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SUMMARY

The characteristics of a wake behind a body in flow is imporiant in various
agpects! the momentum of fluid in the wake has a clue to evaluste she force act-
ing on a body, and a shielding effect of a body is also a knowledge required for
an interest of practical applications. The studies on a wake have generally been
pursued in cases of a wniform flow,

The present paper describes a detailed analysis of a far weke behind a plate
mounted in a uniform shear flow, and an approximate analysis of a nesr weke is

also attempted to show the development of the wake as a whole,

M, Arie, Hokkaido University, Sapporo, Japan
Y, Kiys, Hokkaido University, Sapporo, Japan
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1, Introduction

The wake behind & body is usually confined in a rather narrow and long region downstream when
the Reynolds number is sufficiently large. Therefore, the velocity components u' and v' in the wake
behind a two-dimensional body and the Cartesian coordinates x', y' may be governed by u'>s> v' and
2/v'> 9/0x' as in the same manner of the boundary layer studies.

A wake is usually divided into two categories--near wake and far wake. The nature of a near
wake is generally complicated and is usually hard to theoretically analyze, However, only the case
of a flat plate mounted parallel to a uniform flow is treated by Goldstein(l) and Stewartson(2),
for the flow does not separste at the trailing edge. On the other hand, a far wake is rather easy
to analytically treat its flow characteristics, since the boundary layer approximation and & line-
arizing approximation of Oseen type could be applied. The analysis of a far wake is worthwhile,
because the force acting on a body immersed in a flow could be defined irrespective of the shape of
a body and of the flow in its vicinity. C

The flow we most frequently encounter in practice is not necessarily uniform. However, the
flow treated by most of the former studiee seems to have been rather simple cases of a uniform
flow, The present paper is interested in a laminar wake behind a plate in a simple shear flow, as
the most basic and simple case of & non-uniform oncoming flow. Detailed analysis is given for the
far wake, and an approximate solution for the near wake is also attempted to show its process of
developing to the far wake. The analysis is further extended to the drag of the plate.

2., Formulation of the problem

When s representative physical length ,Z and a representative velocity TJ, are properly select-
ed as reference quantities, a two-dimensional flow field can conveniently be described by the non-
dimensional coordinates x, y and flow parameters. The dimensionless stream function ¥ (= y/’/U,,ﬂ)
in this case may be defined by u= away and ve- ay’/ax, 8o that the equation of continuity will
siml taneously be satisfied. The Navier-Stokes equation for & steady two-dimensional flow is

(3¥/oy) (244 /ox) ~ (a4/ ax)(34%/3y)= A4 Y/R (1)

where R is the Reynolds number defined by Uaﬂ/)) and A -az/axz+ Bz/ayz. Ag in the case of a 1
boundary layer studies, the width of a laminar far wake can be assumed to be proportinal to ,ZRI.
The velocity of the oncoming shear flow u' =U,+ «y' shown in Fig. 1 gives the velocity

distribution for the present analysis in dimensionless form:

Upo= [ + Ky ) (2)
where ¢) is the velocity gradient involved in the approaching flow and K-aJ)?/Uo, V¥hen the width of
the wake is denoted by d" on the physical plane, U,, the oncoming velocity along x'-axis in this
cage must be much larger than @wd’ so far as the effect of ) could be treated as a small pertur-
bation. On the ,other hand, the boundary layer approximation technique essumes that d"/x'<<l or
Ihox ' (Uyx' /)%, which means (Upyx'/y)"2>> 1. Therefore, the validity of the present analysis is

limited in the following range: ;
- Vi

RZ <« xF<< (KR =)' (3)

4
Since the Reynolds number for a. far wake could be understood to be sufficiently large,|y'|~O0(LH?),
Therefore, the order of the magnitude of a new parameter to be introduced inside the far wake

defining by 1
Y = RZy @)

muxj)t be Y~ 0(1) in the far wake. Then, the matched asymptotic expansion after Van Dyke's analysis
(3) gives

N~

Px,yiRI~ T, (x,%)+12"£'f§72(x,¢5-)+... (outside the wake) (5)
A (g RI~ RE Y )+ R (2, Y )+ (inside the vake) ()

The comparison of the terms of the same order with respect to R in the relations obtainable by
substituting eq.(5) and eq.(6) into eq.(l) gives

(2%, /29) (4%, /ox) - (2, /o2 )(20%. /24 ) = 0 1
2%, ﬂg,+é3é_§dﬁ/_agz_@é§}_ ﬂz?ﬁ_@.—, (8)
2y 2% 8y 2x = 2x 34 ax oY
aX M)/ oY =0 (9.2)
ax.l(‘!f I"pz)/ay: (4] 3 (9'b)
where, &, b= %%"ggy - 35%’ f“#’ B zi" N P (20)
Py, 2% el 2y 2 (1)

07’;(4/1,%)=§‘§? S,Zay + &7 oy "B 3y ax Y 2

Since ¥(x,y) implies the stream function of the flow excluding the disturbance of the wake, the
solution for ii, will readily be obtained from eq.(2):

P(x, 4)= 7+(K/2.)4;;2 (2)

Substituting eq.(12) into eq.(8), one has 4 Pa /2% = 0.
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Thus, A(_zlz(x‘%)zo (13)

because of the Helmholtz's conservation of vorticity law along a streamline outside the wake, since
the relation BAE/aan does not include any contribution of viscoeity.

The velocity components outside and inside the wake may be expanded in the same menner as for
the stream functions in eqs.(5) and (6):

- - £
a(x,td.;R)nE(x,g)+R§lZz(%,‘j)+'-' (14) vOLY43RY=Ti(X Y +R*Tp(x.g>*+ (15)
U0, 41 RY = 1, (8, Y FR 4,0, Y34A16) (g5 RY= R 20 (%, Yy +R Y )+ (17)

Since the flow inside the wake behind a body in a uniform flow should be symmetrical with reapect

to Y=0,
au, /a3y =0 for Y=0 (18)

Further, so far ss the velocities given by eqs.(14) and (16) for outside and inside the wake could
be contimous, the boundary condition at Y—pioogives uy(x,Y)—3U;(x,0) and u,(x,¥)=sK¥+U,(x,0). Thus,
YV (x,Y) Y0, (x,0)+X (x) and YW, (x,Y)=3($)KY?+YU,(x,0)+X2(x) for Y-ptoo. On the other hand, eq.(9)
gives &) (¥ )oF,(x) and Lo ¥, ¥)=F (x). The functions of x, F, and F, can now be evaluated by
8qs.(10) and (115 with the boundary condition for Yepteo: F((x)=0 and Fj(x)=-K(dX;/dx)+dU,(x,0)/dx.,
However, the function X,(x) in F, must still be determined. Since X,(x)= % (x,Y)-YU,(x,0),

X4 n_ﬁl-u,(x,y)] dY for Y>0, and X mﬁl-ul(x,Y)]dY for Y<O0, Thus,

X, = —A‘?‘(x)Ag/nY (19)

where, Jr(x)-ﬁl-u((x,Y)] dY. Therefore, the relations dj=F(x), & =F,(x) and the equation of
continuity give the equations of motion and the continuity relationship for the flow inside the

wakes

U, U
w45y -5 =0 (20.2)
AU, [2x + Vi /Y =0 (20.b)
oty D1, 520, o BU Pz dd d
B v uy S USG5 5y = K AT T gy B0 (21.2)
Uy /3x + dY; /Y =0 (21.b)

3, Velocity distributions in the wake

Fge.{20) and (21) must be solved with respect to u,,v, and u,,v, to obtain the velocities in
the wake. u, end vy are the velocity components in the far wake behind a plate in uniform flow of
Ueo=l, which are already obtained by Goldstein(4) and Stewsrtson(5). Namely,

= 1= (% ) (22)
v =% }r’u/);zm (23)
h . ) "Z o 2
where < Aqu e_( --’—ZZ (24)
% =X €'* A ’ (25)
,d-/m:_2A37cwr[§‘3+(%)?/lezzmﬁ(—‘/§—)_] s (26)
= A x“.‘a‘[(i)'i-(/_ 2)6"2722 (;Z_._)- el ﬁﬂ@ﬁZ] (27)
e il N R - 2
The function 7 involved 19 these equations is given zby 2
7=Y/(2x3% and Mﬂ’-oz = 7‘.2-7;.5 e Zdz (28)

The other terms w{®,v"etc. that should appeer in eqs.(22) and (23) are also obteinable, but they
are omitted here as trivial terms. The next step is to solve eq.(2l) to obtain u, and v, . Evident-
ly, the first term in the right-hand side of eq.(2l.a) represents the effect of vorticity in-
volved in the approaching flow, and the second term duz(x,o)/dx means the inclination of flow
against the original direction because of the displacement effect of the wake itself. Since eq.
(21.8) ie linear in respect of u, and vy , the solutions of the two sets of equations obtainable
by separating the two terms in the right<hand side can be superposed to integrate eq.(21.a)s

46

L (s v iy vy = Kot A9 Y (29.a)
pUf Y 9z + U2/ Y =0 (29.b)
d) &y dT(x,0)
x(un LUARUY Uéd): dx (30.a)
auz(d’/ax + 31&; )/QY = 0 . y (30.b)
%) (d)
Uy = e 7, =y (31)

The boundary conditions for eqs,(29) and (30) are:
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for Y=> oo us=sKY, uc:LpUz (%,0) and for Y=0 : Jud/ava0, w0 (32)

(A) Solution of egs.(29.a) and (29.b)
B18.(29.a) and (29.b) can be rewritten by puttmg u,v-l(Yaw2

WP K (Ui 5 e ) +u Y Ay (33.)
QU0 — RUE“AY) = 0 (35»b)

Therefore, the solution of these equations should give the values of u # and v2 N Let expand wz
and v{"in the following manner by understanding that ja>[i> (% .. and ML v, o when
x is sufficiently larges

w() w(le+wtz,A)+ wtaA)+ . ( )
(A)__ “ M 'U'“b v.(s,A) _____ 54
Then, the solution of the equa.t:.ons derlvable by substituting w, “Lwt*and v "into eqs.(33)
giveﬂ the first approximation of w’and v/, And the next step s bo substitute by ‘#w‘“’emd
v nv +v - again into eqe.(33) to mprove the aceuracy of the second approximate values of w
and v,f“’ by understanding the values of wi and v,_ are known in the former first step and vice
versa. Nemely, the substitution of w,‘fuw;’,“ d v¥=y? into eqs.(33) gives the following relations

when the same order respecting to x is compared:

LD 1. ) +00
W TR — (0 Y W gy [ w0ty ) (55.8)
b yld °
e~ o =0 (35.b)

In the same way, other sets of equations can be derived by putting Wy by st ey and

80 on to determine wi,wy ... and vivPP ..., I.(24) gives [T d¥= n or d(j w, dY)/dxso.
Therefore, introduction of thia relatmn to the right-hand side of eq.{35.a) together with eq.
(26) results to give

o, 0 2, v(1,4)
B;r;c “'b‘au“?z —_ KA % 729 = (36)
When this equation is rearra.nged by putting
w;a,/b: KAFOp (37)
one has
FrenR = et (30)
Thus,

-2 Ly ) L
F = —@&* (430 + (354 + Q) /Yo (p/vE) + Az
84,8, being integration constants, which can be determined by the boundary condition im eq. (32).
Namely, a,=-3/2/4 and az-o, since F,—»0 when ¥ —»too, Therefore, eq. (37) becomes

W = (Y KA rapp T (39)
When QW Yax= 9572y obtainable from eq.(35.b) is substituted into eq.(36), one has
[
W = (25 ¥ T px e
with which vi"* can be computed by introducing eq.(39) to this equatien:
- dp2
VP = A X E (a6 b, (40)

The mtegx‘atmn constant by which may be a function of x in general can be detertmnod by the
principle of rapid decs.y of vorticity(6). Nemely, the vorticity &% 0¥z + D¥,79Y that would
be mtroduced by Q'A v 4B gy » -m}ion should show a nature of a,n exponantml decay to zero.
When ve®is written in the form of v =KA%2G (?)+b' after eq. (40), ““becomes

(S
£9° = QUSE) + (e = M MAxEopgy 4 db
Since the first two terms in the right-hand side of this equatlon andently show an exponential
decay for 7 -»%00 , db;/dx must be equal to zero. Therefore, the boundarycondition v§'%s0 at
x—300 gives by=0. Thus,

U, 0 = (57 KAX % (4)
In the same way, o , ws' pooo and v ””, v;“l;“. can be computed, though the process is rather
Longthy 2 V2
en,
Wi = - B OPa 3= (-3 gy - ﬁﬂﬂ#?+v—(ﬂ:)/(2+2’z & gL
e 3!

VSR = m XEY WP

(34 ot _Jif —t asn )
s 7&%11%1(7—442)@ +06D, V= 3M6ﬂx/x[? 4 (4 J?
where, (¥ is & constant that should be determined to ensure an exponential decay of the tem
which has an order of magnitude 0(x?) at -3 oo .

06

(B) Solution of eqe.(30.a) and (30, bg
It is already found by Imai's work(7) that the flow outside the wake of a two-dimensional
symmstrical body ean be described by the imsginary part of & complex potential f£(z):
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/
1/(::4;12) =1 [f@)] (41)

L1 Lol
vhere,  F(m)m 2 4 (AR MM E L (/T A REE YD OIIAT £ AR 12 i -
The terms of O(R'® and O(R"') respectively mean the displacement of the wake introduced by uy ,v
and that introduced by uy ,v; . The contribution of u{’,v¥#’ to the flow outside the wake must
have a higher order of magaitude than OQR"E), if there exists any. Therefore, the effact of
vorticity could be obviated so long ag the terms up to O(R’ﬁ) are considered in the complex
potential. Thus, the relations in eqs.(5) and (41) lead to

! i
L reNE L / -
Vo) =1 [ Lekng ~i (5% F + 4 (ZT AR Ung -
E‘ur;;her, the real part of the complex velocity derivable from f(z) must be equal to U,(x,y) in eqg.
14):
A

£
Uz2(x,00 = ﬁ'x—’ - %(%)zA’x’,&zx e nmomne

The first term in the right-hand side in this equati‘cm will be taken as the dominant term here. As
in the former case of u{’, one pute uy =(A/fiE)x"'« w;". Substitution of this equation into eqs.
(30.a) and (30.b)mgives the equations to be solved to determine wi and v . Fxpanding these two

1, [0 . .
terms into w¥awy®roos and v ud®ros¢ one has a series of a set of relations to refine the accu=
and v,  are as follows:

racy of we and ve® . The results of analysis for wy’
a.dy A2

We "= — Fe= X b (f— DEFL -+ O(x°2

v;u,d; — b/%% s P mapg‘ﬂl +00x*)

4. Drag

Taking two perpendicular sections to flow AyBy and Ay Ba sufficiently upstreanm and downe
stream from a body, one considers the control volume of a rectangular shape 4B B:Az4: . The
positions of Ay ,B; ,A; ,Ba ave understood to be sufficiently afar off the x'-axis. The mass m,
and the momentum w%i’ flowing into the control volume under consideration through the section denoted
by 44By are my={ pusdy' and M ={ pui2dy', On the other hand, the mase ma and the momentum Mz flowe
ing out from thé”section downstréam denpied by 4zB; are mgl ¢(ul, -w')dy' end Mgmf%?(u,;o =w! Pdyf,
Since there is a difference of m -my=_[ pwidy' between thede two masses, this amdunt of mass must
flow out through the sides of the control volume. The mass (mq-m;) in this case may be undersicod
to have an average velocity of U, in x'-direction, as the approaching velocity to the plate u'e,
includes & simple shear flo\z};’ Hamely, the momentum in x'-direction that would be carried out fyrom
control volume must be Msmj PUswidy s Therefore, D, the drag of the plate becomes Dol -My-Kg,
In other words, the dreg coefficient Cy, takes the following forms

e +a0 -

p == g (W 2K — W23 dlay
where, (= D/(?U:f/)o Substituting the expression for w already obtained, one has the following
relation for the limiting case of x—300 after integration:

P +00 _Lyz J—. Rl
CpR%2= 1zA [ €7ty +vEZKRZA [ FBopdy
—o0 -
Loy
= 20A ~ 2 (/2)F KRTFAC (42)
This is the equation by which the two conagtants A and C remsined so far cam be evaluated. As will
readily be seen in eq.(42), C may be related with the drag to be introduced by the vorticity in-
cluded in the main flow, since the contribution of K venishes when C becomes zerc. C;, the drag
coafficient of & flat plate is already obtained:
§ e g

A= /177 R=Co (43)
This relation can easily be obtained from eq.(42) by putting CDC;,“ for K=0, Therefors, substi-
tuting eq.(43) into eq.(42), one has

- (1 % A2 |

Cp = G — (I =05 KC (44)
In the case of a flat plate of & finite length £ mounted in a simple shear flow, C could be

Judged to be zero, since the effect of shear would probably cancel esch other along the upper and
lower surfaces. In this case, A = 23//iT , where A = 0,33206.

5. An approximate analysis of near wake

Stewartson(2) showed that the boundary layer technigue is not applicable within a circular
region of radius O(f R‘i) with ite center at the trailing edge of the plate. However, Goldstein's
solution of a near wake, obtained by analytically extending the Blasius solution,; could be applied
except in the immediate vicinity of the trailing edge, because the reglon above stated would be
very narrow when Reynolds number is sufficiently large.

By the use of an analytical vesult on & laminar boundary layer along a plate in a simple
ghear flow Murray(8) and Van Dyke(9), etc., an attempt is possible to enalyticslly obiain the
velocity profiles in the near wake of a flat plate by means of the similar msuner with Goldstein's
method. Fas.(20) and (21) are apgain the governing relations by accepbing the velocity components
et the trailing edge alveady given by Murray and Van Dyke, etc.

The boundary condition at the outer edge of the wake gives us(x,Y) = K¥+Uz(x,0) for ¥ wpioo ,
os wes once used in the far wake smalysis. Since the value of Ug(xyo)p the digplacesent affect of
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the wake on the flow inside the wake, is not evaluated as yet, one puts uy(x,Y) —+KY by ommitting
the contribution of Uy(x,0) for the present approximate treatment of the flow in near wake,
Further, the values of up(x,0), v,(x,0) and u,(x,0), vy(x,e0) must be given to analyse the flow in
near wake, none of which has not yet been determined. Therefore, the value of these terms must
first be reasonably sssumed for the time being. First, one assumes that u,(x,0)=0 as will be given
from the far wake analysis. As the second step, one further assumes either one of vé(x,O or
vzgx,eog-O. Undexr these two sets of assumptions, (a) uy(x,0)=0, v,(x,0)=0 and (b) uy(x,0)=0,

¥, (X, 00)u0, numerical solutions of the governing equations given by eqs.(20.s,b) and eqs.(2l.a,b)
are now possible to obtain. The numerical computations were performed by the fimite differece
mathod given by Schlichting(10), and the results of which for these two sets of assumptions are
compared in Figs.2 and 3. Fig.2 shows the velocity defect along the center line of the wake (Y=0)
as a function of x4, the distance from the trailing edge. As is indicated in this figure, this
result is for the case of a uniform flow. The result already obtained by Goldstein(l) and the
result of the far wake analysis are also plotted for reference. A close agreement between the
present numerical computations for the near wake and the far wake analysis can be expected, since
a8 reasonably smooth connection between these two curves is evident. Further, one may be able to
Judge that the above assumptions employed for the analysis of near wake were not unfair, because
the result of the present near wake analysis agrees very well with that of Goldstein when KR'Tw0,
The distribution of u, the streamwise velocity component in neaer wake is plotted in Fig.3 for the
case of KR"Zw0,05 at several sections in the wake., It may be worthwhile to mention that the effect
of the two assumptions for vy (x,0)=0 and v,(x,60)=0 is so small that it can hardly be differenciat-
ed in this plot. The results of far wake analysis for two sections of x4=0.096 and 3.072 are also
indicated with broken line for reference.

6. Discussion of the results
From the above analysis one can write the velocity component in x-direction in a laminar far
wake:

A UGLY) = Uy, Y) +RE LU ) + UL T - . (5.a)
where, 2
W = 1~ AXE fu = AP Yo~ 17 X U x Foop+ 0(x#) (45.v)
U= KLY~ Af = R - A X Lnxcfos op+ O ] (45.c)
UL = AN X = A e+ O % (45.4)

The value of velocity components at Y = O will readily be evaluated from egs.(45) and equation of
continuity: y

UOLO = {— (4 - L2 HRHC) KT~ (4~ ART)X (fg + LR EYr Epat OGE)
V(X,00= CAMIKR™XF + (A 3608) KR X S bnac+ OCx %

As will be detected in eqs.(45.c) and (45.4), the decay of the effect of vorticity imvolved in the
approaching flow is much less compared to that of displacement effect of the wake itself at x =300,
Hamely, speaking about the second order terms, the effect of the vorticity in main flow is

dominant in the far wake.

It is difficult to exactly determine the origin of x in the analysis of a far wake, since the
flow in the vicinity of a body itself is not exactly clear. However, it is known that neither the
mid-point of a body nor the trailing edge of the body could be the origin. Goldstein(4) showed
that the velocity distributions in near wake and far wake behind a flat plate in a uniform flow can
smoothly be connected when the origin of x is taken at 0.52 upstream from the trailing edge, by
comparing the velocity along x-axis at the mid-line of the wake. Namely, x,, the dimensionless
distance from the trailing edge could be expressed by x = x;+ 0.%2. Since the value of C could be
judged to be approximately zero in the case of a simple shear flow, the velocity component at Y = O
may coincide with the case of a uniform flow. Thus, the origin of x may be taken at the same point
with the Goldstein's case. Actually, the result of the numerical computation of the velocity distri-
bution in the far wake obtainable in this manner agrees well with that performed in near wake for
x>5 as will be seen in Fig.3. A feature of development from near wake to far wake can also be seen.
A close examination of these two velocity distributions reveals that the processes of development to
the far wake are different each other—the velocity distribution at the higher-velocity side ap-
proaches faster to that of the far wake compared with the lower-velocity side. The nature of w, the
velocity defect in & laminar wake behind a flat plate, is shown in Fig.4. It can clearly be seen
that the asymmetrical feature of the velocity distribution becomes evident as x increases: the width
of the wake extends to the lower-velocity side rather than to the higher velocity side, and the po=
sition to show the maximum velocity defect is shifted to the lower-velocity side.

It is usually 8 conventional way to employd}k, the width of the wake defined by the distance
between two points on the velocity distribution curve for 0.5 Wg. The feature of Y, and Yy, which
were read in this mammer on the velocity distribution curves in Fig.4 is plotted in Fig.5. The
values of’d}gfor the two cases of a uniform flow and the present shear flow are compared on logae
rithaic plot in Fig.6.

7T+ Conclusion

The velocity distributions in laminar far wake behind a flat plate mounted in a simple shear
flow were analytically treated in details. The effect of vorticity involved in the oncoming flow
over the plate was treated as a small perturbation of the case of a uniform flow to compute
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a reasonable velocity

distribution within a range of (4d/y )2 &L (x'/f Fe (Vod/y )‘i"(wﬁ/uo )".

An attempt was also made to compute the velocity distribution in a laminar near wake under ac-
ceptable assupmtions to demonstrate the development of flow from a near wake to a far wake,

2

(3) vVan Dyke, M., J.
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component in the wake.
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Fig. 4 Velocity defect im the wake .
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Fig. 5 Variation of Yf and Yy of the wake.
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Fig. 6 Variation of the width of wake.



