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                                 Abstract

    Although the branch and bound technique is successful in obtaining an exact

solution of traveling salesman problem, it is well known that the method which

mal<es use of this technique can not be effectively applied to cases where the

cost matrix is symmetric. A new method is and presented here which makes
use of the branch and bound technique, differs essentially from the existing

methods in the following two points: 1) to retain the symmetric property of the

cost matrix during the reducing operations, and 2) to treat city pairs disregarding

their directions. Our method reduced the computing time by about one-fifth of
the existing solutions for 30 city prob!ems, and it is expected that the larger the

number of cities, the smaller this ratio would become. Further it is expected

that our method can be easily extended to nonsymmetric problems.

                             1. Introduction

    Exact solutions for the traveling salesman problem hitherto proposed are,

in almost all cases, obtained by using the branch and bound technique. The
branch and bouild technique is often useful for solving diMcult problems such as

combinatorial problems. It consists of the following two fundamental features.

1) Dividing any problem into plural problems more constrained so that solving

them all is equivalent to solving the origina! one (Branching). 2) At each

problem evaluating the lower bound that is always smaller than the optimal
solution of the problem (Bounding),

    The general procedure for solving any provided problem by using the branch

and bound technique is as follows: 1) Repeat dividing the problems under a
certain strategy and to evaluate the lower bound of each problem until a feasible

solution is obtained'. 2) Regard this feasible solution as the upper bound and

reject all problems whose lower bound is greater than this upper bound. 3) If

there are any problems whose lower bound is smaller than the upper bound,
then repeat the division of these problems, and continue to app!y the same pro-

cedure. If this is not the case, the upper bound becomes the optimal solution

of the original problem. All methods using the branch and bound technique
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are c!assified by algorithms of branching and bounding respectively. Existing

solutions for the traveling salesman problem are classified into the following

large two groups by branching algorithms: One is the tour building method
proposed by Little et al.') whose algorithm of branching is determined by select-

ing a certain city pair or prohibiting it. Another is the subtour elimination

method proposed by Shapiro2) and others whose algorithms are determined by
prohibiting a subtour of the solution obtained by solving the assignment problem.

    In the case of a symmetric cost matrix, however, these solutions require

much longer computing time and much larger working memory than in the case

of a nonsymmetric one. The new solution proposed in this paper can effectively

solve the symmetric traveling salesman problem and comes under the tour build-

ing method. For preparations this paper begins by describing the formulation

of the traveling salesman problem and Little's solution. The new solution and

its computational experiments are also mentioned in the following section.

                     Z. Traveling Salesman Problem

    The traveling salesman problem is formulated as follows: The number of
cities for a salesman to visit is written by n (nonnegative integer) and the cost

matrix is given as nxn matrix D==(dij), where 4j (nonnegative integer) is the

distance measure from city i to city j'. Let t be a tour (1) which is a closed

path where a salesman can visit each of all n cities only once, with the ordered

pair (i,]') representing the direct path from city i to city .i (i,1') is an element

of the tour (1).

(1) t={(ibi2)7(i2)i3))''')(in)il)}

Let T be a set of all feasible tours twhich are not contradictory to D. The
traveling salesman problem is asking for the tour t* and the cost c* so that the

cost of a tour (2) is minimized over T as shown in (3).

(2) c(t)==:Zds,･
                (･i,d>Et

(3) c*=c(t#O==:minc(t)
                      tET
    The algorithm of the branching ifl Little's method is determined by selecting

a certain city pair or prohibiting it. In a certain problem XL hereafter we shall

refer to it as the node X] let Sr be a set of city pairs already selected and !et

R. be a set of city pairs already prohibited or that of prohibiting subtours made

by S.. Then the algorithm of Little's branching divides the node X into the
node Y selecting a certain city pair (a',,rt') and the node Y prohibiting it (see

Fig. 1). The means of deciding the city pair (i,7t') will be mentioned later. Sy,

Ry, S-v and Rv are shown in Fig. 1, where (n, l) is to prohibit the new subtour

which is made by selecting city pair (i, rt').

    When branching starts from the node X in Fig. 1, the operations begin by

making the reduced matrix Dx as follows: Elements corresponding to Rx are
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        w(Y) w(Y)
    v,(Sv= Sx y, sy=sx'U{(T,-i')}
        Y Rv = RxU{(1,T')} Ry= Rx U{(ff,r)}

                       Fig.1. ExplanationofBranching

inhibited and the others are the same as the initial cost matrix D as shown

in (4). For all rows not contained in ll the minimum value of each row is
subtracted from all elements of its row as shown in (5), and so are those for all

columns not contained in bl}r as shown in (6), where Jl is a set of rows which

are eliminated by S:r, while c71 is a set of columns such as 1}r. The lower bound

Tv(X) of the node X is given by (7).

(4) Dk'=:(d}S･) cl}b･=:oo(if(i,7')ER.)ordL,(otherwise)

(5) Dk:=(di,) dld--a}-mindiS foreveryiaj.Zl
                               peeLZ;r
             il=(iKi･J')Sir)) e7}r=(nej)sSLr)    where

(6) D.=(d?}) diS=-d:,-min(ISj foreveryku]l
                               peT.y

(7) w(X)==Zci}j+Zmincllb･+Z]mincl;,j
                 (i,J')E"IM tGl'sPG･J)r jLVtZ.rPUx

    There is at least one zero element for each row and each column, not
contained in .Zl and .ll> respectively. The city pair used by branching from the

node X is decided so that (7',i') maximizes 0(i,j') over these zero elements as

shown in (8).

(8) 0(i,]')==:minclSS+mindSi, foreveryd[)==O
                          1'GJ.rC'{j'}                 pErzV{t}

The !ower bound of the node Y is evaluated by (9), and that of the node Y is

evaluated by (11) after reducing the matrix Dr from Di as shown in (10), (5)
and (6).

(9) zv(Y)-w(X)+e(i,j')
(10) DY'==(diS-) dS･S･=-oo(if(i,]')-=(E,l)) orcl23(otherwise)

(11) w(Y):w(X)+Zmincl5St-g-ZImincl!j
                        iEl'vjeqLT}r jeqJir'iEJ}･
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    It is clearly shown that solving the node X is equivalent to solving the

node Y and the node Y in Fig. 1, and that if the number of city pairs in Sx
is n-2, the node .X certainly possesses a feasible solution. The strategy of

branching is to always divide the node whose lower bound is minimal. Another

strategy is to always branch from the node made immediately by selecting
a certain city pair until the lower bound of the node becomes greater than the

upper bound or the number of selected city pairs becomes n-2. In both stra-

tegies, the lower bound is evaluated by (5) when the branching starts from the

node possessing the sma!lest lower bound anew; while the lower bound is evalu-

ated by (11) when the branching starts from the node made immediately.

            3. New Solution for The Symmetric Cost Matrix

    In the enumeration method for the traveling salesman problem, when the

cost matrix is symmetric (di,i=dji) it is solved easier than the nonsymmetric

problem because of not taking the city pairs into account with regard to their

directions. But in the existing solutions using the branch and bound technique,

it is much harder to solve the symmetric pyoblem than the nonsymmetric one

in contrast to the enumeration method. As for Little's method, it is reported

that the city pair (],i') is selected frequently at the node in which the reverse

city pair (7',r/) is already prohibited. As a result of selecting a reverse city pair,

it frequently happens that the number of nodes is too large and the computing

time is too long to solve the problem.

    The new solution proposed in this paper dffers from these existing solutions

in the following two points: 1) Not taking the city pairs into account with
repect to their directions as in the enumeration method. 2) Keeping the sym-

metric property of the cost matrix during reducing operations.

  3.1 Branching

    It is suMciently clear that only the upper triangular elements of the cost

matrix is operated when the cost matrix is symmetric at any time and is treated

as disregarding their directions. Therefore the !ine Li, im-1, 2, ･･･, 7i is defined on

the matrix (see Fig. 2) and only the city pairs which are the elements on these

lines are treated hereafter. The elements on the line are represented by (12).

                   aii6i2ai3''Eii'i{" Linei
                        ll 1
                   d2id22Ci23'-'m(i2inT 'Line2

                   d31d32d33''wwciyt Line3

                   ---i-- t                                        (

                   --t--- i                                        l
                   dnldn2dn3''dn"t Linen
                           Fig.Z. DefinitonofLine
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(12) dzi(,･)=clnda)=:clij (ifi:f{;j)orcldi(otherwise)

    Let S:r (13) be a set of the city pairs selected from the elements on the

lines at a certain node X) where m is their number. And let ?r (14) be a set

of the partial paths which are made by the use of all city pairs in Sr only once

regardless of their directions, where k., and l. are the edge citles of the same

partial path and satisfy (15). :
(13) Sr=((ii,1'i),(i2,7'2),･'',(im,1'm))

(14) ?.-{<i,,j',>,<i,",7',>,･･･)

(15) ip)FiQ, ipSFjq, Y'pSFjq

    The city pairs selected in node X of
the proposed method are taken to be all
the pairs which are not contradictory to the

partial paths in ?r regardless of their direc-

tions. An example of SL,, .Z2x and the selected

city pairs of node X is shown in Fig. 3.
As for the selection of city pairs, it is evi-

dent that four nodes in Little's method are

reduced to one node by the proposed method

in the case of Fig. 3.

    Let R.l be a set of city pairs inhibited

already on lines. Then the city pairs in Rk

and their reverses are all inhibited in node

X of the proposed method. Under these
definitions of selecting and inhibiting the city

pairs, it is proved easily that the branching

in the proposed method remains optimal in

the following two operations at each node:

1) Eliminating the lines from which two
city pairs are selected. 2) Inhibiting the

city pairs in R. (16) on lines.

(16) Rx=RkU((ki,li),(k2,l2),'''}

      When the number in Sx becomes n-2,
two feasible solutions as weil as Little's method.

in the proposed method is determined either

on a line or the reverse (i i), or by prohibiting

and Rx in a node X is not contradictory to a

the node Yand the node Y, selecting and
which is not on any eliminated line and is not

node X. City pairs in Ri and not in Rk
by Sx･

 Zp<7p

 Zp<Jp

 <ip,7'p>)<iq,.iq>E4

0-@-@-@ @-@
    Sx = {(1,4),(2,3),(3,4),(7,8)}

    F3< = {<1,2>,<7,8>)

        (a) Proposedmethod

    Sx = { Cl,4), (4,3).(3, 2), (7,8)>

    Px " {<t2>,<7,B>>

or

or

 or

        (b) Litt[eis method

  Fig. 3. Selected city pairs Sx and
         partial ipathes Rr in node X

 <k,. I,,>ER.

  then the node X is possessed of

   The algorithm of the branching
by selecting a certain city pair (i,j')

    both of them. That is, if S,,

 tour, then it is clearly shown that

prohibiting a city pair respectively

   prohibited, are equivalent to the

are to prohibit the subtours made
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  3.2 Lower Bound

    When branching is started from a certain node X with Sx and Rx in the
proposed solution, the reduced matrix Dx is made as follows: Elements on lines

corresponding to Rz are ail prohibited and other elements on lines not eliminated

are the same as the initial cost matrix D as shown in (17). Secondly the mini-

mum value of each line is subtracted from all elements of its line for all lines

not contained in II, as was shown in (18). Then the lower bound w(X) of the
node X is evaluated by (19), where lk in (20) is a set of lines already eliminated

for two city pairs to be selected and {71 in (21) is a set for only one city pair

to be selected already.

(17) Plt-(d},(.) dh(j,-=oo (if(Li(7'))ER.)
                                 =:clLi)j) (otherwise)

(18) Dx=(dli{j)) dii(j)=dzi(d)-mindii(p)
                                         peqrM
                            for every ieq 11r

(19) v(X)==Z4j+Zai"mindh(j)
                (i,j')eeq EIIi dceILr

    where at--1(ifiEtJl) or2(otherwise)

(20) .ll=(ij(Li(1'))ESx and <Li(]')>eq.l[}]

           '(21) ,JL,,=:(71<Li(j')>EPEi

    It is easily proved that w(X) in (19) is the lower bound of the node X by

the aid of the fact that the difference between w(X) and zv(X) in (7) is only the

difference of the ways of subtracting the matrix in (5), (6) and (18). It will be

explained by the use of the example shown in Fig. 4. When Si is assumed to

           l
         H
           '

           ×-- -k -m j
                                         k
                           O : Se'tection

                           × : Prohibition

                                         t

       rsx={(j,o,(k,t)} ･ rsx={(j,o,(t,k)}

       kRx={`j･k'> KPx" {`kij'}
     Fig. 4.(a) Proposed method Fig. 4.(b) Little's method

l

t-×-

-k--- -

l

f

'
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be a set of city pairs selected in the node X of the proposed method, .Z[lr is

obtained as shown in Fig. 4(a). This node corresponds to either the node of

Litt!e's method shown in Fig. 4(b) or the node given by reversing the order

of S.. The discussion of the reverse case in Fig. 4(b) is omissible evidently

because of dealing with row and column alternatively. As for R;ff, it is omissible

because the city pairs prohibited in (a) and their reverse ones are both prohibited

in (b). Both row･and column corresponding to line l eliminated in (a) are elimi-

nated in (b). Then their lines are not related to (17) as we!1 as Little's method.

Either row or column corresponding to line J' or k selected only one city pair

in (a) is eliminated in (b). Then the minimum values of their !ines are added

in (19) as well as in (7). Neither row nor column corresponding to line i not

selected in any city pair in (a) are eliminated in (b), then the minimum values

of their lines are added twice in (19) for row i and co!umn i as wel! as in (7).

That is, the difference between the second member of (19) and the second and

third member of (7) is that of the sequence subtracting the minimum values.

In the proposed method the sequence is at the same time for row and co!umn,
while in Little's method it is in order as all columns after all rows. The sym-

metry of the cost matrix is retained in the proposed method. Similarly the
same is proved in the case where there are plural partial paths.

    There are at least one zero element for each line not contained in ll. The

city pair used by branching from the node X is decided so that (7, .-t') maximizes

¢(i,7') over these zero elements as shown in (22). The lower bound of the node
Y prohibiting (7, r/) is evaluated by (23), That of node Y selecting it is evaluated

by (25) after reducing the matrix Dy from Di, as was shown in (24) and (18),

where (Lk(l)) is the city pair prohibiting the subtour which is made immediately

by selecting city pair (il, ,ni

(22) ¢(i,.i)::=ai*mindli(.)+aj*mindi,･(.) foreverydi,(j)=O
                    pGTxV(j} pajILrU{i}

(23) z,(Y)==:v(X)+ip(i',rt')

(24) Dlr=(d'Li(j)) dZ,g(J')===OO (ifLi(J`)=Lk(l))
                                  ==dli(j) (otherwise)

(25) z,(Y)-v(.X)+Zai"mindZi(j)
                        i(ry dGIv

    It is proved in the same way as w(X) in (19) that both v(Y) and w(9-) are

the lower bounds of the node Y and Y, respectively. When the branching is
started from the node Y made immediately, the lower bound is evaluated by
(25) after reducing the matrix by (24) repeatedly. And when the branching is

started from the node finding the rninimum value, it is evaluated by (19).

  3.3 AIgoTithma

    The flow-chart of the proposed solution is shown in Fig. 5. The working
of the algorithm will be explained by tracking through the flow-chart.
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Start

1

Upperboundu=oo

IstherenodenO
Xtobranch?

Upperbound
isotimal

es 'ff----`-' Stop
ReducematrixDx

Eva[uatev(×)
no
v<X)<u

esg
.Evatuqte¢f(i,j)

Decide(T,J')
StorenodeY;V
SetnodeYtoX

.

Numberofcity
pairs<n--2 yes

7

BuitdtourtofX
Determineu
Rejectthenodes
greaterthanu

Buildpartiat
pathesPx

                    Fig. 5. Flow-chart of t'he propose[I method

    Box 1 starts the calculation by setting the upper bound zt to infinity.

    Box 2 decides the node X from which branching is started. If there is
no node to be branched, then the algorithm is finished and the upper bound
becomes the optimal solution.

    Box 3 evaluates the lower bound v(X) after reducing the matrix D.. If
the lower bound z,(X) is not smaller than the upper bound zt then go to Box 2,

else go to Box 4.

    Box 4 evaluates the measure of selecting the city pair ip(i,j')

    Box 5 decides the city pair (1', rt') used by branching from the node X stores

the new nodes Yand Y, and sets the node X to the node X If the number
of city pairs sele6ted 1]ecomes n-2, then go to Box 6, else go to Box 3.

    Box 6 builds a tour by using of Sr, determines the upper bound zt, and
eliminates the nodes whose lower bound are greater than u.

    Box 7 makes the partial paths and is called from Boxes 3 and 6.

    The algorithm of the proposed method is different in only double boxes

from that of the method which is used for the comparison with the proposed
method in the next section. In each method, the strategy of branching is always

to branch ifrom the node made immediately, and by the use of an index table

'
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the time for seeking the minimum value for each row and column or each line

is reduced as much as possible. The existing method improved by us as well

as the pyoposed method makes it possible to obtain the value more precisely in

less computing time. The method reduces the computing time to one-half of
the time required by Little's method. Well shall call this the `improved method'

in the next section.

             ･ 4.ComputationalExperiments

    The proposed method is examined and will be compared with the improved
method in relation to the computing time and relation to the number of nodes

by solving many examples. The computer used in the experiments is FACOM
230-60 (Hokkido University Computing Center) and the program is coded by

FORTRAN, The cost matrixes of the examples are made by the use of random
numbers generated by the computer. An example of 10 city prob!emsis shown

                      Table 1. An example of cost matrixes

                j

               i 1234567B9 10
 1

2

3

4

5

6

7

8

9

10

co

8

 3

4

9

17

16

18

10

6

 83
oo 2
 2 co
 8 14

16 3
18 7
19 10

 2 10

 97
10 15

Table Z.

 4 9 17 16 18
 816 18 19 2
14 3 7 10 10
oo 19 1 20 16
19 co 1 f IA
 1 1 co 17 18
20 1 17 oo O
16 11 18 O co
10 8 15 48
14 5 14 18 3
Computing time (10 ms)

10

9

7

10

8

15

4

8

co

12

6

10

15

14

5

14

18

3

12

oo

Numberofcities

(Numberofexamptes)

10

(10)

20

(10)

30

(2)

minirnum 12 72 3509
Proposed

methoci
average 31 676 8477

'maxtmum 46 1B22

MitliMUM 682 27617
Improved

method
average 67 2521 59f93

+maxtmum 119 7626 90769'

Nonsymmetriccases 24 370 2160
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in Table 1. In the experiments, ten examples for 10 and 20 city problems
respectively and two examples for 30 city problems are solved. '

    Table 2 arranges the res ults of experiments for the computing tlme. The

proposed method makes it possible to solve 30 city problems in 85sec. on an
average. This time is reduced to one-fifth compared with that of the improved

method, and it is expected that the ratio becomes smaller when the number of

cltles lncreases.

                         Table3. Numberofnodes(112)

Numberofcities

(NumberofexampLes)

le

<1O)

20

<10>

30

(2)

minimum 9 28 645
Proposed

method
average 25 220 1275

,maxlmum 40 573 1905

minirnum 12 162 2590Improved

method
average 36 500 4508

,maxlmum 68 1318 6425

Nonsymmetriccases 13 96 356

    Table 3 arranges the results for the number of nodes generated torough the

solution. The number doubled in the table corresponds to that of the existing

solutions. It is shown in these resclts that the number of nodes in the proposed

method is greatly reduced compared with that of the improved method.

    In order to compare the symmetric problem with the nonsyrnmetric problem,

the computing time and the number of nodes are shown in the same tables 2
and 3, by means of the improved method for nonsymmetric problems. It is
readily seen from the table that the symmetric problems are rather diflicult in

these cases.

                               5. Conclusion

    A new algorithm solving for the symmetric traveling salesman problem is

proposed. The method retains the symmetry of the cost matrix through reduc-

ing operations and deals with city pairs disregarding their directions. The
concept of these technique will be applied to other problems. In conclusion we

shall mention here that the method proposed in our present paper can treat and

successfully solve the symmetric traveling salesman problems by using an electro-

 .
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