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                                Absrtact

    The fundamental properties of Gaussian plane wave in optical heterodyne

detections, were presented. The derivation was based on Corcoran's analysis for

a one-dimensionai photocathode.

    In the case in which the distribution length is comparable with the cathode

length and two beams are exactly parallel and normal incident, the ratio of power

output of Gaussian plane waves to that of uniform plane waves decreases as the

distribution length decreases. In the case where the distribution length is small

compared with the cathode, the directivity factor of a cathode of a width L is

given by r2 exp(-P?,r212). The directivity of the normal incidence and non-parallel

beams increases as the distribution iength increases. The directional pattern of

Gaussian plane waves is less sensitive to angies than to that of uniform plane

waves.

                            1. Introduction

    Angular selectivity properties in photomixing or heterodyning have been pointed

out by Strokei), Siegman, Harris, McMurtry2), Corcoran3), Sakuraba`) and DeLange5).

The antenna properties of optical heterodyne detection have also been pointed out
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 DeLange5), but no analyses have been '

directional characteristics of illumination

distribution are discussed in the fo!lowing

by Read, Fried, Turner6)") and Siegman8). The directiona} characteristics of O-type

microwave phototubes and two-dimensional photocathodes have recently been shown

by Sakuraba, Chida9), Tsubo'O) and Koyanagiii). The wavefront curvature effects

and quantum ethciency distribution effects on signal output power have more
recently been given by Sakurabai2), Takajo'3), Yoshida and Koyanagi'`).

    The directional properties arise because the photocathode is generally large

compared to the optical wavelength. As a result, the phase difference between

two light beams and thus the phase of the difference frequency signal, can vary

widely over the photocathode. The maximum beat signal is obtained only when

two light beams bear the same phase relationship over the complete coincidence.

It is therefore implied that the optical phase must be uniform over the complete

wavefront of each beam. DeLange5) has shown that these requirements are met

only under the following conditions the two beams must have the same optical

modes, the diameters of two beams must be coincident to provide maximum signal-

to-noise ratio, the Poynting vectors of beams must be coincident, the beams must

be identically polarized, and the wavefronts must have the same radius of curvature.

    Boyd and Gordon'5> have shown that the stable modes in Fabry-Perot reso-

nators with spherical reflectors have a radial amplitude distribution whlch ls the

product of a Gaussian function and a Hermite polynomiaL The lowest mode is
pure Gaussian and the mode is observed in gas lasers. (see Fig. 1) Evtuhov and
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            2. 0utput Current and Coupled Mode Description

    Analyses of the photodetection mechanism for incoherent and coherent radia-

tion have shown that the current output of the detection is proportional to the

square of the total electric field at each point on the photocathodei7)'i8). For

simplicity the proportionality is taken as unity. Then the current can be ex-

pressed as

        i(P; t)- ;Sim.[V(')(R t')]2dt', (i)

where V(")(R t') is associated with the rea! field of the light wave at P. The

current is temporally averaged over a period which !s long compared with that

of any optical frequencies in the llght wave and short compared with that of

any microwave beats which may be produced. VC")(J'l a is associated with an

analytical signal V(P) ei9). Hence the current becomes

         i(P;t)r-i<V2(I]l,t)+V*2(Plt)>+-l;<Y(Rt)V*,(Rt)>, (2)

where the brackets denote the time averaging over the period 71 With these
restrictions on T the first term on the right-hand side is zero. Even if they were

not, we have no practical means of coupling an optical-frequency-modulated electron

current. When the field at the photocathode is a superposition of monochromatic

waves:

         V(R t)-Z] .Il,,(Ae"jtunt, (3)
                  7t
and the current is

         i(p;t)-1zE,,(?)Eri(?)+-ILZ<E.(P).E;IL(P)ed`blner"n't>, (4)

                 2n 2･n"b                                     7e#"b

The time average is taken over a period T<lte.,-to.ITi, then the angular brackets

can be neglected. Since to., and to. each occupy a range of values, the current

becomes

         i(Rt)-1ZE,,(.Z?)E,T(J])+ReZIE.(1?)E.",(P)e'(mm-"n't. (5)

                 2n 7b,7]b
                                    7e#"b
In particular when the field at P is the superposition of two waves,

         i(Il t) -= ± [E,(1])Ef(A+E,(AEf(P)] +ReEi(AE2"(1]') exp [j'(tu2-tui)t]･

                                                                    (6)

It is only the ac term which is of interest and we can write for the complex
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current flowing from the photocathode:

        ,J(z, t)-.I(z)ej`"2-thi", (7)
where

        J(z) == E,(2) ny E," (z), (8)
and again, the unessential constant factor was ignored. This is excited by the

light wave to produce the current at each point on the photocathode. Then the

current of the detector can be expressed as

        i(e=e'(tu2ll-toi'tS..I(2)dA. (9)

  The simplest example we can consider is a photocathode which is a strip

of width L in the 2-direction and uniform in the x-direction. The current is

therefore

        i(t)-e'`"2-`"i'tS,L .1'(z)clfz. (10)

    A general photodetector consists of a photoelectric element, followed by an

electron gun region and a microwave circuit to detect and mix the modulation

placed on the electron beam or the carrier by the incident light-beam signal, as

shown in Fig. 2. Many possible variations of thls idea have been investigated
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                   Fig. Z. Representation of detection process with

                         Gaussian plane waves,

by various authors20)N22). In the gun region a nonuniformity may be due to a

potential variation and coupied-mode theory provides an elegant way of describing

space-charge-wave propagation in the nonuniforrn region and it has been treated

extensiveiy in Haddad, Bevensee and Adair's iiteratures23)'24). Now consider the

coupled-mode description of space-charge waves on a nonuniform electron beam

in the gun region. Assuming a single velocity beam which is confined to flow

in the y-direction by a homogeneous dc magnetic field and small-signal conditions
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where products of ac terms may be neglected, the following set of coupled-mode

equations for space-charge-wave propagation on an e!ectron beam in a nonuni--

form drift region may be derived23):

         (iZ+7'[Pe(y)TPp(y)]larp(y)=:pt;[ddylnZb(y)]a.(y), (11)

where

                      '
        "T(y)= -2irv zib (y) [Vl (y)±Zb (y)(- di (y))], (i2)

        zb(y) :- 2V6(YIR,.]6iY.) tup(Y), (13)

        w.(y)=[so;ezlul k(t)]ii2, (i4>

        uo(z/)=[?,; V6(zi)]i!2, (ls)

        X(y)= m                   Uo(ZI)Ul(Z/),                                                                    (16)
                ]el

and a.(y) are the fast and s!ow space-charge modes, respectively, Zb(y) is beam

impedance, iVb(y) is the dc potential along the drift region, 4 is the beam current

density, tu is the radian frequency, to.(y) is the radian plasma frequency for an

infinite beam, e and m are the electron's charge and mass, respectively, eo is the

free space permitivity, uo(y) is the dc beam velocity, R(y) is the space-charge

reductlon factor, "Vl(y) is the beam kinetic potential, z{,(y) is the ac beam velocity,

di(y) is the ac current density, P.(y)=::tu.(y)luo(y) is the plasma propagation par-

ameter and P,(y) ==tu!zto(y) is the electronic propagation parameter. Next consider

the case of pure current modulation at the input plane (y:==O). This corresponds

to the detection and photomixing of the modulation placed on the carrier by the

incident light-beam signal. Recall that current and velocity modulation are related

to the space-charge modes by25>

        di(y)=v-z2b(,)[a-(y)-a+(y)], . (i7)

  and

        ui(y):=: X'1 .,ly)2VZb(y) [a-(y)+a+(y)]･ (is)

In the pure current modulation case it follows that
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        a. (O) -= TtV Zb (O) .4 (o). (lg)

  and

        di(o)-S,iJ(2)･clz. . (2o)
.It is easy to calculate the velocity and current modulation in a nonuniform region.

For instance, in the case where B.(O)=::P.(y)(1-cry) and la/2P.(O)]<1, Haddad and

.Adair2`) have recently shown that

        ]Vl (y)12 ::= luTl (O)i2Zi] (O)R-- :Y,, sin2 e], (21)

      I.11(y)I2==l.]1(O)i2(1.1.y [cos2e+ 1 t-,2., sin20+ v.1:l'IZ., sin20]l･ (22)

 If the slow-space charge wave can be interacted by a suitabie mechanism, the

:ac power on the circuit at gy=y2,J]ts.t, is given by

        l%ut :=: -llrmI(II(O)i2Req, (23)

where R., is the equivalent resistance20)N22) that depends on the characteristics of

nonuniform region and slow-wave circuits and its output connections and that

･can be calculated from Eqs. (19), (20), (21) and (22).

               3. Signal Power Output by Piane Waves of
                  Gaussian Amplitude Distribution

    A schematic representation of the problem of a combination of Gaussian

waves incident on a photocathode is shown in Fig. 2. The field at the photo-

･cathode is given by

        El(z)=Ale-n{12e2oledkiSi"Oiz, (24)
        E2(z)=A2e--2`z2keg2eJ'k2sine2x, (2s)
  where ki and k2 are propagation constants and the signal beam is assumed to

be directed towards a point 2oi on the photocathode at the angle of incidence 0i

,and the local-oscillator beam is assumed to be directed towards a point zo2 on

the photocathode at the angle of incidence e2. It was assumed that ei iE rr!2 and

･e,¥z12. By substitution Eqs. (24) and (25) in Eqs. (8) and (10), it follows that

      di(o)= AiA2*S,L exp[ '(Zr-, cr)2 - .g, .gg,S2 iC,?3S,2.0.2,,e, (zoi-2o2)2-.iPcx] c"u,

                                                                 (26)
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  where

            zolu:2 cos2 el + xo2 ugl cos2 e2
                                  , (27)        a=              z{g2 cos2 0i + uo2, cos2 0,

        r-2 .,.[cousz2,ei+cozsc,,2,e2 ], (2s)

and

        P.=k2 sin O2-ki sin ei. (29)
 Again, the unessential constant factor was ignored. Now consider that two light'

beams are assumed to be directed towards a point zoi=:2o2==2o. on the photo--

cathode at the angle of incidence 0.. Equations (26) and (27) become

        di(O) =:; AiA2'j,L exp['(Zr-, ZO'i)2 -j'Pc2] de, (30)

Accordingly, the signal power output is obtained from Eqs. (23), (30) and (31)..

It is noted that the output current at x=z is similarly Gaussian in distribution.

In general this equation can only be integrated numerically.

                      4. Directional Characteristics

    Consider the power output in the case where the distribution length is com-

parable with cathode length and 0i=e2==O, namely P.=:O. From Eq. (30) the-

output current becomes

        di (O) = AiA2* j: exp[ - (Z ;, Zon)2 ] dl.,

             - ; VUilA,A,*r[Ei:]C(L-rXL9i'Lt)+E7f(X£n )], (32)

where E7f(x) is the error function whose mathematical definition is

        Eif(x) :=:: v2-. Sieut2dt. (33)

Therefore the signal power output may be written

        R}ut=Lll-TR,,r2IAiA2"l2[Eif(L-rZO'L)+E7zlC(ZrOn)]2. (34)

Recall that the power output obtained for uniform plane wave il}umination is'2)i
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                 1        P(O, L) =:: l}- ReqL2[AiA2* ]2SinC2(P.L12)･ (35)

  Thus, the expression for the ratio of the power output P6.t to P(O, L) takes

the form

        -I,1(]bo,"`L) - 4ZLr2, [E7:f(L-r2o'v)+E7:f(Z;n)l2. (36)

A plot of Eq. (36) as a function of zto.IL is shown in Fig. 3. It was assumed

that ei=02:==O, uoi:=zte2=uo. and 2o.=L12. A study of Fig. 3 shows that the

signal power output decreases when the distribution length decreases.

       I.O

        '-" l        --J. ..t e,:e.=o        Ox        v       EL Uoi= Uei Uon
       ×       di

        o

         Q5 I.O Ls
                                      Uon/ L

               Fig. 3. kutlP(O,L) vs. ztonfL in the case

                      zeoi=teo2=zton and 2on==L!2,

    In the case of practical interest in which the

photocathode is small compared with the cathode

putting the limits of integration as ±oo with little

rent becomes

        G(O) = AiA2' Sl.co. exp[- - (2 7, Zon)2 -i'p.z] de

         . H-V-}ILAiAiemjSaXenrehpZr214,

and the signal power output can be shown by

        Iil]ut =: Tll-TReq1AiAl]2DZ)

   2.0 2.5
where 0i == e2=O

 length of distribution on the

length, this can be treated by

error. Thus, the output cur-

                   (37)

                   (38)
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where

        D: .. r2,-P2cr212. <39)
The quantity D, specifies the directivity factor in heterodyning of plane waves

of Gaussian amplitude distribution.

    The special case of interest is that in which 0,:=O and e2=:=6e. This con-

dition means normal incidence but non-parallel beams. In this case P. reduces to

        P. = 2n6e/ft2.

                                       eWhen uoi==zto2=zto. and L=3mm at 6000 A, plots of the normalized output as

a function of 6e for various values of uo. are presented in Fig. 4. This result

      1.0

       I5 L=5mrn       lli x.= 6oooA
       NO..

       =       i( Uon=O･5MM oAD'5
      2

       o                    liLl l
         O l 2 3 4 5 67 s g loxld4
                                  8e (rad)
             Fig. 4. The theoretical normalized ouptut vs. tie in the case
                    where uoi=t{o2 :uon and L=3mm at 6000 A.

shows that the directivity increases when the distribution length increases. It is

apparent that the required condition for negligible reduction in power output can

be calculated by

        Dg == Szcg,,e-(rtbOzeon!22)21-ll-. (4o)

                                                                  oFor example, if two beams of distribution length uo. transmit at 6000 A and

impinge on a photocathode of width L, the two beams must be parallel to within

about ae=5.32×10u5Lfuo. radian. A plot of angular mismatch as a function of
Lluo. is given in Fig. 5. It should be noted that the required condition for
                          euniform plane waves at 6000A is 6e=<2.67×10-71L radian. Thus the directional
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The theoretical normalized output with optical wavelengths as the parameter.

It was assumed that tton=O.3mm, L=3mm, 0i=O and e2=6e.
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                               5. Conclusions

    The fundamental properties of Gaussian plane waves in the optical hetero-

dyne detection were calculated. The genera} characteristic could be summarized

as follows;

1) In the case where the distribution length is comparable with the cathode

length and the beams are exactly parallel and normal incident, the reduction factor

of power output of Gaussian piane waves to that of uniform plane waves is given
by (nr21L2)[E7:f( L-r20't)+llii:fl( 2;n)]2. This ratio decreases when the distribution

length decreases.

2) In the case in which the distribution length is small compared with the

cathode length, the directivity factor of a photocathode of width L is given by

r2exp(-PZr2/2). In the normal incidence and non-parallel beams, the directivity

increases as the distribution length increases.

3) In the case of small distribution lengths, normal incidence and non-parallel

beams, the directional pattern of Gaussian plane waves is less sensitive to angles

than that of uniform plane waves.

4) The directional pattern is narrowed when the optical wavelength decreases in

the case of constant ratio of the distribution length to the cathode width.
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