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New Formulae of the Generalized Sampling Theorem 1

— Formulae making use of the Sampled
Zero-th Order Derivatives —

Bi Iti TAKIZAWA® and Shih Ming HSIEH*®
(Received July 7, 1974)

Abstract

New sampling formulae are presented, based on the generalized sampling
theorem by Takizawa and Isigaki. Some examples given in the present paper
include the sampling formulae, by means of which one can reconstruct a con-
tinuous function from its sampled values and sampled derivatives. The sampling
formulae stated here can be effectively applied as interpolation or extrapolation
formulae.

Zusammenfassung

Neue Abtastformeln werden in der vorliegenden Arbeit auf der Grundlage
des von Takizawa und Isigaki abgeleiteten verallgemeinerten Abtasttheorems
angegeben. Die hier behandelten Beispiele enthalten solche Abtastformeln, mit
denen man eine kontinuierliche Funktion durch Thre abgetasteten Werte und
abgetasteten Ableitungen wieder konstruieren kann. Die hier beschriebenen
Abtastformeln kénnen als Interpolations- oder Extrapolationsformeln erfolgreich
angewandt werden.

§0. DPreliminaries

The generalization of the sampling theorem and the reconstruction of a
band-limited function from its sampled values and sampled derivatives were made
by Kohlenberg", Fogel®, Jagerman and Fogel”, Bond and Cahn”, and Linden and
Abramson”. The sampling theorem was also generalized by Balakrishnan® to the
case of a continuous-parameter stochastic process. On the other hand, it was
pointed out that the sampling intervals need not be uniformly distributed”.

In previous papers®™'®, one of the present authors (T.) proposed a generalized
sampling theorem taking the reciprocity relation of integral transforms into
account, and gave new sampling formulae as examples. Takizawa and Isigaki®
also presented another generalization of sampling theorem to reconstruct a con-
tinuous function from its sampled values and sampled derivatives. They also
suggested some of the new sampling formulae as special cases of their theorem.
Recently Takizawa'? made some comments on their generalized sampling theorem,
and introduced the notion of the generalized frequency and generalized band-
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limited spectrum function, in order to discuss the condition on which their
theorems were based. Truncation error of the sampling expansion was also
estimated by him.

In this paper, the authors present several examples of the generalized sam-
pling theorem, based on the expressions given by Takizawa and Isigaki'®, and
Takizawa'’, Expressions in the references 13) and 14) shall be quoted with
authors’ initials, e. g., (TI-2-1), (T—-1-1) etc., respectively.

‘We shall begin with the consideration of the examples of the generalized
sampling theorem (TI-2-1), (T1-2-1"), (T-1-1), (T-1-1'), and (T-1-1"), for the case
of small m, > 0.

§1. Examples of Sampling Formulae making use of the
Zero-th Order Derivatives of Sampled Function

We shall refer to expressions (TI-2-1), (TI-2-1"), or (T-1-1)~(T-1-1"), mainly
for the case m,, =0, which corresponds to the case for the sampling formula making
use of the sampled values of an entire function. For m=0 in (TI-2-27) or (T-2-5),
we obtain the sampling formula (TI-2-23) or (T-2-9), which reduces to the expres-
sion suggested by van der Pol®, i.e., (TI-2-26) or (T-2-9).

1) If we take an orthogonal polynomial ¢ (z; s) of degree s, in the interval:
a<z<b, with its s zeros 2, (n=1,2,3, --,s), i.e, ¢(z,; 5)=0, and

b

d(z; s)€ {¢(z, k);S Wiz) d(z; m)-d(z; 7")-dz=5,,b,7,}, (1-1)

with the weight function W (2), then expression (T-2-9) approximates f(2) by

F& =2 flo) ot s K g5 9, (1-2)

n=

the first term of which is a polynomial of degree (s—1).

Function f(z) in (1-2) with K=0, coincides with f(z) at the s points =z, (n=
=1,2,3,,5), and therefore is identically equal to f(2), if f(2) is a polynomial of
degree (s—1). In this case, K=1im,... f(2)/¢(z; 5) vanishes. If f(2)is a polynomial
of degree s, then the second term of the right-hand side in (1-2) is necessary
to express precisely the function f(z), where K=lim,.. f(2)/¢(z; s) does not
vanish but remains finite.

Of course, if f(z) is of higher degree, function f(z) in (1-2) with K=0, does
not represent f(z) exactly, but only approximately. And this formula is known
as Lagrange’s interpolation formula.

If f(z) is a polynomial of degree as high as (2s5-1), it is also shown'® that

S W (2) () dz = g W (2) 70 de, (1-3)

@

with W(2) the weight function associated with ¢ (z; s). Because f(z)—f(2) is a
polynomial of degree at most (2s-1) and certainly has among its zeros those of
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d(z; s), since

f(zn> =J (), for ¢ (zn 5 5) =0.

Therefore, we. can write

fl)—flR)=¢(z; s) 7r(2),
where 7(2) is a polynomial of degree at most (s—1). Then

S: W(z)-f(z)-dz—S’ W(2)- F(z)- dz =

h
a

because ¢ (2; s) is orthogonal to every polynomial of lower degree.

We put expression (1-2) into (1-3), and obtain

Xﬁw@ﬂw@:i@fmx

@ n=

with constants :

ansb Wi(z)- $(z; 5) <dz, (n=1,2,3,-,3)

@ (z—zvz)'¢l (zn 5 S)

which are often called the Christoffel numbers.

(1-8)

51

Formula (1-7) states that if f(2) is a polynomial of at most degree (2s-1),
then the integral can be evaluated if one knows the value of f(z) at no more
than s points. This formula can be used to evaluate integrals approximately when
f(z) is not a polynomial of at most degree (2s-1), and is nothing but Gauss’

quadrature formula.

In some practical approximations of Lagrange’s formula, one often takes:

g(z)= gi[l(z—nk), (all the n,’s are distinct)

in (T-2-9), and obtains the sampling formula

@) =3 f) LoD+ K - ¢ (2),

m=1

where
. _ S 2—77,{.
Lm (z> L:EII D= N
k+m
with
L, (7]13) = Om,p - (1 <P < S)

As an example of (1-10), we shall take:
fl2)= 2", (N=natural number not exceeding s)

with g (2) expressed by (1-9), then we obtain :

(1-9)

(1-10)

(1-11)

(1-12)

(1-13)
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2N < 77;?; . ' £
g () “mzzl (Z=Dm) 9" ) + Ky, (with ¢'(p.,) = [:II O =0)| - (1-14)

Kedem

with Ky=1 for N=s, and Ky=0 for I<N<s—1, because of condition (III") in
(T=2-2), or (III") in (T—2-4). ,
Expression (1-14) with 2=0, reads as follows:

N

S0, (for N=0,1,2, 5—2) (1-15)
m=1 . (77m>
and
s 773 -1
n — 1 . -
mZ::1 g’ () 11

If expression (1-9) has double zeros, the sampling formula (1-10) is to be
modified by means of (TI-2-1) or (T-2-3). The detailed expression shall be given
in another paper®.

2) If we put:

g (2)=cos{a-cos ! Bz), (s B#0) (1-17)
in (T-2-9), with constants a and 8, we can approximate f(z) by:

f&%:2<—UMf@)sm(Zgzlﬂ>

7

cos (@ cos ™! fz)

T afle—z) -+ K« cos (@-cos™* Bz}, (1-18)
with
cos (a+cos ™ Bz,) =0, (1-19)
1. e.
27 ; 7 .
cos Bz, = A ’Z; a})l . (n=1ntegers) (1-20)

If function f(2) is a polynomial of degree (s—1), we have:

@)= T -1 flesin (P 7).

7=0

1
. cosﬁ(:s(zcgz;)ﬁiz) , (s=positive integer) (1-21)

referring to condition (I1") in (T-2-4), where 2, (2=0,1,2, -+, s—1) are zeros of
cos (s+cos™!Bz), i.e., 2,=(1/B)cos ((2n+1) n/2s).
In expression (1-18), if we put Bz=cosf and fz,=cosd,, we have

P28 )= B (- (2252 sino,

n=0

cos (s)
" Cos —cos 0., + K+ cos (Sﬂ) (1-22)

Accordingly we obtain :
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e

7 cos (s6) sin (sr) )
'(S‘o cos —cos 0, “df+ K- s ’ (1-23)

where the integration (g, df is to be understood to take Cauchy’s principal values
0

at §=0,=(2n+1)z/2s. Hence we obtain :

L5555t

(s=positive integer) (1-24)
by making use of the integral formula:
. 0 in (sg* .
§ MCOTC{)QE-(CSO—QJW 0 == S;?n(sﬁ*> . (s=non-negative integer)
0

Expression (1-24) corresponds to the approximate quadrature formula given by
Multhopp'” and Konds™.
3) If we take:

g (2)=sin (Bz+7), (B=0) (1-25)

in (T-2-9), with constants f and 7, we obtain Someya’s sampling formula,'®
referring to (T-4-10"):

nr—7 ) sin (B2 +7 —nr)
g Be+7—nr

with sampling function sin (82+7—nz)/(Bz+7—mnx), provided that f(z)-exp [—|f]-
+|y|] vanishes for large |y|, with z=x+1{y. Function (sinz)/z is often called sinc z.

If we take f(z)=constant and g¢(z)=sin(Bz+7) in (T-2-9), then condition
(II1""y in (T-2-4) is expressed by :

1 £ f©)
2—1-‘130 2t (S)]e {{—2)sin (BC +7) d¢=0, (1-27)

from inequality (T-4-10"). In (1-27) the integration contour is taken to be a
circle of radius R with its centre at the origin. Hence, from (1-26) and (1-27)
we obtain :

fR)= 5 f

n=—00

(1-26)

e sin(fg+7—nm)

1= ngm Bz+T—nr

It is also known that condition (III) in (TI-2-4), (TI-2-25), or (T-1-4), is
satisfied, provided that the following inequality® ' holds:

(8#0) (1-28)

v|_ﬁ,|_.__ < T ...... s (1_29)

with W the maximum frequency of a band-limited function f(z), and that the
total variation of the Fourier-Stieltjes spectrum of f(2) is bounded. If we take
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¥=0 in (1-26), then under condition (1-29) we have Shannon’s formula®*" :

(J}ﬁn_) sin (fz—nr) _

Bz—nxn

=3 f

From (1-26) and (1-27), we have:
oo <mr—-7’wa>. sin (Bz+7 —nn)

(80) (1-30)

cos {az)= ), cos

i B Bz+7—nn » (B0, la| <|A)
(1-31)
and _
sin (az) =n§,m sin( nn‘é—f . > Sm‘@fj_—;iz:ﬂ s (B0, fal <|B1)
(1-32)
provided that |a|—|8]<0 (¢f. (T-4-10"), i. e
T < T (1-33)

4) If we take ¢g(z) as a product of two entire functions ¢,(z) and g,(z):
9(x)=0:(2)9:(2), (1-34)

we obtain, from (T-2-9), the following expansion formula for an entire function

f(2), under condition (III") in (T-2-4):

fle) =% flza) <z_§f> f?{éiféz () "

+ 2 f () 0:(2):0:(2) +K g (2) g5(2),  (1-35)

Z— zm) ' (zm> ¢ g'fl (zm)

with simple zeros 2, and gz, respectively of functions ¢, (z) and ¢,(2). Thus we

have ¢'(2,)=01(2.)+ 92 (2.), and ¢'(2,.)= g1 (2a)* 9% ().
As an example of (1-35), we shall take:

g (z)=sin(Bz+7)+ Il (2—%), (B=+0, all the s are distinct) (1-36)

]
in (T-2-9). This gives the following sampling formula :

too i r— b — N

Fe= B fla) BT g et
s sin(fz+7) 5 z—

+ 2 S ()« sin (B 1) L =

=1 A=1 7}m ka
ko

(B=0) (1-37)

with z,=(r—7)/8 (n=integers), all the ,’s (m==1,2,3, .-, s) and 2,’s (n=integers)
being distinct, i.e., 7, nr—7)/8, provided that f(z) is entire and that
lim, ... f(2)/g (z)=0.

5) If we take

g (z)==z-sin{Bz)— A cos(82), (B-A=+0) (1-38)

or ,

g (z)=z-cos (fz)—B-sin (fz), (8- B=+0) (1-39)
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in (T-2-9), with constants A, B, and S, then we obtain respectively :

re=2 8 fo) g iy g 0
or "
F@= =2 5 flu) gm0 .
__z+cos (ﬂz}:ﬂBﬂ-sin(,@z) + £(0)- z-cosz[?(zl):?.;n (Bz) ,
(1-41)

where 2, and p, (n=integers) are roots of the following equations, being arranged
in ascending order of magnitude:

Zn » sin (ABZ’II-)—A * COS (18/271) =0 s (1_42>
and

U v cOs (Btn)— B - sin (Bu,) =0, (8-B+1) (1-43)

The roots A,’s and p,’s are taken to be positive for n>>0, negative for n<0, and
we put L=pg=0. 2 is not a zero of g(2) in (1-38) for A=0, while p,=0 is a
simple zero of g(z) in (1-39) for B==0.

For an even function f(z) in (1-40), we have!"~»2.%)

T cos (B4,,) z+sin (fz)— A cos (B2)

SR =4 25 4 S ) 55 rsin 200y e ’

(1-44)
with positive roots 4, (n=1, 2, 3, -) of equation (1-42).
For an odd function f(z) in (1-41), we have!©~12:2.2) .
oo sin (Bes,,) z+cos (fz)— B-sin (fz)

He)= =gt T ) g —sin (2 Bya) P >

(1-45)

with positive roots g, (n=1, 2, 3, --) of equation (1-43).
For the limiting cases: A--0 in (1-38) and B—0 in (1-39), we obtain respec-
tively the following formulae from (TI-2-1), (T-1-1), or (T-2-10),
o B 7271')' z+sin (fz—nx)

foy= 5 L p( ) Zeplbe

n=—o NT
70

Oz ) 2L (g (1-16)

and

f@= B (e 2 (g ).

n=-—o00

e Bt £0) con(82),  (80) (147

which are somewhat different from Shannon’s formula (1-30). Let us note that
z+sin (Bz) has a zero of second order, and z:cos(fz) has a simple zero, respec-
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tively at the origin.
Examples of (1-46) and (1-47) read as follows:

)= 5 (0], e

+gsin(fe), (80, lal <)) (1-48)
cos az) = 57 P cos (’%‘% : %@%}’ﬂ +

#3808 (a0, < gl (1-49)
L) 3 g (15 eoin e

Ha0+ 5 (10— L)) 2L (o0, <18

, (1-50)

sin (az) = ngm(—- 1 ’(27%%? . sin (3’,_%1— na> :

gl (50, al<1B) (1-51)
cos (we) = 51 (—1p1 1 2B cos (2 ).

e lB) oo, (60 <IB) (152)
)= 5 (mapnemZl g (2L ).

e ) cos(82). (B0, lal<Ip) (153

The expression corresponding to (1-50) for v=0 and a=B=1 was given by
Wheelon,

6) If we take Bessel function of integral order v for g¢(z) in (T-1-1):

g(z)=J,(Bz), (B#0) (1-54)
with a constant B, we obtain, by means of (T-2-3), (T~2-4), and (T-4-10",

f<2) - niimf(zn) ' J»—ll(ﬁz7z> ' ﬁ{;@"z)n) +E(z) ’ (1_55>

E(z)zmgl i f(()j) H(()sij) ) J, (‘@2) ’ (1~56>

DR (R
provided that lim,.. f(2)//,(82)=0. In (1-55) and (1-56), f§"=/fP(z,)= F2(0),

§
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HE = HE(gh= HN(0) with g (2)=J,(Bz), and Pz, are zeros of Bessel func-
tion J,(z), i.e

J,(Bz.) =0, (n=integers) (1~-57)

where 2,=0 is a zero of |v|-th order at the origin (for v=0). In case v=0, we
have no 2, and function E(2) reduces to a null function.

If either a) f(2) is an even function and v is an even integer, or b) f(z) is
odd, with v odd, we obtain’®~* from (1-55)~(1-56).

f (Z) = 2 +Zm f (zn) * Ju:?lzgzn> ‘ ( 'Bz()]?:u_(i"ZLn)z -t E (Z) 3 (1—58)

=1
with positive roots z,(n=1,2,3, ---) of equation (1-57).
When we put f(z)=J,{az) in (1-58), we obtain

J(ax) =23 5?’@;’"’;) , (ﬁz‘){"_(‘z;)zn)z +E(). 0%]a]<|p) (1-58)

It is interesting to take g (z)=z2+J,(B2) in (T-1-1), instead of (1-54):
g(2)==z+J,(82), (v=integer) (1-54-1)
and we have
g'(2)= Bz J,(Bz)+J,(B2). (1-54-2)

For (1-54-1), under condition lim,... f(z)/{z-], (,6’2)}———0, the sampling formula
reads :

flz)= nii;ﬂzn) . ‘m . z_z{_(?ﬁnzl +F(2), (1-55-1)

F(z)=

plog f H T, (B2) (1-56-1)

= 1B O |
where f§ =19 (z)=fP(0), HF P =H"? (2)=H®9(0), with ¢ (2)=2-J,(Bz), and
Bz, are zeros of Bessel function J,(z), i. e

J,(Bz,)=0. (n=integers) (1-57-1)
For v+0, 2,=0 is a zero of (Jv|+ 1)-th order at the origin. In case v=0, we havea
simple zero 2,=0 at the origin, and F'(z) reduces to f(0)J,(82)/Jo (0)=71(0)+J,(B2).

If either a) f(z) is an even function and v is an even integer, or b) f(z) is
odd, with v odd, we obtain from (1-55-1),

f(z) = 21§f(z,z> * ﬁzn‘Jvl—l (‘an) ’ zzz.zl]i(z%z) +F(Z) . (1—58—1)

If either a) f(z) is even, with v odd, or b) f(z) is odd, with v even, we
have from (1-55-1),

f(z) = 2§f(2n) . ‘3,(]”711 (Bz) . Zzzji(fiz) +F(z). (1-58-1")

n=1




58 Ei Tti TAKIZAWA and Shih Ming Hsigl

In case p=v=0, expression (1-58") reduces to the following one®, if we put
z=0:

= Jolaz,)
1227211,?27%_:]1@_73—' (0= la] <181) (1-58")
While, in case f(2)=const and v=0, (1-58-1) reads:
i 1 2,
1=-—-2 Z z 2J0 (ﬁf) —|—J0 (,82) . (1_58_1//)

n=1 ﬁzn't];(ﬁz7z> ’ =4

25) .

—Z
7) More generally, we shall take

g(r)=2J,(B2)+h-J,(B2), (B+h=+0) (1-59)
in (T-1-1), with an integer v and constants 8 and h. The right-hand side of
(1-59) reduces to ¢'(z)/f in (1-54-2), when we put Ah=1/8. For (1-59) we obtain,
referring to (T-1-9), (T-2-4), and (T-4-10"),

g 271—
JR)==X f(ln)-(hTé)p‘z:,r'

7n=—0
n+0

1 z+J) (Bx)+ ke J, (B2)

AN Py +G (2), (1-60)
Iv]-1 & sLj) H(nsAJ) , 'J: +l 'J,,
Gle= Z JZ::O JU =l R . (ﬂz)zml (B2) , (1-61)

provided that lim,... f(z)/{z-.]’u(ﬁz)-’rh-Jy(ﬁz)}:0. In (1-60), the wvalues 2,
(n=integers) are roots of the following equation :

Ao JL (BN T, (B) =0, (1-62)

with =0 a zero of |v|-th order at the origin (for v=:0). In case v=0, 2,=0 is
not a zero at the origin, and G (2} reduces to a null function.
If either a) f(z) is even, with v an even integer, or b) f(2) is odd, with v
odd, then we obtain 2~##5) from (1-60),
e B,
f(z) = ~2nZ=:1f(2n> * (hz-l-lf,) ‘32—1)2 ¢
1 2+ J | (Bz)+h+J, (Bz)
’ Ju (ﬁzn) ) zz_zi

If we tend % to infinity in expressions (1-59)~(1-62), we have the expres-
sions which are essentially the same as (1-54)~(1-57).

The formulae corresponding to (1-44), (1~45), and (1-63), were also given by
Kroll?® and Isomiti®, based on the integral transforms'®~*? of the sampled function.
8) Further, let us take® a linear combination 7}, (x, 2) of Bessel function J,(2)
and Neumann function Y,(z) of order p:

Tu(z, 2)=Y,(z)+ J,(2)—J,(x)+ Y, (2). (1-64)
We shall put:

+G(2). (1-63)
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g(2)="T,(az, Bz), (v=integers, a=pf, af+0) (1-65)

in (T-2-9), with constants @ and 8. Then we obtain'®~"?, from (T1-2-4) or (T-1-4)
with (T-4-10"),

A (ad) T, (63 | T la, fo)

f(Z) = 2 Z f( n) ’ Jf (CYX,,)“‘J% (ﬁxn) z__xn ) (1—66)

n=—oc0
70

provided that lim,., f(2)/T,(az, B2)=0. The values 2,(n=integers) are roots of
the following equation :

Tv (azn, 52":) = O 3 (1—67>

Y, (@) J,(B2.) = J, (a2,) + Y, (B4), (1-68)

being arranged in ascending order of magnitude for increasing n, where 1,=0
is not a zero of 7, (az, fz). We referred to expression (1-68) and the Wronskian
of cylinder functions J,(2) and Y,(z) in order to obtain the sampling formula
(1-66).

Function 7, (a2, 82) (v=integer) is an even function, because of J,(—z)=(—1)-
J,(2) and Y,(—2)=(—1)-Y,(2) for an integer v. So, if f(z) is an even function,
expression (1-66) reduces to'®'?:

f)= =+ 5 f)- Ll g dobl Llm B g

n=1

with positive roots 1, (n=1, 2, 3, --+) of equation (1-67).

If function f(2) is odd, expression (1-66) reads :
f(z) =T glf(x,») * i l(]lgf)x )Jz ((ﬁ%js) E Y;z(j';% ﬁz) . (1—70)

If we replace f(z) by f(2)+B,(2) in (1-66), we obtain a sampling formula for
f(2)+B,(z), which reads:

VAU 'zn)' J, (58'2n> T, (a'z, ﬂz)
LR (R R (1-71)

with a given function B,(z), under condition :

lim f(2)+ B, (2)/ T (az, pz)=0, (1-72)

which corresponds to condition (III) in (TI-2-4) or (T-1-4).
If we take

B,(z) = Ji(2)+ Y(2), (1-73)

in (1-71), we obtain a sampling formula previously given by one of the
authors'®~2,
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9) If we take

g (z)=sin(B+7), (B-7=0) (1-74)
in (T-2-9), we obtain:

sin{fz? 7 —nrx)

f(Z) = }7_1:' f(zn) ' 2182,,,‘<2f—zn) > (l~75)

where z,= “+(nx—7)/B (n=integers), and the summation over n covers all the
values of z,, 7. e, positive and negative square roots. In case 7=0, sin (82°+7)
has a double zero at the origin, and expression (1-75) needs modification.
10) If we take g (2) to be a product of two entire functions, such as sin (fz+
+7)J,(pz), (a Lagrangean polynomial)x J, (pz), etc., we obtain a sampling formula
from (T-2-9) by similar calculations as in (1-35).

Truncation error of the sampling expansion (T-2-9) can be easily estimated.
The bound for truncation error'?® of (T-2-9) in case m,=0 was already given
by (T-2-13) or (T-6-7).

Concluding Remarks

In this paper were given several new examples of sampling formulae, based
on the generalized sampling theorem (TI-2-1), (T-1-1), or (T-2-3). Formulae
which make use of the sampled zero-th order derivatives (i. e., the values of the
sampled function itself), were mainly treated. Our formulae coincide in many
cases with those derived from formula (T-2-9) with K=0, as was suggested by
van der Pol®®., While, it seems to the authors that formulae such as (1-10), (1-
14), (1-18), (1-24), (1-35), (1-37), (1-46)~(1-55), (1-58), (1-60), (1-63) etc., were
newly presented in this paper. Examples of the generalized sampling formulae
which make use of the sampled higher order derivatives, will follow in another
paper®™.

In concluding the paper, one of the authors (T.) wishes to express his sincere thanks to the
members of Departments of Physics and of Mathematics of Taiwan University in Taipei, for their

constructive suggestions and hospitality during T.'s stay in Taipei in the early autumn of 1972,
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