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Stress Concentration Factors of Twisted Bars with L, T

and Cruciform Cross-sections

Hiromasa ISHIKAWA* and Hiroshi HANZAWA*
(Received August 21, 1967)

Abstract

It is well known that stress concentration cccurs at the root of a fillet
of the cross-section of a twisted bar used as a structural member. Since the
torsional problems of the bars having T and cruciform section have not been
solved exactly, it has been assumed that the stress concentrations at the fillet
of these sections are the same as for the L-section.

In this paper, by means of application of the Schwartz-Christoffels’ trans-
formation, the torsional problems of prismatical bars with L, T and cruciform
sections having finite sizes are investigated. In order to calculate the stresses
the digital computor (HITAC 5020)is used. For the purpcse of checking the
results obtained by theoretical calculation, the analogy using the conducting
sheet method is employed. It is found that the theoretical calculations are in
reasonable agreement with the experimental results.

Finally, the effects of the leg-length, leg -thickness and the fillet radius
of these cross sections on the stress concentration are discussed.

It is concluded that the stress concentrations at the fillet of T and cruci-
form sections are not the same for the L-section. The stress concentrations
for these sections are greatly influenced by the length and thickness of legs.
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X, Y, % « « « « « « . .. . . rectangular coordinates (z sometimes means x -+ ¢y)
o . . . . . .. .. .. angle of twist per unit length

ez,y) . . .. .. . ... . torsion function

G .« . « .. ... .. modulus of rigidity

d,y) .. . . . . . ... . conjugate harmonic function of ¢(x, y)
F), i) . ... . .. . . complex torsion function

Taes Tygg « + » - « « « « . . . shear stress components

f . . . .. .. .. .. mapping function

nh; . . . « . . .. ... external angle of the polygon in z-plane
L .« v v« .. .. leg-length of the cross-section

borw) . . ... ... .. leg-thickness of the cross-section

0 . .« +« .« . . . ... radius of the fillet

Ce . . . . . . . ... . stress concentration factor

1. Intrduction

It is well known that stress concentration occurs at the root of a fillet of
the cross-section of a twisted bar used as a structural member. However, the
only cross-section for which the stress concentrations have been obtained is
the L-shaped angle-iron, especially for the case of its leg-length being large in
comparison with its leg-thickness.

In this paper, the torsional problems of prismatical bars with L, T and
cruciform sections having finite sizes are investigated. At first the cross-sections
of the bars in the z-plane are mapped onto the unit circles in the -plane by
means of Schwartz-Christoffel’s transformation. Then the complex torsion
functions are decided using the Muskhelishvili’s theory.

The digital computer (HITAC 5020) is used to represent the mapping
function and the complex torsion function as the power series in £. The
torsional stresses and the values of the stress concentration factor for L, T and
cruciform sections are calculated.

For the purpose of checking the results obtained by theoretical calculation,
the analogy using the conducting sheet method is employed. It is found that

the theoretical calculations are in reasonable agreement with the experimental
results,

2. Method of Amnalysis. Basic Equations

Let us consider a long prismatical bar with uniform cross-section under
torsion, and fix the z-axis of the Cartesian coordinate axes to be parallel to
the generators of the bar and to pass through the centroid of the cross-sections.
Defining the displacement components as «, v and w in the z, ¥ and = directions
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respectively, the Saint-Venant assumptions are as follows:
u=—fyz, v=f0xrz, w=0plz,vy), (a)

where @ is an angle of twist per unit length of the bar and ¢(z, y) is a function
of x and y which is called the torsion function.
The non-vanishing stresses are the shear stresses

en=Go[ % 4\,  o.=Go[ % tz), (b)
ox ay

where G is the modulus of rigidity. Substituting these stresses into the equi-

librium equations, it is easily shown that these equations will be satisfied,

provided that

To L P _y (1)
oxt oy

Now, instead of torsion function ¢(z, y), let us introduce a function ¢(x, y)
which is a conjugate harmonic of and related to ¢(x, y) by the Cauchy-Riemann
equations

O _0p O __ (¢)

ox oy Y ox

In terms of function ¢(x, ¥), the boundary condition is expressed as follows:
Ple,y) = -y e, (2)
where ¢ is a constant.
Hence, using the complex torsion function F(z) which is defined as
Fley=p+ip, =z=x+iy, (3)
the equation (b) becomes
T — ity = GO {F'(2)—ig} , | (d)
where 2=ax—1iy

In the case where the shapes of cross-section are not circular, the torsion
problem may be solved by using the mapping method. Let a function f(£)
be the mapping function which maps the region of the cross-section on to the
circle |{| <1, and be

z=zx+1iy =f() | (4)

Then the complex torsion function F(z) is given by
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FR)=p+ip = F[AD)] = K0, (5)

and f({) will be holomorphic inside the bonndary. Hence, from egs. (3) and
(4), the boundary condition becomes

Fi(Q)—Fi(g) = if Q) F (£) + const. (6)

Furthermore, from eq. (d), we get

. G 20
tun— ity = GO I LS iy (2 (7)
’ L () J
Therefore, we may solve the torsion problem™ provided that the mapping
function f{{) and the complex torsion function Fi({) are obtained from eqgs.

(4), (6) and (7).

3. Determination of the functions f({) and F,({).

(i) In the case of L-section.

Let us consider the L-section with the leg-length L =1, the leg-thickness
b and fillet radius @, as shown in Fig. 1.

Applying the Schwarz-Christoffel transformation, a polygon region in the
z-plane may be generally mapped on to the unit circle in the {-plane by the
following relation

d dz 2;
L og B =
dc o8 I2/4 Za: ¢, ’ (8)

where #2; is the external angle of the polygon in the z-plane.

7
N A
B
c
a 3
H
3
7 T
)
E
F

Fig. 1.

At a round corner from C to D in Fig. 1, we assume that the external
angles between tangents at two consecutive points on the arc CD are given
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by mda; and the numbers of these tangents are increased infinitely. Then the
limiting form of eq. (8) becomes®:®

/

4 108 dj) _ _SJ,QL ,

dg dg £—¢;
where (; indicates the point on the unit circle in the {-plane corresponding
to the point in the z-plane at which the tangent makes an angle #4; with some
fixed line, and the integral must be taken along the curves the tangents of

which are supposed to change monotonically.
Now, assuming that {;(2) is a function of 2 such as

Cj(z):é/;(/c.lirc) , (9)

where ¢ is a constant, the points in the z-plane correspond to the points in
the {-plane as shown in Table 1. From eq. (9) and the Table 1, we get

k= A4q,, ¢ = —3m

Thus eq. (9) becomes

C(IZ) — Ei(4zrl173n,) (10)
and eq. (8)
L[4 b
dC dg —i C+i {—e™ L—e'
1 1
N Sz dal L3 } (11)
L C _6—30(17/6411,27/ C + 1
TABLE 1
z-plane {-plane
Al Ga=et =
B (zp) tr=c
i, Wk+e)
Clz) lo=e '=e
—day % L--n
D (z,) o=ce ZL’(Z*)
Be ‘oo e-—iﬂln
F (2) r=e 2 ==
O(z(,) Coﬁeﬂizvl
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The integral on the right-hand side of eq. (11) is

3 d 1 i ;
= log (1 —e %) —log (1 —e™*¢
| e S = g Los = 0 —log (1= )]
_ 1 i i {(_ 1)7;—1(_e~ialc)n_(_1)7L—1<_eiulc>n}
di,l »=1 n
— 1 i L {ein‘ﬂ_e’i"":} Cnfl — i E;L_Cnfl ,
410.’1 n=1 1 ° n=1 1
where p 1 .
a, = sin nay
20.'1

_l_iai:z.cnfl_l_ %
7=l 7 £+1]°

and integrating the above eq., we can obtain

= _ ¢ exp [—é— {log(l +1{) + log (1 —i¢)+log (L —e )

dac
+log (1 —¢*g)+log(1+ C)} — i%’i(:"]
= ¢, exp (7‘21 a, ”—7‘;% C") (12)
1

where a, - [(— 1yt {1 + (—1)"} 7+ (—1y"t—2cos nao]

2n

Therefore, we get

5171— (2 cos nay—1) (n = odd)
a?l =
ZL (2 cos nay+ 2i"+ 1) (n = even)
n

Furthermore, if we write
oo !

Nl =Nt = RAL (13)

n=1 A

then
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L (2 cos nay—1) — L | sinna {(n = odd)
n n 200
A, = 1 . (14)
— (2 cos nay+ 2"+ 1)— L snaa (n = even)
n n 20

If the exponential function in eq. (12) is expanded in the form of a power
series of &, we get

dz _ ¢, exp ( i A,LC"> =q i b,.L" (15)
dc 7231 =1

where b,=1 and b, are functions of the coefficients A;, A,,-+- A, .
Integrating eq. (15) with respect to £, we get

@ b N
z:qg}lﬁ&”%—@ (16)

Thus the mapping function is represented in a power series of £.

Now, let us determine the coefficients ¢, and ¢,. If we define tHZL,

eq. (16) becomes n
z=ql+ul+60+ )46 (17)

Noting that 2= —i corresponds to {=¢ and z=—1 to {=—1¢, and =0 to

{=—1, we get

14 1

g=———=-_=_  and =W,
2 CKE

2 4 8
where CKE=1+(—122+(—1)24+(—1)2t;+ -
W=1+(—1't+ (=1 t+(—1Pt+ -

Substituting eq. (17) into eq. (6) and expanding the function in a power series
in {(n=10), we can obtain the complex torsion function as

FO) =it {{+6+60+ 604+ - 5,0}
e (o + b+ b+ bk 4+ by 1)
+ (tole + Lofy + Ll + - + Ll + 5)
e o (b + 1) C o+ 10 (18)

And the first derivatives of f({) and F;({) with respect to £ are
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Since the convergence of the power series in { into which the function ¢*
is expanded is not goad, it is required to take many terms in this series.
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2 =F"C) = {1 +b6:L+ DL+ 0L+ + 5,0} (19)
FY(€) = i&, [ 1048+ 9 (b + 1) P+ 8ty + 1oy + 1)
oty tibo + b LR )]
+i0,6 {1+ 0L+ 0, + 0L+ - + b0} (20)

I8

7.
,
AL

1

The

method of expansion is also complicated.

The program developed for the digital computer (HITAC 5020) may be
used for solving other boundary-value problems by means of the same mapping

function.

TABLE 2.

Some of the programs are shown in Table 2 and 3.

25
30

80
40

ALK=1.0

DO 30 L=1,100
IF(L.GT.15)G0 TO 25
ALK=ALK*FLOAT(L)
B(L)=A(1)**L/ALK
GO TO 30

B(L)=0.0

CONTINUE

D0 40 I=2,100

ANK=1.0

DO 50 N=1,100
IF(N.GT.15)GO TO 55
ANK=ANK*FLOAT(N )
G(N)=A(T)**N/ANK

GO TO 65

¢(N)=0.0

s(¥)=0.0

DO 60 M=1,N
NIM=N-I*M
IF(NIM.GT.0)GO TO 70
IF(NIM.LT.0)GO TO 60
S(N)=S(N)+c(M)

GO TO 60
S(N)=5(W)+B(NIM)*G(M)
CONTINUE
C(N)=B(N)+S(N)
CONTINUE

DO 80 J=1,100
B(J)=C(J)

CONTINUE

CONTINUE

The latter
shows a part of the program to calculate
the coefficients of ¢ in egs. (18) and (20).
These programs can be used for the next
two cases of T and cruciform cross-sections.

(ii) In the case of T-section.

Let us consider the T-section with the
leg-length of L =1, the leg-thickness of &
and w, and the fillet radius of © as shown
in Fig. 2.

Let the points O, A, B,--, A’ in the
z-plane correspond to the points in the {-plane
respectively, as shown in Fig. 2 and Table 4,
we get

TaBLE 3.

DO 120 MM=1,100
ST(MM) =FLOAT (MM )*T (MM )
MMM =100-MM
IF(MMM.Ew.0)GO TO 110
DO 130 NN=1,MMM
MMNN =MM+NN
ST (MM ) =ST (MM ) +FLOAT (MM ) *T ( MMNN ) *T (NN )
130 CONTINUE
120 CONTINUE
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iy ’ i

k=2(,—a), ¢c=2a—ay, (on the 1st quadrant of {-plane) (21)

k=2, —a) c¢=7m—3m+2w, (on the 2nd quadrant of {-plane) (22)

Therefore, eq. (18) may be reduced to the following form
,ufilogiz_:_[ U TN . -
2 (—5@) (—e=

1 1 1 ¥ A
NI ST +—L¢~+S —w—], (23)
et C_*_e*“'u C—l—‘l 1 C—Cl(l)

where

C1(/2> — ei(zuz«—u,)ezﬂ;x(alwz)

Lo(R) = — g i =2ay) g2ik(e, - )

} (24)

The integrals on the right-hand side of eq. (23) become

1 d ¥ da _*1— e .
etea ) e ew ™ | Hem o)

+log (£ — ) —log({ +e ) + log (L + e}

e

1 o1 , : . ‘
_— " - . 17L~1€",7m3 —eg i g, (L 1 n—lewm‘ n-1
) ngl n {( =1 }C
= 3 Gn g1 (25)
n=1 77

where
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i{Ccos na, — Cos nay) (n=o0dd)
oy — Uy

a, = (26)

sin 7, — sin 1a, (n=even)

ay—ay

Then eq. (23) becomes

—d—logdz:—[ CH S % + %
dac dac ¢—1 ¢+1 C—é*  C+e ™o

3 3 & @y pn
+ C__eiaa + C_e—i% +”Z::1 7 C ]
1

Integrating the above eq., we get

dax 7, exp [——% {log(C— 1) +log (L + 1)+ log({ — ™)+ log (£ + %)

dt
oo /
@ —ia a, 7
+log(¢—e) +log(¢—e )} — 33 Y ¢ ]
=1
[==] =) I4
= Z'cl exp IZ anqn— Z ‘E{L Cnl » (27)
lnzl n=1 N J
TABLE 4.
z-plane {-plane
A =1
B(zp) &G = &
C (=) o= Fo o ke
i +e
D (ZD) CD — L“z e ( 2 )
E (*g) g o=e"
E/ (ZE’) CE _ “a—a,) _ —day
73,

D’ (%) o z—wy) _ a, Z("““’)
C'(®er) Lg = ) = i = AT
B 5 Ly = T =g i
Al (Z4)) Cy=e =1
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__ i(sin na, + sin nay) (n = odd)

n
where a,= _
1 + cos nay + cos na;

(n = even)
n

If we rewrite eq. (27) as

-Z% =1¢, exp (i A,L") , (28)

n=1

then

_ i(sin nay+sinnag)  2(cos na, — cos nay) (n=odd)

n {0y —ety)
A, = : . (29)
1+ cos nay+ €oS nas _ sin nay, —sin na, (n—even)
n (o, —a)

Furthermore, if we expand the function exp (Z A,LC”) into the power series
n=1

in &, we obtain

dz . &

== =1 2, b,C", ) 30

dt 12;1 C ( )
where b,=1, and b, are the functions of the coefficients A;, A,;, -+ A,. Then,
integrating eq. (30) with respect to {, we can obtain

2 —ic 3 D priag, | (31)
n=0 141
Thus the mapping function may be represented in series in &.

By the similar procedure as the former case, we can determine the coef-
by
n+1
that 2=1 corresponds to {=1, 2=—1 to {=—1, and 2=0 to {=—i, we

can obtain

ficients ¢, and ¢,. Using the same notation #,=

as before, and noting

Cl:_C;(E’ = —aW,

CKE=1+t,+t,+ 1+,
W=1+(—d)t, +(—if ta+(—ifts+ .

Finally, the conformal mapping function z=F(¢) and the complex torsion
function Fi({) may be obtained as follows:
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Z = iC1 (C + t1C2 + l‘zC3 + e+ tlo‘:u) +G

FLQ) =iae, (Bl (tay + 1)L+ -+ (bl + b+ -+ + by + 1)
— & (Ll + 1,00+ 1+ '
(iii) In the case of cruciform section.

Let us consider the cruciform section with the leg-length of L =1, the leg-
thickness of & and the fillet radius of © as shown in Fig. 3.

iy
E,
o p
Cr B,
X
JEp—)
Gy B,
D,
£,
Fig. 3.

The points in the 2-plane correspond to the points in the {-plane as shown
in Table 5. Then we can obtain

k=2(t,—a,), ¢=2a,—a on the Ist quadrant of the {-plane)

) (

k=2(mc—ay), c¢=n+2a—3a (on the 2nd quadrant of the {-plane)
k=2(t,—a,), c=n+2a,—a, (on the 3rd quadrant of the {-plane)
k=20 —a), c¢=20a,—3a (on the 4th quadrant of the {-plane)

and

ilogf"ﬁ:~[ 5 +S% ar_ 5 4 &
{—e' 1 C’“Q(z) {—eto L+e s

—I—Sl a + z — - — % +S.%‘__d2
3 C_C2<z> Che'™ {+em 1 C*Cx()\)
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where

L) = e

Cz(/2>: -

e —ay)
>

3i(a, —a,)

%_.,,”,...4_51 d2 -+ 5 - :Ia (32)
2 C‘—C‘;(Z) {—e

Cs(/@ — N ay) e, )

C4(2) —_ 6"7(21!2 —Szrx)e'zi](nlmnz) (33)

TABLE 5.
z-plane {plane
Zy, Lo, =0 =1
i
7, L, = ¢
- o {k+e)
%o, e, =e¢'=c¢
s
i (£ )
7o
ZD, (p, = ¢ t— o 2
z L2
E, CE, = ¢
2y (g, = i(z—ay) -
= 2
(3, :
_ e _ e _ )
D, {p,=c¢ = —e =¢
i(m— ~da ik e
Zg CCZ _ ez( a) _ —e T L)y,L c)
:B CB . ez(ﬂfau) _ —ia,
2 2 - e
o in
~A, ‘L:Az =€ "= —1
g g, = T =
3 =3
Hrta,) fa W k+e
ZC3 CCJZE Voo M )
. Ak
o . i +te
Zp, Co, = 671(7““2) = o, (z )
:Es tp = ei(zca—aa) _ ~ei«3
3
—Za
ZEA CE,, = :
3
B g
*p, Ep,=e¢ " = ez( 2 ">
4
P -2 H(k+e
e, lo,=e HEre
—%
2B‘ CB‘ — ay

The integrals on the right-hand side of eq. (32) are

! a2

i
2
Sl C _ei(Za‘z——a,)e‘Zil(al~a2)

‘]

(20, —3a,) ,202(a, ~a,)
% C +e 2 Ve 1 2

111
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(7 da L dA
L L efreman) ghidle mas) 3 [ — B in) gkl —a)

ol

= { —4i(oy— ) —log (C — &)+ log (L — &)

—log(C+e ™) +log (€ + e %) —log (£ + &™)

+log(£ +e)—log(C —e ) +log(C—e~ )]
1

T o s {log(l —e )+ log(l+ e 1 {)+log(1l + ()
2i(an—ap) ¢

+log(1—¢*:0)—log(1—¢“¥)—log(1 + ()
—log(1+e*¢)—log(1 —e‘“zC)}
— i B Lo e

21 (al——az) n=1 71

L1y e {1 (=1 e o o

— i ial/LCn71 , (34)
n=1 71
where
0 (n = odd)
a, = 2(sin 72y — sin na) (n = even)
o) — Oy

Then eq. (32) becomes
d dz _[ % n 5

;logi

dl dc

- L
{—é L+ L+

1 1 1 o a/
2 — + 27;“ + 27%-“ + Z n Cnfl
L+ems L+e L—e™ w1

Integrating the above eq., we obtain

dz 1 . . B
TC:CI eXp[_f_{ {log(C“@ ") +log( +e") +log (C +e ")
+log (£ —e )+ log (€ — ") +log (L +¢™)

o

+10g(c +e7) +log (C—Eii%)} 3 L;—;;C”]

n=1

oo -

= ciexp| S (L (e e B ]

n=1 2n n=1 31
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— exp< 5 el 5 cn) , (35)
where ]{ 0 (n = odd)
@ =y 2(cos na, + cos nas) (n = even)
[
If we write
22— exp(3 ALY, (36)
dc 7n=1
then
0 (n = odd)
Aw =19 2(cos nay+cosnay)  2(sin na, —sin nay) (1 = even) (37)
n (o, —a)n?

n=

Expanding the function exp (Z A,L") in eq. (36) into a power series in
. 1

¢, we can obtain

az _ ¢ exp (Z A,LC"> =q i b,L"
(ZC n=1 =1
Since this is the same form as for L-section, i.e. eq. (15), the mapping function
z=f({) and the complex torsion function F{{) have the same forms as egs.
(16) and (18).

Noting that z=0 corresponds to {=0, z=1to =1 and 2= —1 to {=—1,
we can obtain

1

=0 and ¢= _,
CKE

where CKE=1-+t,+t,+t+-.

Therefore we can determine the mapping function and the complex torsion
function.

4. Results of the Theoretical Calculation.

(i) In the case of L-section.

The thickness & and fillet radius @ of the legs are determined by egs.
(14) ane (16), using the assumed values of angle a, and a;. At first we consider
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the case of a,=87°, a;=30"

Numerical calculations are performed using 100 terms in the power series
of {. Table 6 shows the calculated results of the co-ordinates of the points
in the z-plane and the resultant shear stresses at the points corresponding to
the points (&) en the unit circle {=¢ in the (-plane.

TABLE 6. (L) a — 87°, @, — 30°

a 0° 30° 45° 60° 75° 85°

co-ordinates x —0470 —0459 —0.459 —0.459 —0.459 —0.465
v —0470 —0497 —0526 —0574 —0672 —0867

;ii:‘;i‘tasrg‘ess /GO 2.088 1.259 0.567 0.442 0.436 0.333
a L 87° 89° 90° 120° 150° 180°

z —0409 —0151 —0.034 0.017 0.017 0.000
Y -1.035 —1.105 1034 —0476 —0.299 0.000

/GO I 0.277 0.281 0.279 0.484 0.457 0.152

In this Table only 12 points are shown, but the calculation was performed for

30 points. The locations of these points and the magnitudes of the stresses

at these points are plotted in Fig. 4 as white and black circles, respectively.
From the result of this calculation, one can notice some discrepancies with

N,

o,
-
-

(e
=1

‘ /
048 1 i/ 2—
re
) ]
\O\ \“ X
\ 0 112
w=87°, ay=30° I
|
%, pe
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—0.50 —045

leg length L=1]2
leg thickness b= 048
fillet radius p= 0036

maximum Shear
stress Tmax = 2.088 66

—0.50

Fig. 5.

the assumed condition. The convex corners of the legs (A, B, E, F) are not
sharp and have some roundness. Fig. 5 shows an enlarged figure of the concave

TN

corner (CD). The radius of curvature estimated from the curve drawn by the
thick line which is traced along the points obtained by calculation is 0.036,
and the radius determined from a quarter circular arc drawn by the fine line
through the two points C and D is 0.038. The latter is larger by 5.3% than
the former. The calculated leg-length is larger by 12% than the assumed
length of L=1. Furthermore, since the values of x corresponding to a=120°
and 150° in Table 6 must be zero, the results are larger by 1.7% than the
correct values. The reason for this is probally that the finite number of terms
used in the power series in { was not sufficient to obtain exact values.
Table 7 shows the corresponding co-ordinates x, y and the resultant shear
stresses for the case of a;=80° and a;=30°. These are plotted in Fig. 6.

TaABLE 7. (L) ap=80°, a;=30°

« } 0° 30° 45 60° 75° 80°
co-ordinates x —0544 —0530 —0531 -—0531 —0532 —0.499
y —0544 —0579 —0616 —0682 —0833 —1018
gﬁse‘frm;tress el { 1.611 1.071 0.654 0.512 0.380 0.227
o } 85° 90° 105° 120° 150° 180°
z —0263 —0015 0019 0019 0019  0.000
” —1056 —1015 —0659 —0529 —0335  0.000

/GO 0.337 0.237 0.515 0.552 0.520 0.171
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ag=30°, a1=30

leg length L=108
leg thickness  b=055
fillet radius p=005

maximum shear
Stress Tmax= 1611 GG

The convex corners of the legs are also not sharp, but their errors are smaller
than for the former case. The leg-length is 8% longer than the assumed
length (L=1). But the radius of the fillet determined by tracing the points
coincides with the radius determined by C and D.

(ii) In the case of T-section.

In this case, the thicknesses of the horizontal and vertical legs are de-
termined by the values of angle &, and «;, respectively, and the fillet radius is
determined by the angles a; and a,.

The numerical calculations are performed by taking 100 terms in the power
series in ¢ for both case of a,=3°, a;=30°, a,=60°, a,=87°, and ¢,=10°, o, =

TaBLE 8. (T) a;=3° a;=30°% a;=60° ay;=87°

a [ o° 30 g 15° 30° 45°
co-ordinates z 1000 1000 0646 0500 0367 0317

v 0069 0576 0646 0646 0646 0662
resultant g } 0378 0378 0528 0628 0857 1818
shear stress

a B0° 87° 90° 270° 200° 330°

0.709 1.219 1.256 0.000 0.000 0.000

3

@ . 0299 0255 0000 0000 0122  0.287
| ,
| L078 0294 0653 0M7 0759 0654
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a, =3, a, =30

a,=60°, ay=87°
lenght of left/right leg L=110
thickness of left/right leg b = 064
thickness of upper leg w= 060
fillet radius p = 0065
maximum Shear Stress Tmae= 1.818 GO

-—

30°, a,=60°, a,=80°.

Fig. 7.

L0
(T)

117

Table 8 and Fig. 7 show the co-ordinates of x and y, and the resultant

shear stresses for the case of the former set of «,.

The convex corners of

the legs are also not sharp, but the fillet radius determined by tracing the points
coincides with the radius determined by the points C and D. The length of
the left (and right legs) is larger by 10% than the assumed length (L=1).

TaBLE 9. (T) a,=10° a,=30°, a,=60°, a;=80°

a ] 0° 10° 15° 20° 30° 45°

co-ordinates z 1000 1000 0724 0615 0501 0429
v 0049 0761 0811 0.807 0809 0835

‘S"ﬁse‘;lrta;tress el 1 0350 0346 0596 0.875 1.085 1.928
a 60° 80° 90° 270° 300° 330°

x 0403 0370 0000 0000 0146  0.340

v 0903  1.303 1335 0000 0000  0.000

t/Go 1237 0200 0795 0913 0918  0.829
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N

a=10", a,=30"
o, =60"y oas=80°

flenght of left/right leg
thickness of upper leg
thickness of left[right leg

fillet radius

maximum shear Stress

L =106
w=0.80

b =08/

p=0703
Tomox = 1.928 66

Qo
/
134 ~, /
B /
b ] 2 z
I —+06 — 1
Fig. 8. (T)

Table 9 and Fig. 8 show the case of the latter set of «,.

corners of the legs are slightly improved over the former ones.

is longer by 6% than the assumed length (L.=1).

281

The convex
The leg-length
The corners of the vertical
leg have less roundness than those of the left or (right) legs for both sets

of w,.
TABLE 10. (4) a;=3° a;=40° ay=50°, a;=87°
a 0° 3° 10° 15° 20° 30°
co-ordinates z 1.000 0.959 0.617 0.528 0.469 0.390
v 0000 0284 0332 0333 0332 0332
resultant e 0741 0327 0694 0705 0866 1121
shear stress
« ( 45° 60° 70° 750 87 90°
z 033 0332 0332 0333 0273 —0.006
i 033 0391 0470 0530 0971  1.000
el 2455 1118 0872 0695 0327 0728
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(iii) In the case of cruciform-section.

In this case, the thickness of the horizontal (left or right) leg is determined
by the value of the angle a, and that of the vertical leg is determined by the
value of angle w;, and the fillet radius is determined by a; and @,. The nu-
merical calculations are performed by taking 100 terms in the series for the
two cases ay=3°, a;=40°, «,=50°, a;=87° and «,=15°, a;=30°, a,=60°

066
& C
0 C a,=3", a,=40
] a=50°, a=8"
7
. length of upper/down and lefifright leg  L=100
thickness of upper/down and left/right leg b=066
fillet radivs  p=10013
maximum shear Sress — Tmox=2455 64
100
3 2
\ o,
— e ! }
N 033
. 2 :
\ 3 ‘ J
- 100
Fig. 9. (+)
TABLE 11. (4+) ay=15° o;=30°, a,=60°, a;=75°
« 0° 10° 15° 20° 30° 40°
co-ordinates x 1.000 11.001 ‘ 0.964 0.755 0.611 0.545
Yy 0.000 0.230 0.459 0.492 0.491 0.507
resultant e .
shear stress =/Go i 0.785 0.645 0.324 0.676 1.190 1.662
« ’ 45° 50° 60° 75° 80° 90°
x 0.523 0.507 0.491 0.451 0226 —0.003
Yy 0.523 0.545 0.612 0.971 1.001 1.000
/G8 2.438 1.660 1.180 0.324 0.650 0.787
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098
g Q
! —‘]\ oo =15°, a,=30°
a,=60°, a;=75°
)
> J
100
o\
]
2
049
1.00
length of upper/down and left/right leg L=100
thickness of upper/down and left/right leg b= 1098
fillet radius p=2012
maximum shear Stress Tmax = 2438 68
Fig. 10. (+)

a;=75°. Table 10 and Fig. 9, and Table 11 and Fig. 10 show the co-
ordinates of the points and the resultant shear stresses for the former and
latter case, respectively.

In both cases, the convex corners of the legs have a slight roundness, but
in the latter case it is smaller than in the former case.

5. Experimental Results.—Conducting Sheet Analogy.””

For the purpose of ascertaining the numerical results, the analogous experi-
ments are performed by using a conducting sheet.

The torsional stress distribution has been measured by means of the
soap-film analogy. Recently, the technique employing the oblique incidence
method of three-dimensional photo-elasticity has been developed to solve the
torsion problem. However, in these methods it is more difficult to prepare
the suitable apparatus or specimens than in the following method, which uses
the electric conducting sheet analogy.

In order to obtain uniform electric resistance, “anacon-paper” (similar
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Fig. 11.

to the facsimile paper) was used. Its electric resistance is 260 ohm/square.
Keeping the voltage constant along the peripheries of the sheet and feeding
the distributed current into it, we measured the voltages at many points on
the paper. In order to feed the electric current into the paper and keep the
voltage constant, we used the highly conducting silver-paint (Dupont No. 4817)
to attach the leading wire on the sheet. Fig. 11 shows the testing apparatus
and the sheet. The experiments were done only for L/b of 2.00, i.e., the
ratio of leg-length (L) to leg-thickness (b) is equal to 2.00, in three cases of
L, T and cruciform sections.

6. Discussion of the Results.

The torsional shear stresses for L, T and -sections having finite leg-length
(L), various thicknesses (b and w), and ardii (©) of fillet, are calculated for
some sets of angles ay,, @, @, and a;.

Now we define the stress-concentration factor as Ce=rt,,,/bGH>ODE,
where bG# is the stress in a thin rectangular section. However, it seems to
be inadequate to use the above definition as a stress-concentration factor when
the leg-length is not so large in comparison with its thickness and when there
exists only a short portion of constant thickness at the leg. Hence, this stress-
concentration factor defined as above is used only for comparison with the
results obtained by Huth®, Beadle and Conway'.

(i) L-section.

Fig. 12 shows the values of the stress-concentration factor for various
ratios of fillet radius (©) to leg-thickness & and for three values of the angle
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a, 87°, 85°, and 80°, which cor- 10.0
respond to the ratios of L/b of d
2.33, 2.26 and 1.97 respectively. 20
The stress-concentration factors O 1/b=197
for both cases of «,=87° and 85° 8.0 L @ L/b=226
are almost the same, but for a,= J) ® //b=23
80° it is lower than the others. zom__ —t— X experimental result ——
The result by Huth is also shown (Llb=200)
in Fig. 12 for the ratio /b up to 6.0H~
0.5 merely for the pursose of \
comparison ; because, utilizing the pp 59
relaxation method, Huth calcu- \
lated the value of the stress- 40 _0
concentration factor for @/b of
about 0 through 2.0; also in his 30
case the leg-length is quite long
in comparison with the leg-thick- 20
ness. His result coincides with
the authors’ one only for the ratio 10
LJ/b of about 2.0.
For the ratio £/b up to 0.5, oL
the larger the ratio L/b, the higher 0 or 02 43 04 05

the concentration factor. And the plb

smaller the ratio /b becomes, the Fig. 12. (L)

more rapidly Ce approaches to a constant value. These show that both the

ratios L/b and ©/b have a significant influence upon the stress-concentration.
The experimental results for the ratio L/b of 2.0 are also shown in Fig.

12 and we can see that the calculated and experimental results agree satis-

factorily for ©/6 of about 0 through to 0.5.

(ii) T-section.

Fig. 13 shows the calculated values of the stress-concentration factor for
various ratios of ©/b and for three cases of the ratio of L/b (1.31, 1.72, and
1.92). The setting angles are as follows:

[44)} ay 9] ' 3 t L/ b i W/ b
10° 15° 20° 25° 30° 40° 90°—ay 80° 1.31 1.0
3° 50 10° 15° 20° 25° 30° 40° » 87° 1.72 0.925

1° 5% 10° 15° 20° 25° 30° ” 89° 1.92 0.902
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VI R N B

O £L/b=192(w/b=0902)

8.0 @ /[/b=172(w/b=0925) ——
@ L/b=131(w[b=10)

7.0 X experimental resuft  ———
(L/b=200)

X
o —eo=
10
Og a7 2z 03 04 05 06
plb
Fig. 13. (T)

Very little work has been done on the stress-concentration for the case
of the T-section in either fields of theoretical or experimental investigations.
As far as the authors know, there is only one reference in the literature.
Utilizing the point-matching method, Beadle and Conway receutly calculated
the stress-concentration factor for this kind of section where the leg-length is
quite large in comparison with its thickness. In their case, the ratios /b6 were
more than 0.5 and the ratios w/b were 0.67 and 2.0. Therefore, the author’s
results can not be compared with theirs. '

For the large leg-thickness (L/b=1.72 and 1.31) in the authors’ results,
the stress-concentration factor are nearly the same and approaches the constant
value at the comparatively small value of p/b as is shown in Fig. 13. With
a fixed value of L/b=1.5, for the cases of /b about 0.5 through 1.0 and
w/b=1.0, there is only a small zone when the leg has a constant thickness.
Furthermore, with increase of the leg-thickness, the configuration of the T-
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section approaches the rectangular or square section due to the constant value

of w/b.

For the case of the ratio L/b=1.92, the ratios 0/b have a more distinct

influence on the value of the stress-concentration foctor. The experimental

Hiromasa ISHIKAWA and Hiroshi HANZAWA

results for the ratio L/b of 2.0 are also shown in Fig. 13.

(iii) ' -+-section.

Fig. 14 shows the stress-concentration factor for various ratios of 0/b6 with

three values of the ratio of L/b.

1.0

10.0

2.0

8.0

7.0

ce 60

50

40

340

20

10

O (/b=200
® L/b=173
Q@ Llb=152
O Llb=104

X experimental result
(LIb=2.00)

04

07 0.3

04 05 06 o7

ol

Fig. 14.

(+)



Stress Concentration Factors of Twisted Bars with L, T and Cruciform Cross-sections 125

[24)] (44} oz | a3 \ L/ b
1° 50 10°  15° 200 25°  30° 40° 90°—a; 89° 2.00
2° 5 100 15° 200 25° 90°—ay 88° 1.73
3° 5 10°  15° 200 25°  30° 40° 90°—ay 87° 1.52
15° 20°  25° 300 35 90°—ay 75° 1.04

The values of stress-concentration factor for L/o=1.5 and 1.04 are nearly
the same. This means also that for large leg-thickness the configuration of
+-section approaches the square and so the values of Ce approach the constant
value at a comparatively small value of /6. This shows an effective influence
of the leg-length, thickness and fillet radius on the stress-concentration factor
because of the decrease of the constant thickness zone rather than the increase
of the leg-length.

For the case of the ratio L/b=1.73, the stress-concentration factor is much
higher than the previous two cases (i.e., L/b=1.52 and 1.04).

For the case of the ratio L/b=2.0, the ratios £/b6 have a more distinct
influence on the value of the stress-concentration factor. The experimental
results for theratio L/b of 2.0 are also shown in Fig. 14. Very little work
has been done on the stress concentration in the -+-section. As far as the
authors know, only Beadle and Conway calculated values by using the same

o —

10.0 ———%
O Authors’ result

2.0 @ Beadle and Conway’s T—
60 result

|
7.0 \\
FERW

40 NQ

30 L 2

" ) v

20

1.0

0

0 O0r 02 03 04 045 06 07 08 09 10
p/b
Fig. 15. (+)
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assumptions and method as for the T-section. Their results are for ratios ¢/b
greater than 0.5. Fig. 15 shows their results together with that of the authors.
From Fig. 15, we can see that two curves appear to coincide near the value
of /b=0.5. Then it may be considered that for the case of L/h=2.0 the
stress-concentration is independent of the leg-lemgth, thickness and fillet radius.

7. Conclusions.

(1) The torsion problem of prismatical bars with L, T and cruciform-
sections is investigated by means of the Schwarz-Christoffel transformation. The
effects of the leg-length, -thickness and fillet radius are considered. Mapping
the cross-section of the bars in the z-plane on to the unit circles in the {-plane
and using a digital computer, the torsion stresses and the values of the stress-
concentration factors for these shapes of section are calculated.

(2) Concerning the L-section with the value of L/b nearly equal to 2.0,
the stress-concentration factor approaches a constant value with the decrease
of the constant-thickness zone for a large fillet radius, and as the configuration
of the section becomes a square with the increase of the leg-thickness for
a constant fillet radius. Theoretical results agree satisfactorily with the experi-
mental results utilizing the conducting-sheet analogy. '

(3) Concerning the T-section, with the values of w/b=1.0, 0.925. and
0.902 i.e. L/b=1.72, 1.31 and 1.92 respectively, the stress-concentration factors
for previous two cases are almost the same and approach a constant value at
a comparatively small value of 2/, due to their large leg- (or web-) thickness.

For the case of w/b=0.902 (i.e. L/b=1.92), the stress concentration factor
is higher than the previous two cases and is clearly influenced by the fillet
radius.

The theoretical results are also in reasonable agreement with the experi-
mental results.

(4) Concerning the cruciform-section with the values of L/6=1.52 and
1.04, the values of the stress-concentration factor are about the same and show
the same inclination as for the T-section, that is, these values approach a con-
stant value at a comparatively small fillet radius, due to their large leg-thickness ;
but the rate of change with the value of 0/b is not large. On the other hand,
for the cases of L/b=2.0, 1.73 the values of stress-concentration factor are
clearly influenced by the fillet radius and their rates of change are larger than
the former two cases. The curve of Ce against /b for L/ of 2.00 has good
connection with the curve obtained by Beadle and Conway.

Theoretical results agree reasonably with the experimental results.
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(5) Finally, it is found that the values of the stress-concentration factor
for the L, T and cruciform-sections with various proportions are obtained only

by changing the angles of a, (q,, @y, @, @) .
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