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Abstract

Although the branch and bound technique is successful in obtaining an exact
solution of traveling salesman problem, it is well known that the method which
makes use of this technique can not be effectively applied to cases where the
cost matrix is symmetric. A new method is and presented here which makes
use of the branch and bound technique, differs essentially from the existing
methods in the following two points: 1) to retain the symmetric property of the
cost matrix during the reducing operations, and 2) to treat city pairs disregarding
their directions. Our method reduced the computing time by about one-fifth of
the existing solutions for 30 city problems, and it is expected that the larger the
number of cities, the smaller this ratio would become. Further it is expected
that our method can be easily extended to nonsymmetric problems.

1. Introduction

Exact solutions for the traveling salesman problem hitherto proposed are,
in almost all cases, obtained by using the branch and bound technique. The
branch and bound technique is often useful for solving difficult problems such as
combinatorial problems. It consists of the following two fundamental features.
1) Dividing any problem into plural problems more constrained so that solving
them all is equivalent to solving the original one (Branching). 2) At each
problem evaluating the lower bound that is always smaller than the optimal
solution of the problem (Bounding).

The general procedure for solving any provided problem by using the branch
and bound technique is as follows: 1) Repeat dividing the problems under a
certain strategy and to evaluate the lower bound of each problem until a feasible
solution is obtained. 2) Regard this feasible solution as the upper bound and
reject all problems whose lower bound is greater than this upper bound. 3) If
there are any problems whose lower bound is smaller than the upper bound,
then repeat the division of these problems, and continue to apply the same pro-
cedure. If this is not the case, the upper bound becomes the optimal solution
of the original problem. All methods using the branch and bound technique
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22 Hiroshi KuBo and Noric OKINO

are classified by algorithms of branching and bounding respectively. Existing
solutions for the traveling salesman problem are classified into the following
large two groups by branching algorithms: One is the tour building method
proposed by Little et al.? whose algorithm of branching is determined by select-
ing a certain city pair or prohibiting it. Another is the subtour elimination
method proposed by Shapiro” and others whose algorithms are determined by
prohibiting a subtour of the solution obtained by solving the assignment problem.

In the case of a symmetric cost matrix, however, these solutions require
much longer computing time and much larger working memory than in the case
of a nonsymmetric one. The new solution proposed in this paper can effectively
solve the symmetric traveling salesman problem and comes under the tour build-
ing method. For preparations this paper begins by describing the formulation
of the traveling salesman problem and Little’s solution. The new solution and
its computational experiments are also mentioned in the following section.

2. Traveling Salesman Problem

The traveling salesman problem is formulated as follows: The number of
cities for a salesman to visit is written by n (nonnegative integer) and the cost
matrix is given as n x#n matrix D =(d,;), where d;, (nonnegative integer) is the
distance measure from city 7 to city j. Let z be a tour (1) which is a closed
path where a salesman can visit each of all n cities only once, with the ordered
pair (Z,7) representing the direct path from city 7 to city j. (7, 7) is an element
of the tour (1)

(1) £ = {(in, i (s i), (i 1)}

Let T be a set of all feasible tours # which are not contradictory to D. The
traveling salesman problem is asking for the tour #* and the cost c* so that the
cost of a tour (2) is minimized over 7' as shown in (3).
(2) )= 2, dy

(@, )€t

(3) & =c(t¥) = 12@11 c(2)

r

The algorithm of the branching in Little’s method is determined by selecting
a certain city pair or prohibiting it. In a certain problem X, hereafter we shall
refer to it as the node X, let Sy be a set of city pairs already selected and let
Ry be a set of city pairs already prohibited or that of prohibiting subtours made
by Sy. Then the algorithm of Little’s branching divides the node X into the
node Y selecting a certain city pair (4, j) and the node Y prohibiting it (see
Fig. 1). The means of deciding the city pair (7, j) will be mentioned later. .Sy,
Ry, Sy and Ry are shown in Fig. 1, where (%, /) is to prohibit the new subtour
which is made by selecting city pair (Z, 7).

When branching starts from the node X in Fig. 1, the operations begin by
making the reduced matrix Dy as follows: Elements corresponding to Ry are
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Sy = {450,000}

RX={(k1,l1),(k2,12),--- }

sy= S, ° {(T.1)}
Ry = Ry Y {(x.D)}

Fig. 1. Explanation of Branching

inhibited and the others are the same as the initial cost matrix DD as shown
in (4). For all rows not contained in [/ the minimum value of each row is
subtracted from all elements of its row as shown in (5), and so are those for all
columns not contained in Jy as shown in (6), where [I; is a set of rows which
are eliminated by Sy, while Jy is a set of columns such as /.. The lower bound

w(X) of the node X is given by (7).

(4) DY = (dl}) dy = oo (if(7, j)e Ry) or d;;{otherwise)

(5) Dy=(dyy)  diy= é'rrréiJn di,  for every i& Iy
ey

where Iy= {i\(i, 7) Sx} , Jr= {fl(@ 7) SX}

(6) Dy=(diy)  dij=dy—mind,,  for every j&Jx
PEIy

(7) w(X)= 2 dy+ ), mindjj+ ) mind,;

(4, 168y €Ty pETy J57y PRIy

There is at least one zero element for each row and each column, not
contained in Iy and Jy, respectively. The city pair used by branching from the
node X is decided so that (i, j) maximizes 6(i,j) over these zero elements as
shown in (8).

(8) 0@, )= min 4%+ min df, for every di5=0

&I (3} p&IY3)
The lower bound of the node Y is evaluated by (9), and that of the node Y is
evaluated by (11) after reducing the matrix Dy from Dy as shown in (10), (5)
and (6).

(9) w(Y) = w(X)+0(, j)
(10) Y = (d}}) iy = oo (if (¢, §) = (k, 1)) or d5 (otherwise)
(11) w(Y)=w(X)+ 2} mind};+ >, min dj,

i€y J&Jy I&JTy i8Iy
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It is clearly shown that solving the node X is equivalent to solving the
node Y and the node Y in Fig. 1, and that if the number of city pairs in Sy
is n—2, the node X certainly possesses a feasible solution. The strategy of
branching is to always divide the node whose lower bound is minimal. Another
strategy is to always branch from the node made immediately by selecting
a certain city pair until the lower bound of the node becomes greater than the
upper bound or the number of selected city pairs becomes n—2. In both stra-
tegies, the lower bound is evaluated by (5) when the branching starts from the
node possessing the smallest lower bound anew ; while the lower bound is evalu-
ated by (11) when the branching starts from the node made immediately.

3. New Solution for The Symmetric Cost Matrix

In the enumeration method for the traveling salesman problem, when the
cost matrix is symmetric (d;;=d,) it is solved easier than the nonsymmetric
problem because of not taking the city pairs into account with regard to their
directions. But in the existing solutions using the. branch and bound technique,
it is much harder to solve the symmetric problem than the nonsymmetric one
in contrast to the enumeration method. As for Little’s method, it is reported
that the city pair (4, 7) is selected frequently at the node in which the reverse
city pair (7, ) is already prohibited. As a result of selecting a reverse city pair,
it frequently happens that the number of nodes is too large and the computing
time is too long to solve the problem.

The new solution proposed in this paper differs from these existing solutions
in the following two points: 1) Not taking the city pairs into account with
repect to their directions as in the enumeration method. 2) Keeping the sym-
metric property of the cost matrix during reducing operations.

3.1 Branching

It is sufficiently clear that only the upper triangular elements of the cost
matrix is operated when the cost matrix is symmetric at any time and is treated
as disregarding their directions. Therefore the line Li, i=1, 2, ---, n is defined on
the matrix (see Fig. 2) and only the city pairs which are the elements on these
lines are treated hereafter. The elements on the line are represented by (12).

I ) )

i Tr—‘]dﬁ-———'Tm Line 1
d21 dz—cljz—é_-———TZ_ ———- Line 2
d31 d32 d3T‘—““‘C!]§; Line 3

' i
d d d t!‘l Li
nt “n2 “n3 ° nn, ine n

Fig. 2. Definiton of Line
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(12) dl}i(j) = dﬁj(z‘) = CZ,;J- (if LS]) or dji (OtherWise)

Let Sy (13) be a set of the city pairs selected from the elements on the
lines at a certain node X, where m is their number. And let Py (14) be a set
of the partial paths which are made by the use of all city pairs in Sy only once
regardless of their directions, where %, and /, are the edge cities of the same
partial path and satisfy (15). :

(13) S = { s 1), Gy o)+, (o i)} 1< s
(14) Pro={ Gy i3> <o, -+ | i< jy
(15) ’I’.])#ill 3 Zp#]l] > JI)#]Q <Z.)7, j1)>) <i0$ jq>EPX .

The city pairs selected in node X of

the proposed method are taken to be all o ° 9 0

the pairs which are not contradictory to the Sy = {(1,4),(2.3),(3,4),(7,8)}
partial paths in Py regardless of their direc-

tions. An example of Sy, Py and the selected Py = {<1 1 2>.<7,8> }

city pairs of node X, is shown in Fig. 3. (a)  Proposed method

As for the selection of city pairs, it is evi-
dent that four nodes in Little’s method are

reduced to one node by the proposed method o 0 0 e

in the case of Fig. 3. Sy = {(1'4),(4'3)'(3‘2),(7'35}
Let R be a set of city pairs inhibited
already on lines. Then the city pairs in RY Py = {<1'2>'<7'B>}

and their reverses are all inhibited in node °F
X of the proposed method. Under these or o 0 e 0
definitions of selecting and inhibiting the city © B2

pairs, it is proved easily that the branching

or
in the proposed method remains optimal in W

the following two operations at each node:

1) Eliminating the lines from which two (b)  Little’s method
city pairs are selected. 2) Inhibiting the  Fig. 3. Selected city pairs Sx and
city pairs in Ry (16) on lines. partial ipathes Px in node X
(16) Ry= RxU{(ky, 1), (B, B, -+ ) (kyy 1,)€ Py

When the number in Sy becomes n—2, then the node X is possessed of
two feasible solutions as well as Little’s method. The algorithm of the branching
in the proposed method is determined either by selecting a certain city pair (i, §)
on a line or the reverse (j,4), or by prohibiting both of them. That is, if S
and Ry in a node X is not contradictory to a tour, then it is clearly shown that
the node Y and the node Y, selecting and prohibiting a city pair respectively
which is not on any eliminated line and is not prohibited, are equivalent to the
node X. City pairs in Ry and not in R} are to prohibit the subtours made
by Sy
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3.2 Lower Bound

When branching is started from a certain node X with Sy and Ry in the
proposed solution, the reduced matrix Dy is made as follows: Elements on lines
corresponding to Ry are all prohibited and other elements on lines not eliminated
are the same as the initial cost matrix D as shown in (17). Secondly the mini-
mum value of each line is subtracted from all elements of its line for all lines
not contained in I, as was shown in (18). Then the lower bound v(X) of the
node X is evaluated by (19), where Iy in (20) is a set of lines already eliminated
for two city pairs to be selected and Jr in (21) is a set for only one city pair
to be selected already.

(17) Dl = (da5) dip =00 (if (Li(j))€Ry)

=d;ys (otherwise)

(18) Dx=(dF:») AL = Az -n;irn Arit)
Psiy
for every i& I,
(2, 9)eSy Elys i8Iy
where a;=1 (if i€Jy) or 2 (otherwise)
(20) Le={i(Li(j))eSx and  {(Li(;)>& P
(21) Te={jIKLi(j)) € Py}

It is easily proved that v(X) in (19) is the lower bound of the node X, by
the aid of the fact that the difference between v(X) and w(X) in (7) is only the
difference of the ways of subtracting the matrix in (5), (6) and (18). It will be
explained by the use of the example shown in Fig. 4. When Sy is assumed to

k t ik t
l I

[ | |
X

p— G
—_——— e = () o k.....__x._ _____ —

|

I

I

I

l

I

i

QO : Selection

X . Prohibition

ey

(SX={(j,l),(k,l)} 5= {(L. 0L}
P = {<i o} P = {<k, >}

Fig. 4.(a) Proposed method Fig. 4.(b) Little’s method
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be a set of city pairs selected in the node X of the proposed method, Py is
obtained as shown in Fig. 4(a). This node corresponds to either the node of
Little’s method shown in Fig. 4(b) or the node given by reversing the order
of Sy. The discussion of the reverse case in Fig. 4(b) is omissible evidently
because of dealing with row and column alternatively. As for Ry, it is omissible
because the city pairs prohibited in (a) and their reverse ones are both prohibited
in (b). Both row and column corresponding to line / eliminated in (a) are elimi-
nated in (b). Then their lines are not related to (17) as well as Little’s method.
Either row or column corresponding to line j or % selected only one city pair
in (a) is eliminated in (b). Then the minimum values of their lines are added
in (19) as well as in (7). Neither row nor column corresponding to line i not
selected in any city pair in (a) are eliminated in (b), then the minimum values
of their lines are added twice in (19) for row ¢ and column ¢ as well as in (7).
That is, the difference between the second member of (19) and the second and
third member of (7) is that of the sequence subtracting the minimum values.
In the proposed method the sequence is at the same time for row and column,
while in Little’s method it is in order as all columns after all rows. The sym-
metry of the cost matrix is retained in the proposed method. Similarly the
same is proved in the case where there are plural partial paths.

There are at least one zero element for each line not contained in 7. The
city pair used by branching from the node X is decided so that (7, 7) maximizes
@(i, j) over these zero elements as shown in (22). The lower bound of the node
Y prohibiting (7, 7) is evaluated by (23). That of node Y selecting it is evaluated
by (25) after reducing the matrix Dy from Dy, as was shown in (24) and (18),
where (Lk(Z)) is the city pair prohibiting the subtour which is made immediately
by selecting city pair (7, j).

(22) &(i, 7) = a;* min d¥;, + a;* min d7;, for every di;; =0
perx” (7 &IV (4}
(23) v(Y) = v(X)+¢(, 7)
(24) Dy = (d'tacp) d iy = 0 (f Li(j) = Lk())
= [Z‘]g;(j) (othel‘Wise)
(25) 2(Y)=v(X)+ 2, a;* min dly,
15Ty J&Iy

It is proved in the same way as v(X) in (19) that both »(Y) and »(Y) are
the lower bounds of the node Y and Y, respectively. When the branching is
started from the node Y made immediately, the lower bound is evaluated by
(25) after reducing the matrix by (24) repeatedly. And when the branching is
started from the node finding the minimum value, it is evaluated by (19).

3.3 Algorithm

The flow-chart of the proposed solution is shown in Fig. 5. The working
of the algorithm will be explained by tracking through the flow-chart.
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1

[ Upper bound u = |
|
Upper bound

Is there node
X to branch ? is optimal

S es ey

Reduce matrix DX NI
Evaluate v(X)

A UTEED
4 yes
|[,Evaluc1te g(i,j) ”

2

5 I
Decide (i, n
Store node Y ;, ¥
Set node Y to X
Number of city
pairs < n-2 yes
6 no 7
Build tour t of X |—=| Build partial
o< T
Determine u pathes F)X
Reject the nodes
greater than u
]
Fig. 5. Flow-chart of the proposed method

Box 1 starts the calculation by setting the upper bound « to infinity.

Box 2 decides the node X from which branching is started. If there is
no node to be branched, then the algorithm is finished and the upper bound
hecomes the optimal solution.

Box 3 evaluates the lower bound w(X) after reducing the matrix D, If
the lower bound v(X) is not smaller than the upper bound « then go to Box 2,
else go to Box 4.

Box 4 evaluates the measure of selecting the city pair ¢(i, j)

Box 5 decides the city pair (7, ) used by branching from the node X stores
the new nodes Y and Y, and sets the node X to the node Y. If the number
of city pairs selected becomes n—2, then go to Box 6, else go to Box 3.

Box 6 builds a tour by using of Sy, determines the upper bound #, and
eliminates the nodes whose lower bound are greater than u.

Box 7 makes the partial paths and is called from Boxes 3 and 6.

The algorithm of the proposed method is different in only double boxes
from that of the method which is used for the comparison with the proposed
method in the next section. In each method, the strategy of branching is always
to branch from the node made immediately, and by the use of an index table



A New Solution for the Symmetric Traveling Salesman Problem 29

the time for seeking the minimum value for each row and column or each line
is reduced as much as possible. The existing method improved by us as well
as the proposed method makes it possible to obtain the value more precisely in
less computing time. The method reduces the computing time to one-half of
the time required by Little’s method. Well shall call this the ‘improved method’
in the next section.

4. Computational Experiments

The proposed method is examined and will be compared with the improved
method in relation to the computing time and relation to the number of nodes
by solving many examples. The computer used in the experiments is FACOM
230-60 (Hokkido University Computing Center) and the program is coded by
FORTRAN. The cost matrixes of the examples are made by the use of random
numbers generated by the computer. An example of 10 city problemsis shown

Table 1. An example of cost matrixes

i 1 2 3 4 5 6 7 8 9 10

1 0] 8 3 4 9 17 16 18 10 6
2 8 w0 2 8 16 18 19 2 9 10
3 3 2 fes) 14 3 7 10 10 7 15
4 4 8 14 oo 19 1 20 16 10 14
5 9 16 3 19 @ 1 1 11 8 5
6 17 18 7 1 1 o] 17 18 15 14
7 16 19 10 20 1 17 e 0 4 18
8 18 2 10 16 1 18 0 ® 8 3
9 10 9 7 10 8 15 4 8 ] 12
10 6 10 15 14 5 14 18 3 12 [e¢]
Table 2. Computing time (10 ms)
Number of cities 10 20 30
(Number of examples) (10) (10) (2)
minimum 12 72 3509
Proposed
average 31 676 8477
method
maximum 48 1822 13444
minimum 24 682 27617
Improved
average 67 2521 59193
method
maximurm 119 7626 90769
Nonsymmetric cases 24 370 2160
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in Table 1. In the experiments, ten examples for 10 and 20 city problems
respectively and two examples for 30 city problems are solved.

Table 2 arranges the res ults of experiments for the computing time. The
proposed method makes it possible to solve 30 city problems in 85sec. on an
average. This time is reduced to one-fifth compared with that of the improved
method, and it is expected that the ratio becomes smaller when the number of
cities increases.

Table 3. Number of nodes (1/2)

Number of cities 10 20 30
(Number of examples) | (10) (10) (2)
minimum 9 28 645

Proposed
average 25 220 1275

method
maximum 40 573 1905
Improved minimum 12 162 2590
average 36 500 4508

method
maximum 68 1318 6425
Nonsymmetric cases 13 96 356

Table 3 arranges the results for the number of nodes generated torough the
solution. The number doubled in the table corresponds to that of the existing
solutions. It is shown in these resclts that the number of nodes in the proposed
method is greatly reduced compared with that of the improved method.

In order to compare the symmetric problem with the nonsymmetric problem,
the computing time and the number of nodes are shown in the same tables 2
and 3, by means of the improved method for nonsymmetric problems. It is
readily seen from the table that the symmetric problems are rather difficult in
these cases.

5. Conclusion

A new algorithm solving for the symmetric traveling salesman problem is
proposed. The method retains the symmetry of the cost matrix through reduc-
ing operations and deals with city pairs disregarding their directions. The
concept of these technique will be applied to other problems. In conclusion we
shall mention here that the method proposed in our present paper can treat and
successfully solve the symmetric traveling salesman problems by using an electro-
nic computer.
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