll-Ilog((;-1)+log((;+1)+log((g-eiao)+log({;+e-icr

               ' +log(c-ettr3)+log(4-e"ia3)}-,;.iSeC'1

                            oe t           =ici exp (,;.,a.C"- ,pu.,-Elni'2L Cn], (27)

                              TABLE 4.

o)

z-plane

A (･Z.)

B (ZB)

C (2c)

D (ZD)

E (-or･E)

Et(ZE,)

D'(2D,)

ct (z c,)

B' (ZB,)

A' (XA,)

C-plane

CA =: eo =1

CB = eZcro

Co = eia! .. ei(h+c)

CD = eia2 .. ei(':-+")

    iaC =e3
qEt = ei("-cr3) = - e-da3

4D, = ea(n-cr2) .. - eT'ia2

(I,c .. ei{T-al) = - eLaa,

(B, = ei<rc"ao) ,., e- -iao

     in       == -1C<, == e

 i(-;- k + c)

e

t(k+c)
e

'
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where an==

If we rewrite

        de
        di

then

        An =

Furthermore, if

in 4, we obtain

        de
        cll:

where bo!iil, and

lntegratmg eq.

        z=

Thusthe '
    By the simi

ficients ci and

that 2::=:1

can obtain

        Cl = -

Factors of Twisted Bars

i(sin nevo + sin nev3)

       n
1 + cos ncro + cos ncr3

            7Z

 eq. (27) as

= ici exp (.X.,A.C") ,

      '
     i(sin nao + sin ncr3)

with L, T

     (n

     (n

and Crucifrom

:== odd)

= even)

i(cos ncr1- cos na2)

Cross-sections 109

Finally,

function

                n (cr!-cr2)n2
         1+cosnao+cosna3 sinncri-sinncr2

                 n (ai-cr2)n2
       we expand the function exp (tlX.,A.C") into

        oo    - ici Z b.C",
        ?L=1

        b. are the functions of the coeflicients Ai, A2,･･･A.

     (30) with respect to 4, we can obtain

    iciliii bn
              (;n+1 + q
      n-o n+1

 mappmg function may be represented in series in

      lar procedure as the former case, we can

     c2. Using the same notation 4,= b" as

                                   n+1
  corresponds to q=1, 2 == -1 to 4== -1, and z==:O

        Z , C2=-CIW,
      CKE

cKE==1+4+4+%+･･･,
w = 1 +(- i) t, +(- i)2 t, +(- i)2 t, + ･･･ .

the conformal mapping function 2=f(4) and the complex
Fl(C) may be obtained as follows:

         (28)

  (n - odd)

             (29)
  (n = even)

  the power series

         (30)

         . Then,

         (31)

  c.

determine the coef-

before, and noting

    to C= -i, we

torslon
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C,B,,b

A, eL=1 A,
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    z==ic,(4+t,42+t,C3+･･･+t,,Cii)+c,

    F,(O=ic,b,It,,4iO+(t,,t',+%)49+･･･+(t,,tU,+t,l,+･･･+t,Z,+t,)4]

                                              '                                             tt          ' - cic-2(tieCii + 4CiO + ･･･ + t,42 + C)

 In the case of crueiform section.

 Let us consider the cruciform section with the leg-length of L =:: 1, the

kness of b and the fi11et radius of P as shown in Fig. 3.

             iy

                                                IP

    The
in Table

x

leg-

E, EI

02 Di

C2 Ci

S2 a3
af
B,

A.
hrg'41"N

AI

B, B4

C3 C4

D, P4
E3 E4

g

                       Fig. 3.

points in the 2-plane correspond to the points in the C-plane as shown

5. Then we can obtain

k==2(cri-cr2),c==2cr2-cri (onthelstquadrantoftheC-plane)

k=2(ai-a2), c=rr+2cr2-3ai (onthe2ndquadrantoftheC-plane>

k=2(ai-cr2), c=:rr+2a2-cri (onthe3rdquadrantoftheC-plane)

k==2(ai-cr2),c==2cr2-3ai (onthe4thquadrantoftheC-plane)

and

d   log
d4

de
d4

   +il,

[ c; tlEi'Ei-a

wu tfOl

<-<,(2)

   ?-c -flll, (2) ' -e'/tl"nve-ia3 '･j

+ C+}e'-iao +-1: +}e'icro +Sin

   e
8 + e-aa3

  di
C-C3<Z)
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              L'- -l't i;:E'i"'' ""e":' :'"''"''e"umiE･'R'g" ' Sl, c :{{-IZ'<'i'>'r + 4-l'.

                           '
  C;1(R)=e";(2a2-a])e?iA(cri"a2)) C;3(,Z)=-e",(2a!-aPe2ii{ai-a2)

  C2(2)=nyei(2"z'3aJe2'IA(".-a2)) 44(2)==e";(2cr2'3crr)e2i](cri-cr2)

                          TABLE 5.

Cross-sections

-"
.'

ao

17
        (32)

} (33)

z-plane
i
l

Cplane

x Al

x Bl

x Cl

2 Dl

XE
  1

ty
'" Eo

ny
s. D2

z C2

ny
n" B2

2A
  2

LVkB
  3

z C3

z ]a

.c'
, E

  3

XE
  4

2 D4

z (;4

2 B4

CA, = eo =: 1

CBI = eZrro

. att1-a(ktc)   =:e -egct

     .t.2 i(S÷c)
(Dl == e        =e

CEI == ela3

4E2 = ei(r'ma3) ,. -e-."a3

(; D2 .., ea(=-cr2) = -e-ia,)

Cc! ,. eg(r'ral) = une''ial

CB2 =:: ea(rr-ao) = -eniae

(. A2 == ea= := -1

4Bl = ei(n+"o) = -ei"o

Cc3 = et<rt+al) .. -eicri =

CD3 = ei(nta2) ., -eha2 =

CE3 = ei(sc-'a3) = -eia3

      -'bcrCE,=e a
      -icr2 - i(ik-Fc)
CD, = e         -e
(;c, = e-i`ri = ei(A''I' c)

      -zcrCB,=e o

i(;hln)
e

 i(kl c)
e

i<rk+c)
e

 i(S.,,)
e

The integrals

     aji

on the right-hand

     dR +s

side

 i

of eq. (32)

      di

are

4-ei(2cr2mai)e2aA(a,-a,) a
2

4 + ei(2a2-3cri)e2aA(trima2)

111
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          +Si' c+ei(2a2-fli)e?i2(aira!) +Sl c-ei(2a2-f(a4)e'-i2(ai"a2}

        =-:-2i(rva,II.,)c[-4i(cr!'cr2)-log(4-ei"2)+log(4-eiai)

                     -log(4+e-aai)+log(4+e-i"2)-log(4+et"z)

                     +log(C+ei"i)-log(4-e-i"i)+log(4-e'aa2)l

        = 2i(.,l.,)c [10g(1 nve-ZcriC)+log(1 + e"aaio +log(1 + eza<)

                     +log(1-e`"2C)-log(1-et"]C)-log(1+edai4)

                     -log(1+e-i"2C)-log(1-euia24)l

        == 2i(all-a2) ,;.1-ji" [I(-1)'t"1-1] e"i'tai+ I(-1)?t-1-1} eina,

                   +[1-(-1)'L-i]ei,tai+[1-(-1)n-i]e-Ota2]4n-i

        =-£rLa;,4"-i, (34)         7t=7-1 n

where

             O (n-odd)
         t        an== 2(sinnai-sinncr2)
                                     (n = even)
                  al - a2

Then eq. (32) becomes

        dClc log li: =-[(tletiE- +'4 Seta, + c+l'emuib-'cr, + c-}e'ia'o + 4ii2et{r3

                       + C+}ede3 + 4+}e-z'rr, + 4-l-,., +,il.l, :"t ('t-']

Integrating the above eq., we obtain

                      '        rc = c, exp [--g- [log(C -eiao) +log(c + eeao) tlog(4 +e-icro)

                         +log(C-e7'r"o)+log(4-eiev3)+log(4+eia3)

                         + log(C + e"i"3) + log (C - e-i":)} - .Ze=e, ".",' 4't]

               ,,co=,i.[1-(-1)'i-i](et'tao+e-Z'icro+e'"rr3+eHwtcr3)C7t-te.,!l7i'icnl        = ci exp[Z
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        ==c!exp(i.O.,a.4't-tPl.i.,an;,'4't), ' .(3s)

              2(cesncro+COSncr3).- (n=even)        an=l n
                                      '

If we write
                                     '
        lilcl =ci exp (,X.,A.c"), (36)

then

            O (n -: odd)
    An== 2(cosnevo+cosncr3)-2(sinnai-sinncr2) (n=.even) (37>

                  n (cri-a2)n2
    Expanding thg function exp (tfl.,A.C'i) in eq. (36) into a power series in

C, we can obtain

        tde- == ci exp (tW.,A.(n) = ci tfl.i.,b.c"

Since this is the same form as for L-section, i. e. eq. (15), the mapping function

z:=f(4) and the complex torsion function I71(() have the same forms as eqs.

(16) and (18).

    Neting that z=O corresponds to 4=O, 2=1 to 4=1 and z== -1 to 4= -1,

we can obtain

        c2rm-O and ci== 1-,
                          CKE

where CKE==1+4+4+ag+'''･

Therefore we can determine the mapping function and the complex torsion
function.

              4. Results of the Theoretical Calculation.

 (i) In the case of L-section. .
    The thickness b and fi1}et radius P of the legs are determined by eqs.

(14) ane (16), using the assumed values of angle cro and cri. At first we consider
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the

of

in

the

 case of cro=870, a,=30e.

 Numerical calculations are performed using IOO terms in the power series

C. Table 6 shows the calculated results of the co-ordinates of the points

the z-plane and the resultant shear stresses at the points corresponding to

points (cr) on the unit circle 4=e'la in the C-plane.

TABLE 6. (L) cr,=870, cr,-300

cr

co-ordinates x
y

resultant
shear stress T/GO

O. 3oe 4so 6oo 7so 8so

-O.470 -O,459 -O.459 -O.459 -O,459 -0,465
-O.470 -O,497 -0,526 -O.574 -O,672 -O.867

2,e88 1.259 O.567 O.442 O.436 O.333

Cl'

x
y

T･ /GO

87o 89o 9oo 12oo 15oe. 18oo

-O,409 -O.151 -O.034 O.O17 Q.O17
-1,035 -1.105 -1.034 -O,476 -O.299

o.eoo
o.ooo

0.277 O.281 O.279 O.484 O.457 O.152

In

30

at

this Table only 12 points are shown, but the calculation was performed for'

points. The locations of these points and the magnitudes of the stresses

these points are plotted in Fig. 4 as white and black circles, respectively.

 From the result of this calculation, one can notice some discrepancies with

".

J

0.4B

p'
-oXNON

1

x--
x

m
:12

L12

ao--87,a,=30
1

1'

bpxx

Fig. 4. (L)
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/qg/etzgth L=1,J2

fegthickness b=O,4s

fitletradius p=O,03b

meximum shear

   stress Tin..==2.088Ge

                                Fig. .
                                                             '
the assumed condition. The convex corners of the legs (A, B, E, F) are not

sharp and have some roundness. Fig. 5 shows an enlarged figure of the concave

       Acorner (CD). The radius of curvature estimated from the curve drawn by the

thick line which is traced aleng the points obtained by calculation is O.036,

and the radius determined from a quarter circular arc drawn by the fine line

through the two points C and D is O.038. The latter is larger by 5.3% than

the former. The calculated Ieg-length is Iarger by l2% than the assumed

length of L=::1. Furtherrnore, since the values of x corresponding to cr=1200

and 1500 in Tab!e 6 must be zero, the results are larger by 1.7% than the

correct values. The reason for this is probally that the finite number of terms

used in the power series in 4 was not suflicient to obtain exact values.

    Table 7 shows the corresponding co-ordinates x, y and the resultant shear

stresses for the case of cro=800 and cri==300. These are plotted in Fig. 6.

                       TABLE 7. (L) cro=800, a,-300

cr

co-ordinates x
y

resultant
shear stress TIGe

Oe 3oo 4se 6oo 7se 8oo

-O.544 -O.530
-O.544 -O,579

-O,531
-O,616
-O,531 -O,532 -O,499
-O.682 -O,833 -1,O18

1.611 1.071 O.654 O.512 O.380 O,227

cr

x
y

T/GO

8so 9oe 10so 12oo 15oo 18oo

-O.263 -O,O15
-1.056 -1.015

 O,O19
-O.659
 O,O19 O.O19
-O.529 -O.335

o.ooo
o.ooo

O,337 O.237 O,515 O,552 O.520 O.171
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a55

'

o

1

2

i

-"'

     hN

     N

                     ao=800, al=30

               1op/eagth L=Las
               tepthickness b=e.M
               M/etredius p=aas
               mexImum .shear
                  strass Thax=L6llGe

                               Flg.

The convex corners of the legs are

than for the former case. The
length (L==:1). But the radius of the

coincides with the radius determined

 (ii) IR the case of T-section.

    In this case, the thicknesses of

termined by the values of angle cro and

determined by the angles cr! and cr2.

    The numerical calculations

series in C for both case of cr,=30,

                TABLE 8. (T) cr,==30,

x
-

N

1

1

12

    also

   leg-length

      by

      the

are performed

    cr1==30o,

1

ZO8

6. (L>

  not sharp, but their errors are smaller

      is 8% longer than the assumed
 fi11et determined by tracing the points

  C and D.

   horizontal and vertical legs are de-

 cr3, respectively, and the fillet radius is

      by taking 100 terms in the power

     a2=600, cr3=870, and cro= 10Q, cr!=

cr1:=300, cr2==600, ev3=870

cr

co-ordinates x
y

resu]tant
shear stress TIGO

O. 3o 8o lso 3oo 4so

1,OOO
0,069

1,OOO
O,576

O.646
O,646

O,500
O,646

O,367
O,646

0,317
O.662

O.378 O.378 0.528 O,628 O,857 1,818

      L. cr I

[v

y

r･ !GO

6oe 87o 9oo 27oD 2ooo 33ob

O,299
O.709

O.255
1.219

o,ooo
1.256

o.ooo
o,ooo

O,122
o,ooo

0,287
o.ooo

1.078 0.294 O.653 O.717 O.759 O,654
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ao==3" )al=3oe
a,==6or,a3--67e

lenghtoSleftlright/egL---1,iO
thicknessof/eff/n@htlegb-=a,64'thicknessofupper/egw==O.60

fi/letradiusp=e･065
maximumshearstressi..,=1,818G6

1.28
Noxis

"t'-- ,1

x--2

1

ad4

--

LlO

                               Fig. 7. (T)

3oe, cr2=6oe, cr3=soo.

    Table 8 and Fig. 7 show the co-ordinates of x and y, and the resultant

shear stresses for the case of the former set of cr.. The convex corners of

the legs are also not sharp, but the fi11et radius determined by tracing the points

coincides wlth the radius determined by the points C and D. The length of

the left (and right legs) is larger by 10% than the assumed length (L==1).

                TABLE 9. (T) cro=100, ai=300, cr2=600, a3=800

cr

co-ordinates x
y

 resultant
,.shear s!Ie.ss T!GO

Oo loo lse 2oo 3oo 4so

1.000
O.049

1.000
O.761

O,724
O.811

O.615
O,807

O,501
O,809

O,429
O.835

O.350 O.346 O.596 O.875 1,085 1.928

cr

F
I 6oo 8oo 9oo 27oe 30oe 33oo

x
y

TIGe

O.403
O.903

0.370
1,303

o,ooo
1.335

o,ooo
o,ooo

O,146
o.ooo

e.34o
o.ooo

1.237 O.290 O,795 0,913 O,918 O.829
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aeo
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ae=10e ,af=300
a2=600 )a3=800

fenghtoiClefflriYhtlegL=

thicknessofupperlegrv=
thicknessoflefflright/egb=

fil/etradiusP=
moximumshearstresSTmex=

T

-2-i

NN

1.34

1
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.d
0

  L = L06

 rv - O.80

 P - O.103
Tin.. = 1.928 ee

                             Fig. 8. (T)

    Table 9 and Fig. 8 show the case of the latter set of a..

corners of the legs are slightly improved over the former ones.

is longer by 6% than the assumed length (L=1). The corners

leg have less roundness than those of the left or (right) legs

Of CU.･

              TABLE 10. (+) cro==30, cri==40e, a2==500, a3=870

asl

  The convex
The leg-length

of the vertical

 for both sets

cr

co-ordinates x
y

resultant
shear stress

T!G

Oe 3o loe lso 2oo 3oo

1,OOO
o,ooo

O.959
O.284

O.617
O.332

O.528
O.333

O,469
O.332

O.390
O.332

O,741 O.327 O.694 O,705 O,866 1,121

cr

:

l 4so 6oo 7oo 7so 87o 9oo

x
y

T!GO

O,336
O,336

O,332
O,391

O.332
O,470

O.333
O.530

O.273
O.971
-O,O06
 1,OOO

2.455 1.118 O.872 O,695 O.327 O,728
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(iii) In the case of cruciform-section.

    In this case, the thickness of the horizontal (left or right) leg is determined

by the value of the angle cr, and that of the verticaBeg is determined by the

value of angle cr3, and the fi11et radius is determined by evi and a2. The nu-

merical calculations are performed by taking 100 terms in the series for the

two cases cro=30, evi=:400, cr2=500, ev3:i=870, and cro==150, cri=300, cr2==60e,

         tr a66-

LOO

   IN
-L-1
    I

       ae=3e, at==40e
       a2=5007 as==810

1ength of tLopet;itrbi,a7 tmo" lefty(mpt ley L-ZeO

thibknass of LmpetlXde"o7 oTid 1blZ!hkrht 1op b-atiti

fiilettoditks p-aa13

mtzxl-mumshearstrass 1inax=2455Ge

32

tN.

s.s-

23

-

l
b

1,OO

       :

1
 a33

TABLE 11. (-+-)

 Fig. 9.

ao=150,

 (+)

a1--3oO, a2.=600, a3=750

a

co-ordinates x
y

resultant
shear stress TIGO

O. loo lso 2oo 3oe 4oo

1.000
o.ooo

1,OOI
'O,230

O,964
O,459

O.755
O,492

O.611
O.491

0.545
O.507

O.785 O.645 O.324 O,676 1,190 1.662

cv

x
y

T!Ge

4so 5oo 6oo 7so 8oo 9oo

0.523
O.523

O,507
O.545

O,491
O.612

O.451
O.971

O.226 -O.003
1.001 1,000

2.438 1.660 1.180 O,324 O.650 O.787
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-]
    1
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              iengthofumper12dlowaand!eftltight/eg L=lOO
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             fi/letradius p=-0,12
             mcvcimum.s)hearstrass Th,.,=2.43BGO

                              Fig. 10. (+)

cr,=750. Table 10 and Fig. 9, and Table 11 and Fig. 10 show the co-
ordinates of the points and the resultant shear stresses for the former and

latter case, respectively.

    In both cases, the convex corners of the legs have a slight roundness, but

in the latter case it is smaller than in the former case.,,

        5. Experimental Results.-Conducting Sheet Analogy.<`)

    For the purpose of ascertaining the nurnerical results, the analogous experi-

ments are performed by using a conducting sheet.

    The torsional stress distribution has' been measured by means of the
soap-film ana16gy. Recent!y, the technique employing the ob!ique incidence

method of three-dimensional photo-elasticity has been developed to solve the

torsion problem. However, in these methods it is more difficult to prepare

the suitable apparatus or specimens than in the following method, which uses

the electric conducting sheet analogy.

    In order to obtain uniform electric resistance, "anacon-paper" (similar
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                                Fig. 11.

to the facsimile paper) was used. Its electric resistance is 260 ohrn!square.

Keeping the voltage constant along the peripheries of the sheet and feeding

the distributed current into it, we measured the voltages at many- points on

the paper. In order to feed the electric current into the paper and keep the

voltage constant, we used the highly conducting silver-paint (Dupont No. 4817)

to attach the leading wire on the sheet. Fig. 11 shows the testing apparatus

and the sheet. The experiments were done only for Llb of 2･ .OO, i.e., the

ratio of leg-length (L) to leg-thickness (b) is equal to 2.00, in three cases of

L, T and cruciform sections.

                     6. Discussion of the Results.

    The torsional shear stresses for L, T and +-sections having finite leg-length

(L), various thicknesses (b and zu), and ardil (P) of fillet, are calculated for

some sets of angles ao, ai, a2, and a3.

    Now we define the stress-concentration factor as Cle=T.../bGef5)(6)(7)C8),

where bGO is the stress in a thin rectangular section. However, it seems to

be inadequate to use the above definition as a stress-concentration factor when

the leg-length is not so large in comparison with its thickness and when there

exists only a short portion of constant thickness at the leg. Hence, this stress-

concentration factor defined as above is used only for comparison with the

results obtained by Huth(6}, Beadle and Conway(9).

 (i) L-section.

    Fig. 12 shows the values of the stress-concentration factor for various

ratios of fi11et radius (p) to leg-thickness b and for three values of the angle
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cro, 870, 850, and 80e, which cor-

respond to the ratios of L/b of

2.33, 2.26 and 1.97 respectively.

The stress-concentration factors

for both cases of oro=870 and 850

are almost the same, but for cro=

800 it is lower than the others.

The result by Huth is also shown

in Fig. 12 for the ratio Plb up to

O.5 merely for the pursose of
comparison; because, utilizing the

relaxation method, Huth calcu-

lated the value of the stress-

concentration factor for Plb of

about O through 2.0; also in his

case the leg-length ls quite iong

in comparison with the leg-thick-

ness. His result coincides with

the authors' one only for the ratio

Llb of about 2.0.

    For the ratio Pfb up to O,5,

the larger the ratio L!b, the higher

theconcentrationfactor. Andthe

smaller the ratio Llb becomes, the

more rapidly Ce approaches to a

ratios Llb and P!b have a signi

    The experimental results'for

12 and we can see that the
factorily for Plb of about O

(ii) T-section.

    Fig. 13 shows the calculated

various ratios of Plb and for

1.92). The setting angles are as
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 influence upon the stress-concentration.

ratio Llb of 2.0 are also shown in Fig.

   and experimental results agree satis-
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                               Fig. 13. (T)

    Very little work has been done on the stress-concentration for the case

of the T-section in either fields of theoretical or experimental investigations.

As far as the authors know, there is only one reference in the literature.

Utilizing the point-matching method, Beadle and Conway receutly calculated

the stress-concentration factor for this kind of section where the leg-length is

quite large ln comparison with its thickness. In their case, the ratios Plb were

more than O.5 and the ratios w!b were O.67 and 2.0. Therefore, the author's

results can not be compared with theirs. '
    For the large leg-thickness (L!b==1.72 and 1.31) in the authors' results,

the stress-concentration factor are nearly the same and approaches the constant

value at the comparatively small value of P/b as is shown in Fig. 13. With

a fixed value of Llb==1.5, for the cases of Plb about O.5 thr6ugh 1.0 and

zulb=1.0, there is only a small zone when the leg has a constant thickness.

Furthermore, with increase of the leg-thickness, the configuration of the T-

OLfb-1,92C"(/b-0,902>

ewllb=1,12(wlb=0.925>

OL!b-L31(ntfb-1.0)

~experimentalresu/t
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section approaches the rectangular or square section due to the constant value

of xv!b.

    For the case of the ratio L!b=:1.92, the ratios Plb have a more distinct

influence on the value of the stress-concentration foctor. The experimental

results for the ratio L!b of 2.0 are also shown in Fig. 13.

                                    '

    Fig. 14 shows the stress-concentration factor for various ratios of Plb with

three values of the ratio of Llb.
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 ･ The values of stress-concentration factor for Llb::=1.5 and 1.04 are nearly

the same. This means also that for large leg-thickness the configuration of

+-section approaches the square and so the values of Ce approach the constant

value at a comparatively small value of Plb. This shows an effective infiuence

of the leg-length, thickness and fiIlet radius on the stress-concentration factor

because of the decrease of the constant thickness zone rather than the increase

of the leg-length.

    For the case of the ratio Llb == 1.73, the stress-concentration factor is much

higher than the previous two cases (i.e., Llb-1.52 and 1.04).

    For the case of the ratio Llb==2.0, the ratios Plb have a more distinct

influence on the value of the stress-concentration factor. The experimental

results for theratio L!b of 2.0 are also shown in Fig. 14. Very little work

has been done on the stress' concentration in the +-section. As far as the

authors know, only Beadle and Conway calculated- values by using the same
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assumptions and method as for the T-section. Their results are for ratios P!b

greater than O.5. Fig. 15 shows their results together with that of the authors.

From Fig. 15, we can see that two curves appear to coincide near the value

of Pfbun-O.5. Then it may be considered that for the case of L/b--2.0 the

stress-concentration is independent of the leg-lemgth, thickness and fiIlet radius.

                             7. Conclusions.

    (1) The torsion problem of prismatical bars with L, T and cruciform-

sections is investigated by means of the Schwarz-Christoffel transformation. The

effects of the leg-length, -thickness and fi11et radius are considered. Mapping

the cross-section of the bars in the z-plane on to the unit circles in the C-plane

and using a digital computer, the torsion stresses and the values of the stress-

concentration factors for these shapes of section are calculated.

     (2) Concerning the L-section with the value of Llb nearly equai to 2.0,

the stress-concentration factor approaches a constant value with the decrease

of the constant-thickness zone for a large fiIIet radius, and as the configuration

of the section becomes a square with the increase of the Ieg-thickness for

a constant fi11et radius. Theoretical results agree satisfactorily with the experi-

mental results utiliziBg the conducting-sheet analogy.

     (3) Concerning the T-section, with the values of wlb=1.0, O.925. and
O.902 i. e. Lfb == 1.72, 1.31 and 1.92 respectively, the stress-concentration factors

for previous two cases are almost the same and approach a constant value at

a comparatively smali value of p!b, due to their large leg- (or web-) thickness.

     For the case of wlb=O.902 (i. e. Llb==1.92), the stress concentration factor

is higher than the previous two cases and is clearly influenced by the fi}let

radius.

     The theoretical results are also in reasonable agreement with the experi-

mental results.

     (4) Concerning the cruciform-section with the values of Lfb=1.52 and

1.04, the values of the stress-concentration factor are about the same and show

the same inclination as for the T-section, that is, these vaiues approach a con-

stant value at a comparatively small fi11et radius, due to their large leg-thickness;

but the rate of change with the value ef Plb is not large. On the other hand,

for the cases of L!b:=2.0, 1.73 the values of stress-concentration factor are

clearly influenced by the fillet radius and their rates of change are larger than

the former two cases. The curve of Ce against Plb for L!b of 2.00 has good

connection with the curve obtained by Beadle and Conway.

     Theoretical results agree reasonably with the experimental results.
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    (5) Finally, it is found that the values of the stress-concentration factor

for the L, T and cruciform-sections with various proportions are obtained only

by changing the angles of an (cro, cri, cr2) ev3)･
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