“§') HOKKAIDO UNIVERSITY
Y X7

Title The Impulse Response of a Kompfner Null Coupler

Author(s) Sakuraba, Ichiro

Citation Memoirs of the Faculty of Engineering, Hokkaido University, 12(3), 283-293

Issue Date 1969-01

Doc URL http://hdl.handle.net/2115/37866

Type bulletin (article)

File Information

12(3)_283-294.pdf

°

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

The Impulse Response of a Kompfner Null Coupler

Ichiro SAKURABA

Department of Electronic Engineering
Faculty of Engineering
Hokkaido University, Sapporo, Japan

(Received August 28, 1968)

Contents
Abstract . . . . v o L o e e e e e e e e e e e e 283
1. Introduction . . . . . . . . . ... 0 e e e e e e e 283
2. The Dip Condition in the Frequency Domain . . . . . . . . . .. . 284
3. The Impulse Response in the Time Domain. . . . . . . . .. ... 287
4, Conclusions . . . . . . . . . . e e 292
Acknowledgment . . . . . . . . . L L e e e 292
References . . . . . . . . . e e e e e e e 293

Abstract

The impulse response was derived for a Kompfner null coupler in which
a forward wave and an O-type fast space-charge wave were passively coupled.
The derivation of the equations is based on Barnes’ analysis of the coupled-
mode systems.

It was found that if the forward wave is driven with an impulse, the
response of the fast space-charge wave consists of a sharply defined RF pulse,
of constant maximum amplitude, in which the length increases linearly with
both time and distance of propagation.

1. Introduction

The impulse response of active contraflow systems of infinite and finite
lengths were given by Bobroff and Haus”. Their results describe the buildup
of oscillation in various types of backward wave oscillators®® and the buildup

+%_ The impulse response of passive forward

of stimulated Brillouin scattering
wave system of an infinite length was shown by Barnes®. In this paper
Barnes’ analysis was modified to a Kompfner null coupler. While the present
work is related to that of Barnes, new parameters are required because of the

uncoupled @—f characteristics of the fast space-charge wave.



284 Ichiro SAKURABA

2. The Dip Condition in the Frequency Domain

Consider two modes with time dependence ¢ which are weakly coupled.
One is a forward circuit wave, and the other is a fast space-charge wave (see
Fig. 1). If the reduced space-charge force in a finite beam is large, coupling

FORWARD WAVE

INPUT OU%’U r
FAST SPACE-CHARGE Wave _ ,§: i ﬁ\ FAST SPACE-CHARGE WAVE
o— - ~~1 o0
BEAM INPUT BEAM OUTPUT
O ——== 4> ~-==p—
SLOW SPACE-CHARGE Wave SLOW SPACE - CHARGE WAVE

Fig. 1. Block diagram of a Kompfner null coupler.

to the slow space-charge wave may be neglected. In this case, the type of
coupling is characterized by the frequency-domain coupled-mode equations®?”

%(az’_w) — — 81+ Ch)ar(z, @)+ cua(z ), (1)

z

M:cual(z, ) —j(B.—Ba:(2, ), (2)
0z

where a;(z, ) is the frequency-domain amplitude of the forward circuit wave,
a;(2, ®) is the frequency-domain amplitude of the fast space-charge wave, B, is
electronic propagation constant, C is the gain parameter, & is the velocity
parameter which measures the deviation of the uncoupled circuit phase velocity
from the d-c beam velocity, defined by

b MU 5

e (3)
where u, is the d-c beam velocity and v, is the phase velocity, B, is the
reduced plasma propagation constant, defined by

B, = B.Cy4QC , (4)

where QC is the space-charge parameter and 4QC=1 in actual devices, and ¢,
and ¢, are the complex coupling coefficients per unit length between the two
waves. The coupling is assumed to be uniform over the length of the coupler,
hence mutual coupling coefficients are independent of the length. The modes
are assumed to be lossless. In the absence of coupling, $,(1+6C) and 8,— 8,
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are positive and the phase velocities of both waves are in the positive 2-direc-
tion. For weak coupling it is assumed that the mutual coupling coefficients
are small compared with 8,(1+&C) and B,—f, and, furthermore, it is assumed
that B.(1+6C)=B,—B, The group velocities are in the same directions for
the two modes, and it follows that

= —cf, (5)

co= —jk, (6)
where k£ is given by

k=4 BCI2p, = B.Cly 2 (4QC)"* . (7)

Solutions of the coupled mode equations (1) and (2) are of the form e*
the propagation constants are

e = —j(ButBs) (8)
where

2B.= B.1+Cb)+B.—B,=2p.4 B.C(6— 4QC), (9)

b= e+ B = C| o+ PHERETE g

2B, = P.(1+Cb)—(B,—B)=B.C+4 4QC), (11)

lewl® = B C*/28, = FLC*[2(4QC)" . (12)

It should be noted that 7, and 7, are purely imaginary, and there can be no
exponentially growing or decaying solutions. This coupling is called “passive
mode coupling or co-flow hermitian coupling”®”. The behavior of this type
of a coupled-mode system, for an input that varies sinusoidally with time,
consists of the familiar periodic interchange of power between the two modes.
Now, provided that a,(0, w) and @,(0, w) are the frequency-domain ampli-
tudes at the beginning of the coupling region, the complete solutions of Egs.
(1) and (2) are given by
a(z, w) = e " [(cos ﬁbz~jﬁ sin ﬁbz>a1(0, )+ <:]k sin ﬁ,,z)ag(O, m)] ,
[Bb ‘811
(13)
a2z, w) = e ® [<—% sin ﬁ,,z)al((), )+ <cos 8.z +]% sin ‘Bbz)ag(o, a))] .
b b
(14)

Assume initially that all the power P,, is on the forward wave circuit, hence
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2]a,(0, 0)|* = Py, A (15)

(0, 0) =0. h . (16)
It is seen that the average power on the forward wave is given by

Pz)= P, (1 —Fsin®8,2), (17)

whereas the average power on the fast space-charge wave is given by
Py(2)= Pp—P,(z). : (18)
Figure 2 shows a sketch of P,(2) and P,(z) in this case, in which

a1 BuB.Co+ B, ] . [1+ (b+A/4QCZ')2(4QC)1/Z}_1’ (19)

is the maximum fraction of power transfered.
Consider that, before coupling, the propagation constants of two modes
were identical at the frequency w,, 1. e.,

by= —PulBuC, (20)
so that

Foat w=F=1, (21)

Buo = Bo—Buw = Pul1—C4QC), (22)

Buw="F, ) (23)
and

Ba=0. (24)

From Egs. (17) and (18), the power carried by the two modes is found
to be '

P (2)= Py, cos’kz, (25)
Py(z) = Py, sin’kz . (26)
It is seen that complete power transfer takes place in a length given by

B.Cl
V2 (4QC)’

In this length, Z4,, all the power introduced into the circuit is transformed to
the fast space-charge waves on the beam. Furthermore, transfer takes place in
exactly the same way if power is initially introduced on the fast space-charge
wave, and complete power transfer will take place in the same length. The
length of slow-wave circuit required for this to occur is called the Kompfner
dip length, and such a device is the so-called Kompfner null coupler. It

klgi, = 5 I 2n+1)= n=0, x1, +2, . (27)
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B(Z)/Pry

|

0 72 7

Fig. 2. Power division between two waves in the case
where QC=1.0 and by=—20.

should be noted that for uniform coupliug, which has been treated here,
complete power transfer is possible only for the synchronous cases (see Fig. 2).

3. The Impulse Response in the Time Domain

Now, consider the response that this coupled system shows when the
input to one of the modes is an impulse in time. In particular, examine the
response of the fast space-charge wave when the forward wave circuit is
driven with an impulse. For weak coupling, the nature of the interaction
will depend only upon the characteristics of the system at frequencies in the
neighborhood of the frequency w, at which the two modes equal phase velo-
cities. Thus we shall be able to derive some rather general results without
being compelled to make any severely restrictive assumptions about the nature
of the modes.

Two modes of the forward circuit wave and the fast space-charge wave
whose uncoupled w—f characteristics intersect are shown in Fig. 3. If the
coupling between two waves is weak, then the only important interaction
occurs at a frequency in the neighborhood of w,, the frequency at which the
two uncoupled waves have equal phase velocities. Assuming that the phase
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Fig. 3. o—f characteristics of the forward wave and the fast
space-charge wave.

constant of the forward wave can be approximated by the use of the first
two terms of a power series expansion about w, we have

o=,

8.0+ Ch=[p+CB)],_ + [7{%56(1 +cb)J (0 —a)

1

i

— Bo(l+Chy+ [ (1 +Cb0)+/360C< db ) ] (0—ay),

do
(28)
where f,, is the electronic propagation constant at the frequency w, and &,
is the velocity parameter at the frequency w, It was assumed that the gain
parameter C is independent of the frequency in the neighborhood of w,**'.
By definition of &,

db _ db  dv,
do dv, do’

and hence

db i
o ~ , 30
< dv, )wma Cvl, (30)

where v,, is the phase velocity of the forward wave at the frequency w,.
The phase velocity of the circuit for frequencies close to @, is approximated
by the first two terms of a power-series expansion about @, and it follows

that
i@& ~ _‘(329_(1_ Upo , (31)
d(l) @=w, Wy .UgO

(29)
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where v, is the circuit group velocity when o= w,.
From Egs. (28), (30) and (31), the approximation for phase constant of
the forward wave, for frequencies about w, can be written as

Be(L+Cb) = Bo(1+Chy)+ 2= (32)

Vg0

In the same way, the approximation for phase constant of the fast space-
charge wave can be shown as

BB = (B— o + [éf;(ﬂe—ﬁq)] (0—a)

W=,

0—w
= Bu— P+ o, (33)
Uy
The time-domain mode amplitudes are related to the frequency-domain
mode amplitudes by the Fourier transform relation

alz, 1) = mLSWa(z, w)edw+c.c., (34)
2 Jo

where c.c. indicates the complex conjugate. By writing the Fourier transform
relation in the form given by Eq. (34), rather than the more familiar double-
sided form, we avoided the necessity of explicitly considering the electron-
wave interactions at negative frequencies; the negative frequencies are dealt
with automatically by the addition of the complex conjugate term?®.

Now consider the case where boundary conditions at z=0 are given by

a,(0, ) = a,0(2), (35)
" a,(0,2) =0, (36)
N ay(0, w) = aq, (37)
" (0, ) =0, (38)

where §(¢) is the unit impulse and a, is a real constant.

If we substitute into Egs. (9), (10) and (11) the expressions of phase
constants given by Egs. (32) and (33), then 8, B, and B, can be written in
the form

Ba= Beo—Puo +%(w—wo)< ! +i-> ; (39)

Uy Uy
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By = [/eui(w—wof( 1 —lﬂw, (40)
4 Vo
and
ﬁd:(w—%)( 1 —1>. (41)
'Uyg Uy

Further assuming that the coupling coefficient % is a sufficiently slowly
varying function of frequency for the weak coupling case, we can approximate
it in the neighborhood of w, by a constant, namely

dk
do

k=k0+< ) (w—wy) =k, (42)
where &, is the coupling coefficient at the frequency w,.

If we substitute into Eqg. (14) the frequency conditions, given by Eqgs. (37)
and (38), the expressions for phase constants, given by Egs. (32) and (33), and
the expressions for B, f, and B given by Eqgs. (39), (40) and (41), we find
the frequency-domain amplitude of the fast space-charge wave can be written
in the form

ax(z, @) = —j Az, 0 —ar) exp {—j [(ﬁeo—ﬂqom o= (;, = JH} ,

Vo U
(43)
where
2 71-1/2 PRI 377
Ay(z, 0 —w,) = aq [1 +~(@j| sin {/eoz [1 +(szi] } , (44)
[Oh Wy
and

w1 = 2k, / <_1_ _i-) . (45)

Tg0 22

Note that the parameter @, which is directly proportional to the magni-
tude of the coupling coefficient %, is a measure of the angular frequency
bandwidth of the electron-wave interaction. In terms of w,, the criterion for
the weak-coupling case is, therefore,

w £ wy . (46)

The time-domain amplitude of the fast space-charge wave is now obtained
by substituting Eq. (43) into Eq. (34). The evaluation of the integral in Eq.
(34) is greatly simplified if we note that for the weak coupling case where
o, € w,, we can extend the lower limit of the integral to —oo without intro-

ducing important errors; upon doing this, we find the time-domain amplitude
is given by
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a2, 1) = Flz, £)sin [wot—(Ba— )], (47)
where
/2
zZ z
F(z, t):aoa)lJo w — 1 5 (48)
Ugo Uy
TRAILIN G LEADING
- EDGFE EDGE
3 /,0
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.
N
N
= o0 = 7
4/ 4!
Fig. 4. Typical form of pulse envelope on the fast space-charge
wave in response to an 1mpulse input of magnitude ay on
the forward wave.
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Fig. 5. A time sequence of pulse envelopes on the fast space-charge

wave for the case where wg=2vgp and wo=3vp.
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for

E o< 2

Uy Vo

and

Flz,t)=0, (49)
for

i< = or > z

U Vo

It is seen that the response of the fast space-charge wave to an impulse
input on the forward circuit wave consists of a wave of the form sin{w,¢—
(Bo—Pp)z] that is modulated in amplitude by a single pulse. A sketch of
a typical form of the pulse envelope, as a function of z, is shown in Fig. 4.
The pulse envelope has a sharp leading edge that travels with velocity #, and
a sharp trailing edge that travels with velocity v, The maximum amplitude
of the pulse envelope is independent of both z and £ The pulse envelope
length, measured along the z-axis, increases linearly with time. The pulse
envelope length, measured along the t-axis, increases linearly with z. Figure
5 shows a normalized time sequence for the pulse envelopes for the case
where uy=2v, and wu,=3v,.

4, Conclusions

A derivation of the time-domain response of a Kompfner null coupler
was presented. It is hoped that this derivation will give new insights into
the electron-wave interaction phenomena.

It is necessary that further theoretical investigations be carried out to
determine the total energy carried by the pulse on the fast space-charge wave.
When the w—f characteristics deviate {from linearity outside of the frequency
range w,—w; t0 w,+w,, the resulting effect on the sharp edges of the pulse
on the fast space-charge wave should be investigated.
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