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Synopsis

A river basin acts as a low pass filter in the prediction process and.
becomes an amplifier for high frequency bands in the detection process.

First, theoretical considerations are made about the detection process for a
basin of the cascade-connected linear reservoirs. Theoretically speaking, the
possibility of obtaining the time function of input depends on the functional
form of the output and on the order of the system or the number of linear reser-
voirs. i

An approximate method of calculation by which the Fourier inverse transform
of the detected input function is always integrable is presented. Results of
calculations using field data are described as illustrative examples. The author
points out that the precision of the detected values of the input decreases
markedly if even a small error is contained in the measurements of the output.

Then, the author investigates the relation of turbulence characteristics of
natural streams to the error in velocity measurements which must be a signigicant
factor affecting the total error in discharge measurements. It is pointed out
that the error in velocity measurements can be decreased appreciably if the
observational period at a point is prolonged by a small fraction of time.

1. Introduction

The use of the transform methods in runoff systems analysis has been mainly
made for the processes of identification and prediction and few attempts have
been made for the detection process. However, it becomes often necessary both in
practical designs and in research to detect the precipitation, which happens to
be missed, from the runoff records and a given system function. To this end, it
is important to investigate a methodology of the detection process.

In the predictibn process a river basin is a low pass filter. To the
contrary, it acts as an amplifier for high frequency bands in the detection
process. The rate of amplification would depend on the functional form of output
and on the frequency characteristics of the basin system. Since the shorter the
duration of a pulse in the output the wider the Fourier spectrum becomes, an
error of short duration in discharge measurements would result in the detection
process. This fact brings forth various problems which should be studied before
the detection process in runoff systems analysis comes into operation.

The total error in discharge measurements in natural streams comes from
various origins. The turbulence in streams must be a gignificant factor among
them. The relationship between the error of the mean velocity observed at a
point and the period of observation will be derived from the power spectra of
velocity fluctuations. This kind of research is an essential basis in obtaining
the precise records of stream discharge which are especially necessary in the
calculation of the detection process.
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2. Theoretical considerations

Let us consider a basin system which consists of a linear reservoir cascade
with n elements. The systems frequency function G(w) 1s given by

n
e
Gw) = [m'w) W

angular frequency

storage factor (reciprocal of storage constant)
imaginary unit

number of linear reservoirs

where

o> g

-

In the frequency domain, the Fourier transform of input I(;) is related to
the output Q(w) with

I(w) = Qw)/G(w) (2)

Since the time function of input I(t) must be a causal function, the
absolute value of  I(w) must be square-integrable:

- 2
[ IT(w)]| dw <= (3)

Thus, the function Q(w) must be at least such that

Qlw) = o {G(w)} - (v ++ ) (4)
where o = Landau notation, which means
Q(w) /6(w) » o for ¢+ +

It is not necessarily true that an arbitrary output function always satisfies
condition (4). This will be shown by the following illustrative examples.

Suppose that a triangular pulse shown in Fig. 1 is given as the output at
time t = t, . The Fourier transform pair is

4sin2 (yB/2) o Juto (5)
Bu)z

QB (t_to) hnd

Thus, the time functions of input for the single reservoir system (n = 1)
and two cascaded reservoirs system (n = 2) are given by equations (6) and (7),
respectively.

f 4sin? (4B/2) .
I(t) = %’ ASIQngB/Z (Acoswty + wsinpty)cosutde (6)
° 0

t >

* 4sin? (4B/2) .
I(t) = %‘J 45;2Bm2B/2 [(Az—mz)coswto + 2xwsinwty]lcoswtdy 7
t >0



Equation (6) is integrable because the integrand on the right hand side
satisfies condition (4). In Fig. 2 results of numerical calculation for two
cases described in the following table are shown. For this problem Laplace
transform is more convenient to investigate the functional form of I(t).
Indeed, input function I(s) is given by

2

I(s) = Q(s) + 2+« é,[e-(to—B)s/Z _ e—(to+B)s/2] 8)

BA

Table: Conditions for numerical calculation

Case 1 (Fig. 2a) Case 2 (Fig. 2b)
Aheh) 0.1 0.1
B(hr) 1.0 1.0
to (hr) 10.0 20.0
Aw(radian/hr) 0.05 0.05
wmax (radian/hr) 150 150
T (tmax) /1 (@) pax 0.009 10.015

Wmax Means the highest value of frequency over which I(w) is
truncated. I(w)payx is the maximum value of I(w)

Equation (8) shows that I(t) is the sum of the output Q(t) and two successive
rectangular pulses with different sign (positive and negative). The height of
rectanglular pulses is amplified by the factor 1/BX

Since the inverse Fourier tran§form given by equation (6) is calculated at
discontinuities, Gibb's phenomenonl appeares in the results of the numerical
calculation.

Fig. 2b shows the effect of truncation error.

Contrary to equation (6), however, equation (7) is not integrable as will
be easily recongnized. )

For the next example we shall consider the output to be a rectangular pulse
as shown in Fig. 3. The time functions I(t) are:

I(t) = %’J Zﬁ%ﬁgﬁ (Acoswty + wsinwtg) coswtdw (9)
)

2 7 2sine
I(t) = ;‘J 2?%&%2 [(Xz—wz)coswto + 2iwsinwt,]coswtdw (10)
o
t >0

It is easily seen that both solutions are meaningless unless the concept of
distributions is introduced. For instance, I(w) for equation (9) is

1) Papoulis, A., "The Fourier Integral and its Application”, McGraw-Hill,
1962, p. 30



2sinwB e—jwt —jwty

]
O 4+ — 2sinwBe
w A

I(y) = 11)

Obviously, the first term of the right hand side is Q(m)e—Jwto.' The transform
pair for the second term is obtained by considering the symmetrical character?

%-[5{t—(to—B)} - G{t—(t0+B)}] <-*-'-%-25;1'.nuuBe_jwt° (12)

Consequently, the time function I(t) is
CI(t) = Q(t-t;,) +-)‘1- [d{t-(to—ﬁ)} - 8{t=(ty+B)}] (13)

The function I(t) given by equation (13) is shown in Fig. 3.

As stated above the evaluation of the inverse Fourier transform is not
always easy even under relatively simple conditions. Consequently, in the
detection process for actual basin systems under more complicated circumstances
it is necessary to develop a method of numerical calculation especially suitable
for computer calculations.

3. Presentation of a method of numerical calculation

A necessary and sufficient condition for a square-integrable function
A(w) 2 0 350 be the Fourier spectrum of a causal function is the Paley-Wiener
condition )

I ll?lééﬁll dw < = ' (14)

()

Consequently, the absolute value of I(w) detected must satisfy condition (14).

A method of numerical calculation which satisfies the Paley-Wiener con-
dition is as follows:

Approximating the output Q(t) by a polygon as shown in Fig. 4a, and
differentiating twice,

k . k .
- 1 1 -jwry 2 -jwt
Q(w) - 2{ = e 4 ——— e 2 4 cevoe
w® (tymty) (t3=t))
kn R
~juwt
+-?E;:E;iI7 e n} (15)

- % fog(w) + 1o, ()}

where QR(m), Qx(w) ¢ real and imaginary part of —Q(w)'w2

2) c.f. 1), p. 14
3) c.f. 1), pp. 215-217
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: Approximating the impulse response G(t) by step functions as shown in Fig.
&b and differentiating once,

= _]; -jwt —jwt =t
G(w) _ju) [kle l+k2e 2+."'+knej

n] (16)
= - L6 () + 46, W)
w X R
where GR(w), Gx(w) ¢ real and imaginary part of -G(w)(d

Consequently,

=1, 1 - -
I(w) = E;z;a;r {( QpG4HQyGp) j(QRGRfQXGX)} a7

As will be seen in equations (15) and (16)

k k k, :
: : T (18)

lo | s l== )+ 5] + oo I
Qx ty-ty ty-t, gt q
( =M, a positive finite value)
GR
[le £ lkll + Ikzl +oeee lknl (19)
( =N, a positive finite value)
Therefore
2MN _ f s .
IwI(w)! L T ( =k, a positive finite value) (20)
R X
Thus
AW = |IW)| < |k/wv] (21)
Consequently,

: In A(w)! _ . Inw| _
wlimim'l—I;—§—LL = lim, i———% =0 (22)

W w too 14y

The Paley-Wiener condition is, thus, satisfied.

Though the Paley-Wiener condition does not immediately mean that I(w) has
a causal inverse, it is permissible to regard the inverse transform of I(w) as
an approximation of a causal function I(t) because an actual runoff system in
which I(t) must be a causal function is being considered.

Numerical examples for the Teshio river basin are shown in Figs. 5 and 6.
A point to be worthy of note is the fact that much attention should be paid to
the high frequency domains of output and basin system function, since the
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function I(t), in many cases, spreads up to a considerably high frequency domain
because of its relatively short duration. .

In Fig. 5 the values of G(w) calculated from two flood records at the
Pifuka gaging station®’/ are compared. It is found that curves of G(u) are
nearly identical for w < 0.6 and the system frequency function for this basin
can be assigned, if necessary. However, for w > 0.6 it is difficult to
prescribe a precise value of G(w), since the small fluctuations on the G(w)
curve seem to be rather random. These fluctuations would probably be due to the
observational errors contained in I(t) and Q(t). The absolute value of G(w)
for w > 0.6 1is damped so small that the effect of errors in observations would
become evident.

A typical example is found in the G(w) curve for flood No. 1 shown in Fig.
5. A distinct fluctuation in the G(w) curve is observed for w between 1.0
and 1.3. In this range of w, the absolute value of I(w) is particulary
small, so that a small change in the value of Q(w) has an appreciable effect on
the value of G(w). Indeed, the order of magnitude of |Q(w)| in this range of
w is 107! mm. On the one hand, the total rainfall for flood No. 1 is 23.7 mm.
Consequently, if there is an error pulse in the discharge measurement corres-
ponding to approximately 0.5 Z of the total effective rainfall, its Fourier
spectrum would have the same order of magnitude as Thus, the value of
G(w) 1is very changeable.

In most cases the systems frequency function G(w) is damped faster than
Q(w) and I(w). And, as stated above, it is usually difficult to prescribe the
precise value of G(w) for w > w., where w, 1is a truncation frequency. For
this reason, a function P(t) which is an approximate estimate of I(t) is
plotted in Fig. 6.

The function P(t) is obtained by the following ways). If I(w) is
truncated above a constant w, and the resulting function is designated by P(w)

P(w) = I(w)pwc(w) =0 |wl > w (23)

[

where pwc(w) : truncation filter

The inverse transform P(c) can be found by expanding P(w) into a Fourier
series in the (-w, we) interval:

o

Pw) = ] agednmlue (24)

n= 00
where

1 [Yc . v
Ao = T f P(ed™™/ue gy BN L)
(&4

P(t) 1is, then, given by

w, o ® sin(mct—nn)
P(t) = - nz_m An —-I;;;:;r——- (26)

4) Yamaoka, I., Fujita, M, Evaluation of Simulation Models For River Runoff
Through Niquist Plots, Proc, Vol. 1, 13th I.A.H.R., Kyoto, 1969, pp. 171-180.
*5) c.f. 1) p. 59



From the above we have
p[ﬂ] R 27)
w m

The function P(t) is related to I(t) by

sinwe (t=T) :
P(t) = r; I(t) BT (28)
For sufficiently large we we have
I(t) = P(t) (29)

The values of rainfall detected by the above method are shown in Figs. 6(a)
and (b) by the dotted line. Owing to the truncation error the total rainfall
detected is not identical with the total rainfall. Then, the detected value was
corrected to make the total rainfall detected be equal to the total rainfall6).
The results are shown in Figs. 6(a) and (b) by the solid line.

4. Considerations to the precision_of velocity
measurements in natural streams’

4.1 Variance-duration curve for the mean velocity

The precision of velocity measurements in natural streams depends on the
duration of the observation. The mean velocity U observed at any point during
a time T, 1is considered as a stochastic quantity the distribution of which is a
function of T,. The relation between the variance of U and the observational
period T, 1is called as the variance-duration curve and given by

T
2C(0 *
c(r,) = 2O J (T,~OR (1) dr (30)
T*2 6]
where C(T,) : variance of mean velocity observed during T,

C(0) : wvariance of mean velocity for T, = 0, that is
the square ‘'of turbulence intensity of the flow

RE(T) ¢ auto-correlation function of the velocity fluctu-
ation Subscript E designates the Eulerian
correlations

Fgr T, » Tg, where T is the Eulerian integral time scale defined by Tg =
fo Re(1)dt , equation %30) gives

T L
C(Tx) & 9 E ( 2 X )

6) Total rainfall is obtained by (Total runoff height/Runoff coefficient).
If the runoff coefficient is a function of total rainfall, it is sometimes
the case, all the calculations should be done with the effective rainfall.
7) Kishi, T., Mori, A., and Hirayama, K., Study on the Mechanics of Turbulence
in Relation to the Analysis of the Accuracy of Velocity Measurements in
natural Rivers, Rept. Faculty of Eng., Hokkaido Univ., July, 1970 (in
Japanese)
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where Ly is the macro scale of turbulence defined by Ly = UT.

It is noticed from equation (31) that no other length scale relating to the
geometry of the river section is contained in C(T,) when Tg or Ly/U is
considered as the unit of time scale. Equation (31) is an important relation in
the consideration of the generalized expressions for turbulence characteristics in
natural streams. ’

As is well known, the following relations hold between the auto-correlation
function and the power spectrum:

00

Rg(t) = L E(f)cos2nfr df ' (32)
u? ‘o
E(f) = AuZ‘J Rg(t)cos2nfr dr (33)
' : e R
" where - f

E(f) = poWer sp§C§r§i:density of turbulence
f : frequency -
u? : energy of turbulence, that is square of turbulence

intensity
Since E(0) = 4u2TE, the relation of E(f)/uzTE v.s. Tgf 1is the normalized

power spectrum of turbulence. When the normalized power spectrum is approximated
by an exponential function its functional form should be8)

E®) _ 4 exp {-4Tpe} (34)
u?Tg '

Substituting equation (34) into equation (30) thru equation (32) and integrating

C(T#) _ 9 tan_lw _1n (w2+1) (35)
€(0) W w?
where ]
=X Ix
4,2 Comparison with the field measurements
Velocity measurements were performed in three rivers in Hokkaido =-- the

Ishikari river, the Chitose river amd the Shin river in 1968 and 1969. The
Ishikari river at Hashimoto-cho station which is more than 100 m wide and around
3 m deep was selected as an example of large scale channel. The Chitose river
at A and B stations which is around 30 m wide and 1 m deep is the example of
a moderate channel. The Shin river which is 10 m wide and 0.5 m deep is an
example of a small scale channel.

For the normalized power spectra, a comparison of equation (34), shown as a
dasned curve, with field measurements is shown in Fig. 7. In spite of a wide
range of variety in the geometry of gaging stations equation (34) agrees
favorably with the field measurements.

8) c.f. 7)



The theoretical variance-duration curve of  C(Tx)/C(0) versus Tyi/Tp
given in equation (35) is compared with field measurements in Fig. 8. The solid
line in the figure shows equation (35) and the dotted line shows the asymptotic
relation (31). It is seen that equation (35) agrees favorably with the field
measurements and equation (31) is also applicable for T*/TE > 15 ...

In the discussions so far, the magnitude of the integral time scale Ty or
the macro scale of turbulence Ly has not yet been mentioned. These quantities
presumably show a complicated dependence on the depth of water. The scale.of the
vortices in an open channel flow will mainly be controlled by the water depth if
the water depth is small. However, if the water depth is large the scale of
vortices will be related to the width of the flow as well.

The data of measurements shown in Figs. 7 and 8 were all obtained during a
low water period. Therefore, the water depth would be the controlling length of
the vortices. Fig. 9 shows the variation of Lx/H , where H is the water
depth, with Z/H , where Z 1is the height above the bottom. Rough.values:of
LX/H range from 3 to 4, though they increases from the bottom towards the
surface. Thus, the rough estimation of Tp 1is (3~ 4)-H/U .

4.3 Importance of increasing the precision in velocity measurements

In the previous chapter, the author pointed out that a specially high -
precision in the output data is necessary in the operation of the detection
process. The total error contained in the output measurements comes .from various
origins. However, there is no doubt that the error in velocity measurements is
one of an important factor among them. Especially, for high water the discharge
measurements must be of high reliability, since the number of data from which the
stage—-discharge relationship is derived is usually limited.

With this respect, the author would like to call attention to a blind spot
in the hydrometric practive. For instance, in the 'Guide to Hydrometecorological
Practice", edited by W.M.0O in 1965, only a space .of nine words which follow is
devoted to the observational period in velocity measurements.

"The velocity is observed . . . . . by conuting the number of revolutions of
the rotor during a period of not less than 60 seconds.

The author would like to propose the following standard for the obser-
vational period in velocity measurements:

T, 2 5Tg

According to the above standard the standard deviation of the observed mean
velocity at a point will be decreased to 50 Z of the turbulence intensity, that
is r.m.s of the velocity fluctuation of the flow. In the present practive of
velocity measurements, the observational period for flood runoff would be at
longest

T*—-TE
If the above evaluation is not wrong, the standard deviation of the observed rean
velocity is as great as 90 % of the turbulence intensity. If we wish to decrease
the value of standard deviation to 50 % of the turbulence intensity by increasing
the number of observation points, the observation points have to be increased
more than three times the number of the original points.
As will be recongnized, it is important and useful to enact a standard for

the practice of velocity measurements by which the required precision is attained.
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5. Conclusion

In this paper, mathematical considerations were made for the detection
process in runoff systems analysis. The value of the Fourier transform function
of the input to be detected should be calculated in the frequency domain with
precision up to a high frequency region of w 1in order to detect the detailed
form of the input function. However, the above is not always easy because the
Fourier spectra of the output and the systems frequency function decay to small
value in the relatively low frequency region of  and, consequently, the value’
of the Fourier spectra are disturbed by various noises in the high fregquency
domain. The fact that no methods such as the cross-correlation method in the
identification process are found to eliminate the effects of noise would be a
difficulty in the detection process. This fact will be understood through the
examples given in chapter 3. In this meaning, a high precision in the discharge
measurements 1is especially necessary in the detection process and a discu551on
concerning the hydrometric practice was presented.
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List of Symbols

A(w) = square-integrable function;
B = duration of pulse;
C(Tx) = variance of mean velocity observed during Ty;
E(f) = power spectral density of turbulence;
f = frequency;
G(w) = systems frequency function;
Ggr(w), Gx(w) = real and imaginary parts of -G(w)-w;
H = water depth;
I(w) = Fourier transform of input;
I(w)payx = maximum value of I(w);
3 = imaginary unit;
Ly = macro scale of turbulence;
‘'n = number of linear reservoirs;
P(t) = approximate estimate of I(t);
pwe(w) = truncation filter;
Q(w) = Fourier transform of output;
Qr(w), Qy(w) = real and imaginary parts of -Q(w)w?;
Rg(t) = auto-correlation function of velocity fluctuation;
s = parameter of Laplace transform;
t = time;
Ty = duration of observation;
Tg = Eulerian integral time scale;
U = mean velocity;
w = angular velocity;
Wnax = truncation frequency;
A = storage factor (reciprocal of storage constant); and
§ = Dirac's delta function.
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DISCUSSION

V. T. CHOW.

In order to improve the theoretical accuracy of the proposed'standard for
the observational period, it‘may be desirable to computetTE from observed data on

velocity fluctuation. Then, there will be a need to propose another standard for
the measuremént of the velocity fluctuation.. It. is alsdé important to note that
there is an upper constraint for the time of measurement. If the time of
observation is too long, the measured data at any point will be greatly affected
by the rapid change in velocity due to unsteady nature of the flow particularly
at flood stages.

J. W. DELLEUR

Dr. Kishi's paper sheds a new light on the application of linear systems, in

hydrology. ‘
[

The classical applications have been the derivation of the kernel function
and the output prediction for a given input and kernel. - Dr. Kishi addresses
himself to the important but less studied problem of the input detection and of
the error propagation in such calculations. Little is known about error propagation
in hydrologic linear system identification and detection. Laurenson and 0'Donnelll
have studied the error sensitivity of several methods of derivation of the unit
hydrograph due to errors of different types in the input and output data. Blank,
Delleur, and Giorgini2 have studied the effect of errors in the kernel function
on the output. By means of a perturbation analysis they found that for typical
circumstances an error in the kernel is reduced by a factor varying from 1/6 to
1/25 in the calculated output. Conversely, it would appear that an error in the
output would be magnified in the derived kernel. This point is now confirmed and
amplified in Dr. Kishi's paper which shows that rather small errors in the output
data may reduce the precision of identified inputs. :

The author then bridges the gap between the sciences of hydrology and
turbulence as the latter phenomenon may be the source of errors which propagate
in the identification of the hydrologic system input. Mandelbrot and Wallis3
have suggested that the difference between hydrology and turbulence lies in the
the difference in the frequencies of interest, say up to one cycle for the former
and above for the latter. Dr. Kishi has now added a new concept of unity between
the two sciences often regarded as unrelated.

The results of the measurements of turbulence spectra in natural streams
shown in Fig. 7 are of a different order of magnitude from those normally measured
in water flows in the laboratory with hot-film anemometers. A recent study by
the writer and his associates4,> shows that for thin free surface flows, most of
the energy is contained at frequencies below 10 cycles per second. Similar
conclusions have been obtained by Raichlen® and by Richardson and McQuivy7 for
measurements in laboratory flumes. Figure 7 shows that most of the energy is
contained in frequencies for which

0.1

g

f TE < 0.1 or £«
If we assume a water depth, H, of 2 meters and a mean velocity, U, of 0.5m/sec,
and that the Eulerian time scale is of the order of 5 H/U, then TE = 20 secs

and f = 0.005 cps. This extremely low frequency brings the question as.to. the
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appropriateness of the current meter for turbulence measurement in view of the
relatively large time constant of this instrument. Some but few measurements of
turbulence with hot film anemometers have been made in rivers and in the ocean.

1Laurenson, E.M., and O'Donnell, T.: "Data Error Effects in Unit Hydrograph
Derivation," Journal of the Hydraulics Division, ASCE, Vol. 95, No. HY6, Nov. 1969.

2Blank, D.; Delleur, J.W.; and Giorgini, A.: "Oscillatory Kernel Functions in
Linear Hydrologic Models,' Paper H58, AGU Annual Meeting (Abstract in EOS, Trans.
AGU. Vol. 51, No. 4, April 1970), Submitted for publication in Water Resources
Research.

3Mandelbrot, B., and Wallis, J.R.: "Noah, Joseph, and Operational Hydrology,"
Water Resources Research, Vol. 4, No. 5, pp. 909, 1968.

4Kisiel, I. T.; Delleur, J. W.; and Rao, Ramachandra A.: "Turbulence Characteris-
tics of Overland Flow,'" to be presented at the International Association for
Hydraulic Research, XIV Congress, Paris, Aug. 29-Sept. 3, 1971.

5Kisiel, I. T.: "An Experimental Investigation of the Effect of Rainfall on the
Turbulence Characteristics of Shallow Water Flow," Ph.D. Dissertation, School of
C1v11 Englneerlng, Purdue University, Lafayette, Ind., Jan. 1971.

McQu;very, R. §., and Rlchardson E. V.: "Some Turbulence Measurements in Open-
Channel Flow," Proc. of ‘the ASCE, Journal of the Hydraulics Division, No. HY1,
pp.  209-223, January 1969 o

7Ralchlen, F.: "Some Turbulence Measurements in Water,'" Proc. of the ASCE,
Journal of:the Engineering Mechanics Division, No. EM 2, pp. 73-97, April 1967.

P. S. EAGLESON -

4

- Would you like to comment upon the practical use of this method in the
detection process? .Several possible uses come to my mind but of course, all
require knowledge of the system function.

a. Filling in missing. rainfall records

b.’ Evaluafing the time distribution of rainfall excess
C. KISIEL

1} Can you clarlfy the procedure used to correct the detected rainfall as
shown in Figures 6a and 6b? :

2. How representative is the turbulence structure in the river as measured by
the current or propeller meter? What effect does this have on the computation of
the Eulerian time scale? ‘

3. What would be the effect of sampling errors in precipitation on the
extimation of the system frequency function G(w)? What effect would nonuniformity

of rainfall in space (or non-representativeness of the rain gage) have on the
entire detection process?

J. PAUL RILEY

In differentiating measured runoff to estimate rainfall input your model
does not provide for losses and storage changes within the system. Sometimes
these losses are significant in both short time and long time events. You might

give consideration to further generalizing your model by taking into account
system losses.
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V. YEVJEVICH

The author seems to have reached the conclusion that a much longer time
measurement of velocities at a point is more important for the accuracy of the
computed river discharge than the number of points measured in a river cross-
sectional area. From the sampling theory, an optimum must exist between the time
of point velocity -measurements and the number of points at which velocities are
measured. The time-space trade in these measurements that departs from this
optimum should result in a loss of accuracy of the computed discharge.

RESPONSE BY T. KISHI

The response to discussion by V.T. Chow is as follows.
The author presented an approximate expression for Ty
Tg = (3~ 4)H/Unm

where Um = mean velocity
H = water depth

The value of mean velocity measured in accordance with the present standard, say
60 sec, would be used as a first approximation for Um in the above expression.

However the above expression was derived from the measurements performed in -
the low water period as stated on page 8 in his paper. And the expression of
Tg for the high water has not established.

In this meaning, the author agrees that there is a need to establish a
general standard for the measurements of velocity fluctuation.

Response on the discussion by J, W;‘Delleun and the sécqnd question
in the discussion by C. Kisiel.

Last year, the author and his colleagues performed the turbulence measure-
ments in open channel flows by the hot film anemometer.' ‘The experimerntal
conditions are as follows:

Water depth: 5 * 10 cm ; mean velocity: 40 ~ 60 cm/sec,
Froude number of flow: 0.5 v 0.8 ; and flows are all
smooth turbulence.

According to our experimental results, the values of the integral time
scale Tg were between 0.1 and 0.2 second and most of the turbulence energy
were contained at frequencies below 1 ~ 0.5 cycles per second. This figues of
frequency approximately agree with those obtained from f = 0.1/Tg which was
pointed out by Prof. Delleur.

As pointed out by Professors Delleur and Kisiel the velocity spectrum
measured by the current meter would not be accurate in the high frequency bands,

since the current meter is a kind of the cutoff filter for the high frequency
bands.

However, the author thinks that the use of the current meter is permissible
for the study of the macro structure of turbulence, since the turbulence energy

contained in the high frequency bands is relatively small.
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The response to discussion by P.S. Eagleson is as follows.

The author. performed this calculations aiming at two ‘items pointed out by
Prof.: P.. S.. Eagleson. : However, -it. seemed: for the author that his aim failed of
sucess, so0, far;-as the jexamples -shown in Figures 6a and 6b are coricerned.

Jhe;puthqnrprgsumeSpthatsone'of the reasons. of this would be thw too wide
Fourie:gspectnum,qf-the'inputx~ Better results in detection process will be
expected if a longer sampling interval for the, input data is used instead of the
hourly rainfall. The author, basing on the precision of the detected input,
finds a way of the future development of this method in considering the relation-

ship between the optimum sampling interval of the input and the duration time of
the output.

Response to first and -third questions in discussion by C. Kisiel.

1) In the calculations shown in Figs.6a and 6b the values of the runoff
coefficient are given. The corrected values of the detected rainfall were
calculated by dividing the detected rainfall by:the runoff coefficient.

3). . uncthe analysis.of the runoff “systems the Fourier spectra of the inputs are
usually far.wide jthan .those of the outputs. - Consequently, the systems function
is liable to be erroneous in the high frequency bands even when the coross-
correlation.method is used. In- this meaning, the author thinks that the use of
the high-cut«filter.such as proposed by Prof. Delleur is necessary.

i

Response to discussion.by J. P. Riley.

P . ' E . : :

In the calculation of the short term runoff, for instant the storm runoff,
the definitions of the rainfall loss or the methods of separation of the direct
runoff from the total runoff change the funtional form of the outputs and,
consequently, have effécts on the results of calculations. This effect will be
appeared mainly in the low frequency bands of the systems function.

In, the calculation.of the long term runoff the carry-over discharge to the
ba31n is sometlmes a difficult factor to treat as well as the rainfall losses.

The response to discussion by V. Yevjevich is as follows.

H

As stated by Prof. V. Yevjevich an optimum must exist between the time of

point velocity measurements and the number of points at which velocities are
measured..

However, in most cases, velocities in a river section vary gradually both in
transversal: and vertical directions. So that, the increase in the number of

points would not improve the precision of the discharge measurements appreciably.

On conslderlng the above fact, the author dared to put stress on the
irportance of the tlme of p01nt velocity measurements.
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