

Instructions for use

Title The Minicomputer-Oriented System Description Language SL/M2

Author(s) Makino, Keiji; Tochinai, Koji; Nagata, Kuniichi

Citation Memoirs of the Faculty of Engineering, Hokkaido University, 14(2), 25-36

Issue Date 1975-10

Doc URL http://hdl.handle.net/2115/37945

Type bulletin (article)

File Information 14(2)_25-36.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

The Minicomputer-Oriented System Description Language SLIM2

Keiji MAKiNo, Koji TocHiNAI and Kuniichi NAGATA

 (Received June 30,1975)

 Abstract

 SL/M2 is a minicomputer-oriented high level language designed for the

production of system and utility programs. SLIM2 is extension of SLIM, which

is a minicomputer-oriented language designed to realizethe basic functions for

system program 'description and is a preliminary step to SLIM2, The main

differences between SLIM2 and SLIM are

1) prohibiting the assembly language embedding,

2) providing a number of system subroutines for stack manipulation etc., and

3) introducingthespecifierWHILE.

 This paper presents a formal description of SLIM2 grammar. Under this

specification, SLIM2 compiler is implemented for a TACC 1200 minicomputer.

And, on its implementation, the bootstrapping method is used in succession to

SL/M compiler production.

 I. Introduction

 In recent years, the use of minicomputers has become extensive. But, the

minicomputer users encounter considerable difficulties in processing their work

because an efficient high level system description language for minicomputer

utilization had not been developed. Accordingly, SLIMi)2) were planed out

and implemented.

 The SL!M is a minicomputer-oriented high level language for the
production of system and utility programs, and can easily used to program the

object expressed by a state transition diagram model. It has good writability,

readability, and learnability owing mainly to its simple structure. The basic

concept is that, in this language, there is only one executable statement form

which corresponds to the transition from one state to another on a state

transition diagram.

 In this paper, SLIM2 is reported which is a higher version of the SL/M and

is extended by the bootstrapping method. SLIM2 differs from SL!M mainly in

the following points:

DepartmentofElectronicEngineering,HokkaidoUniversity,Sapporo,Japan.

26 KeijiMAKINo,KojiTocHINAIandKuniichiNAGATA

1) The means of connecting with an outer assembly language routine is

provided in the system, although the assembly language embedding is removed.

2) A number of system subroutines are made ready for stack manipu}ation and

packing, etc.

3) The specifier WHILE is allowed for the representation of the repetition

loop.

 Section II of this paper describes briefly the main features of the language.

Section III is the formal description of the grammar using the AN notation3)

for the synfax. Section IV describes the implementation of SLIM2 compiler

placing emphasis on the differences with SL/M compiler. Section V is the

conclusion.

 II. The main features of SLIM2

 SL/M2 is constructed in such a way that the beginner, who is unfamilier

with computers or programming, can easily use a small minicomputer (i.e.

word-length at most 16 bits, memory 4-8 kwords, teletypewriter, paper-tape

reader). Therefore it is desirable that the language structure is simple and yet

powerful in the system description. SLIM2 has its main features as follows.

 SL/M2 has only one basic type of statement to be executed, namely the

executable statement. The executable statement is fundamentally composed of

two parts. One part, called executive condition, represents the executing

manner of its statement, corresponding to the condition for a transition from

state to state on the state transition diagram, and the other part is a sequence

of so-called basic executable statements, corresponding to actions performed

with the transition. All things with a transition, thus, can be represented by one

executable statement. And, its representation form is designed by considering

the compactness and also the extendability of the language.

 The data type is the one-word-length bit-pattern type only, but its value on

a program is described by using the octal notation or character string

expression. The bit-pattern is specified by the user (or the programmer) for the

purpose of the program described. Accordingly, it may be a character code of

any type, an integer (signed or unsigned), a bit string, or purely bit pattern, etc.

 In the SLIM2, two usual types of conventional operators are conveniently

made use ofi.e. the arithmetic type, and the logical type. The arithmetic type

operators interpret the bit-pattern of the both operands as a unsigned integer,

and the logical type operators interpret the bit-pattern of the both operands as

a bit string.

 The function of the assembly language embedding is removed which is
permitted in SL/M. For the assembly language embedding is convenient but has

 The Minicomputer-Oriented System Description Language SL/M2 27

a possibility of spreading assembly code over the entire program. This means

the program using its function is not machine independent and therefore is

inconsistent with the original purpose of high level language development,

Therefore, on SLIM2, the prohibition of the assembly language embedding is

attempted. Instead of it, SL/M2 has a means of connection with another

language routine defined outside. It is .SYS routine which is one of the

subroutines provided by SL/M2 system. The .SYS routine may have some input

parameters andlor some output parameters. Only by these parameters, the

SL/M2 program communicates with the outer routines.

 Other two groups of subroutines are also provided in the SL/M2 system.

One group makes use of byte-data conveniently. .PACK routine packs each

lower-byte of two words into one word, .UPU and .UPL unpack one word, and

take out an upper-byte and a lower-byte, respectively. Another group helps the

push-down stack manipulation. .PUSH routine pushes-down the values in its

parameters into a push-down stack, and .POP routine poppes-up the value from

a push-down stack into its parameters concersely.

 On trial, the specifier WHILE which expresses a repetition loop is newly

introduced. This is one step toward taking in various specifiers, e.g. another

repetition loop from, case-like representation, etc.

 III. SL/M2 grammar

 In this section, the formal description of SL/M2 is represented.

3.1 General Rules
3.1.1 The syRtax will be described with the aid of the AN notation3).

3.1.2 The semantics will be described with the natural language.

3.1.3 Program is physically composed of lines. The line is a character string

between two carriage-returns, and it is composed of 80 characters at most.

3.1.4 The representation feature is free-formatted in the line.

3.1.5 The characters used for the program description are any characters on

the teletypewriter except for the control characters.

 But carriage-return has the meaning of line delimiter, and line-feed (LF) is

only used for the descriptive form adjustment. Moreover, null (NUL) and

delete (DEL) are ignored even if they might be used for the tape form

adjustment.

 For other control characters, their functions are not specified at this

language specification.

3.2 Basic and Lexical Concepts

28 KeijiMAKINo,KojiTocHINA;andKuniichiNAGATA

3.2.1 Basic elements

 <character> == <any character on teletypewriter containing space>
 <letter> =- AIBICIDIEIFIGIHMJIKILIMINIOIPIQIRISITIUIVIWjXIYIZ
 <octal digit> == OIll213I415I617
 <digit> = <octal digit> l8l9

 <cr> == <carriage-return>

 Although the carriage-return is a control character, it is explicitly denoted

since it is used as the line delimiter.

3.2.2 Identifiers, octal numbers, character strings.

I) Syntax

 <identifier> === <letter>E<letter>i<digit>]ooo

 <octal number> == <octal digit> ooo
 <character string> == "[<any character except for" >]ooo "

2) Examples

Identifiers: ID'NAMELIO'SIN8 BUFFER
Octalnumbers: O 123 060 7654321 OOOI
Characterstrings:"CHARACTERSTRING" "LDAO,ID"
3) Semantics

 Identifiers serve for the identification of simple variables, arrays, labels, and

subroutines. They may be chosen freely except for key words. The first four

characters are used for the identification. The scope of these identifiers covers

the entire program.

 Octal numbers and character strings represent bit-patterns to be converted.

3.2.3 Constants, variables, terms, and labels.

1) Syntax

 <constant> === <octal number>[<character string>
 <simple variable> == <identifier>
 <array identifier> == <identifier>
 <subscripted variable> == <array identifier> ((<simple variable>1<constant>))

 <variable> == <simple variable>l<subscripted variable>

 <term> == <variable>I<constant>
 <label> == <identifier>

2) Examples

Simplevariables: IWKALPHAC123POINTER
Subscriptedvariables: X(I) BUFFER(12) HC'A") STACK(POINTER)

Labels: ' LABELLOIOSUBNAMEMAIN
3) Semantics

 A constant except for the character string contained in output statement is

a one-word-length fixed bit-pattern,

 A variable is a designation given to a single bit-pattern.

 Interpretation of each bit-pattern is subject to the user.

The Mlnicomputer-Oriented System Description Language SL/M2 29

'

3.3 Executable Statements

 The executable statement is the logically basic composition element for the

description ofcomputation part.

3.3.1 Executable statements

l) Syntax

 <executable statement> == [<label>:] [<executive condition>]
 (<primitive executable statement>;1<executable statement>)...

 <specifier> == ON 1WHILE
 <relational operator> -= = I<1>l(X"1=Xl< >1> <)l(<"1"<1>l>X)1(>"l">IX<1<X)

 <conditibn> == <term> <relational operator> <term> (,Ieoo

 <executive condition> == <specifier>(<condition>)
 <primitiv'e executable statement> = <null statement>1<assignment statement> ..

 [<input statement>l<output statement>l<call statement>
 I<system-subroutine call statement>l<goto statement>l<halt statement>

2) Examples
 ON(X(I) = O,1,2) WK = X(I);I = I+1;
 L: ON(I1 = " 1")ON(I2 =" =") PACK(II,I2: OP);CALL SYS1;
 P: ON(A(1) = Cl) B = S(J); ON(Z = O) OUT(1l, A(Z),1)'; GOTO Q;

3) Semantics

 The executable statement is performed under the control of executive

conditions.

 In the case of specifier ON, if the condition following ON holds, the

succeeding part of its executable statement is performed, otherwise the next

executable statement is performed.

 In the case of WHILE, while the condition following WHILE holds, the

executable statement is i'epeatedly performed. Whenever the condition turns

not to hold, the next executable statement is performed. In this version, it

should be taken note that the specifier WHILE is permitted at most one time in

one executable statement.

 The meanings of relational operators are as follows.

 contammg hand of the relational
operator is interpreted according to the following.

 TO = Tl, T2, ...,TN == (TO =Tl) V (TO = T2) V ... V (TO=TN)

 TO A TI, T2, ...,TN == (TO A TI) A (TO A T2) A ... A (TO A TN)

 relationaloperator

<
>
 <= (K,X>,>X)
 >= (=>,x<,<x)
 x= (=x,><,<>)
The condition

meanlng
equal to

less than

greater than

less than or equal to

greater than or equal to

not equal to

a term list on the right

30 KeijiMAKiNo,KojiTocmNAi and KuniichiNAGATA

(where "A" is any relational operator except "=", and "V" and "A" are

disiunction and conjunction in logic, respectively.) ,
3.3.2 Primitive executable statements

3.3.2.1 Nullstatement

1) Syntax

 <nullstatement>==

2) Example

 L:' nullstatementwithlabel ,
3) Semantics

 A null statement executes no operation. It may serve to place a label.

3.3.2.2 Assignmentstatements

1) Syntax
 <assignment statement> == <variable>=<term> l<arithmetic-logical operator>Iooo

 <arithmetic-logical operator> == +1-l"I/i&l!

2) Examples

 I=1 A(I)=Tl+T2 WK=M&7400+N B(I)=WK&177!60
3) Semantics
 An assignment sitatement is a rule for converting a bit-pattern. But

operations used in the assignment statement are defined by the conventional

usage with the interpretation of each bit-pattern as an unsigned integer or a bit

string.

 The operators are binary operators, and have the following meanings.
 , + addition
 - subtraction
 * multiplication
 / division
These operators interpret the bit-pattern of the both operands as unsigned

integers, and ignore the overflow on the results. Also, subtraction can be

regarded as 2's complement's addition.

 & AND
 ! ExclusiveOR
These operators interpret the bit-pattern of the both operands as a bit string,

and their operations are performed bitwise.

 No precedence of operators exists, and the sequence of operations within

an assignment statement is always from left to right, Moreover, no use of

parentheses is permitted.

 The right hand of the assignment symbol (=) is evaiuated in this w4y, and

subsequentiy the bit-pattern of its result is assigned to the left hand variable of

the assignment symbol.

3.3.2.3 Inputstatements

 The Minicomputer-Oriented System Description Language sLIM2 31

1) Syntax
 <input statement> == IN ((<simple variable>l<octal number>), <variable> i,l o..)

2) Exmpies
 IN(12,BUFFER(I)) IN(UNIT,WKI,WK2,WK3) IN(10,P,BI(P))
3) Semantics

 An input statement serves to read the data into variables frorn the input

device. By the first parameter an input device is specified, and the data are read

into succeeding parameters one by one.

3.3.2.4 Outputstatements

l) SyRtax

 <output statement> = OUT((<simple variable>I<octal number>),

 (<term>ll)(,l ooo)
2) Examples

 OUT(11,BUFFER(J)) OUT(UNIT,"***OUTPUT***",1,1)
3) Semantics

 An output statement serves for transferring the data to an output device.

By the first parameter an output device is specified, and the data are output

from succeeding parameters one by one. If any of those parameters is an octal

number or term, the output is its bit-pattern interpreted as a code. If it is a

character string, the output is an unchangeable character contained between

double-quotation marks ("). In the case of solidus (/), a carriage-return occurs

on the teletypewriter.

3.3.2.5 Callstatements

1) Syntax

 <callstatement>==CALL <label>
2) Examples

 CALLSUBROUTINE CALLREAD CALLM2D6
3) Semantics

 A call statement serves in such a way that the user subroutine with a iabel

should be called which is defined by the subroutine statement in another part

of this program. The cali statement has no parameter because the scope of

identifiers is over the entire program.

3.3.2.6 System-subroutinecallstatements

1) Syntax

 <system-subroutine call statement> == .PACK (<term>,<term>:<variable>)
 l(.UPUI.UPL)(<term>:<variable>)l.PUSH(<term>i,Io.e)[.POP (<variable>(,l o..)
 1.SYS [((<term>i,} o..)1(:<variable>i,}oo.))]

2) Examples

 .PACK (W1, W2:W1)

 ,UPL(300101:CH)
 .PUSH (O, J, A(J), "Z,,, 4)

32 KeijiMAKiNo,KojiTocHiNAiandKuniichiNAGATA

 .POP (T1(K), T2(K), PP)
 .SYS (3, B(O), Ol, 02, 03: Il, I2, I3, I4)

3) Semantics

 A system-subroutine call statement serves to call the routine provided by

the SLIM2 system. Each system-subroutine has the following meanings.

 .PACK routine performs packing of each lower-byte of the first and the

second parameters into the third parameter from lower to upper.

 .UPU routine takes out the upper-byte of the first parameter and puts its

byte into the second parameter.

 .UPL routine takes out the lower-byte of the first parameter and puts its

byte into the second parameter.

 .PUSH routine performs pushing-down the value of each parameter into a

stack in sequence.

 .POP routine performs popping-up of one word from the stack and puts its

value into each parameter in sequence.

 .SYS routine is a universal, connector with outer assembly language

routjnes. Each parameter prior to a colon (:) is the output1･parameter, and

the valueiof the parameter is given to outer routines through the inherent
 ,locations in the system. On the other hand, each parameter succeeding the

coloR is the input parameter, and the value from theouterroutineisgiven

to the parameters. The input parameters, the output parameters or both may

be omitted.

3.3.2.7 Gotostatements

1) Syntax

 <goto statement> == GOTO <label>
2) Examples

 GOTOLABEL GOTOL123 GOTODC45
3) Semantics

 A goto statement serves to indicate that further processing should continue

in another part of the program text, namely at the place of the label.

3.3.2.8 Haltstaternent

1) Syntax

 <halt statement> == HALT

2) Example

 HALT
3) Semantics

 A halt statement serves in such a way that the user program should halt at

the place. By indication from the console (e.g. turning on the continue switch),

the user program continues the subsequent execution.

3.4 CommentStatements

 The Minicomputer-Oriented System Description Language sL/M2 33

l) Syntax
 <comment statement> ==* [<character>]eoo

2) Example
 * COMMENT ... CONTAINING ANY CHARACTER
3) Semantics
 A comment statement seives to give a convenient means for the user. The

comment statement has no effect on the program execution.

3.5 DeclarationStatements

1) Syntax

 <upper bound> == <octal number>
 <array> == <array identifier>(<upper bound>)
 <declaration statement> == DCL (<simple variable>l:<constant>]I<array>)i,looo;

1) Examples
 DCL I, COI:1, A(100);
 DCL B(120), P, CA: "A";

3) Semantics

 A declaration statement serves to define that an identifier represents a

simple variable or an array. The array identifier must be followed by an octal

number surrounded with a pair of parentheses which specifys the upper

boundary of the subscript. The lower boundary of the subscript for the array is

assumed to be zero. The simple variable may assume the initial value by a

constant following the colon (:).

 The declaration for variables must precede the use of the variable. And also,

the scope of the variables is over the entire program because the scope of

identifiers is over all.

3.6 SubroutineStatements

1) Syntax
 <subroutine statement> == <label>:SUB ;<cr>[(<declaration statement>1<executable

 statement>I<subroutine statem>1<comment statement>)<cr>]... END;

2) Example
 L: SUB;
 A=X+Y;B=X-Y;M=X*Y;D=X/Y;
 END;
3) Semantics

 A subroutine statement serves to define the user subroutine. Each

subroutine statement must always have a label (i.e. subroutine name) to be

invoked by the call statement, and must not have any parameters because the

scope of variables is over the entire program. Whenever the execution flow

returns to the place called for, the flow must be through END.

34 KeijlMAKiNo,KojiTocHiNAiandKuniichiNAGATA

3.7 Programs

1) Syntax

 <stop statement> == STQP[<label>];
 <program> == [(<declaration statement>1<executable statement>Ksubroutine
 statement>1<commentstatement>)<cr>]ooo<stopstatement><cr>

2) Example

 *SAMPLEPROGRAM;
 DCL X,Y,Z;
 L: IN(10, X, Y); Z=X+Y;OUT(11, Z, /);

 HALT; GOTO L;
 STOP L;

3) Semantics

 A program is the execution unit, and a stop statement must be placed as

the last statement. The execution order is in the descriptive order except for

encountering the statement changing the execution flow.

 The label following STOP specifies the starting point of the program

execution. If the label is missing, the starting point of the program execution is

assumed to be the first executable statement.

 IV. Implementation

 The SLIM2 comp'iler is produced on a basic TACC 1200 minicomputer (i.e.

word-length 16 bitslword, memory 8 kwords, teletypewriter, paper-tape

reader).

 The structure of SLIM2 is similar to that of SLIM compiler')2), and the

rnethod of the production is the bootstrapping method in succession to SLIM

compiler production. Therefore the SL/M2 compiler has a hierarchical modular

structure and uses an intermediate language based on the modified Polish

notation,too.

 By using a specific register in a base-register-like way, Page Zero (i.e. direct

addressable area) is preserved for othef programs, and the number of usable

identifiers increases. But, the small number of registers makes the generated

code pattern inefficient, and the goto and call statement must be converted to

o 10 ca 56 400 l7277 17377 l7636I7777

SYSrouline stuck array 1Constflnt ' objecl system subroutine system binaTy

parameter pointer area fand pregfam staek return sub- loader

area and rva[iable l address routine

systenl t stack

subroutine
1

addTess
l l

Fig. 1 Memory assignment on object program by SLIM2 compiler.

 The Minicomputer-Oriented System Description Language SL/M2 35

the indirect jump instruction which takes two words. The situation of the

memory assignment on the object program is shown in Figure 1.

 With introducing system-Subroutines, internal codes for their system-
subroutines' name are added4)5). Thus there are seven kinds of the internal

code classes: delimiter, constant, simple variable, array identifier, label,

system-subroutine name, and another system-function name. Also the
key-words (i.e. the names belonging to the latter two classes) are reserved in

this system.

 V. Conclusion

 SLIM2 is based on SLIM, and is an improved version ofSLIM.It has been

previously described that the assembly language embedding is excluded, and a

number of system-subroutines and the specifier WHILE are included. And also,

it may be added that the input or output device specification can be performed

at the execution of the input/output statement by permitting of simple
variables for its first parameter.

 But the function included on SLIM2 is not very wealthy. Certainly more

addition of the function may be expected. However the required memory for

each phase of present SL/M2 compiler is about 4 kwords, in both program

body and its working area, and therefore it reaches the memory limitation on a

4-kwords system. On a 8-kwords system, it is possible to go over the
limitation by exposing the intermediate language on a paper tape. But, in this

case, the efficiency and the conveniency are sacrificed. So the author feels that

the present system stands on the balanced point for functions and con-

venlences.

 At present, considering the minicomputer-orientation, it seems that more

refinement within the bounds of the already realized functions is required since

almost every basic function has been realized on SLIM2.

 Reference

1) Makino, K., Tochinai, K., and Nagata, K., "Minicomputer-Oriented System Description

 Language and its Implementation", Bulletin of the Faculty of Engineering,
 Hokkaido University, No. 75 (1975), pp.59-70.
2) Makino, K.: Studies of Minicomputer-Oriented System Description Language and its
 Processing System, doctoral thesis, Faculty of Engineering, Hokkaido･ University,

 (1975).
3) Wada, E., "ALGOL N (2-1)", JJPSJ, Vol. 12 (1971), No. 91 pp.556-567.

4) Makino,K.,"SL/MUser'sManual",(1974),privatedocument.
5) Makino,K.,"SLIM2User'sManual",(1975),privatedocument.

36 KeijiMAKiNo,KojiTocHINA]and I<uniichiNA(;ATA

Appendix: A sample program described by SLIM2 and its translated form.

 The sampie program converts an assignment statement which is
foliowing syntax to the reversed Polish notation.

 <assignment statement> -- <variable>=<expressionXcr>
 <expression> -- (<varia61e>I(<expression>))(tl(*11)l(+l-)looo

 <variable> -- <letter>I<digit>l

expressed by the'

*CONVERSIONOFASSrGNMENTSTATEMENTTOREVERSEDPOLISHNOTATION;

*INPUTBVFFER&ITSPOINTER;
DCLBI(120),Pl;

iOUTPUTBUFFER&ITS?OINTER;
DCLBO(120),PO;

*WORKINGVARIABLE;
DCLII, I2, DV, OP;

*MAIN PROGRAM;
 CALLINIT;
MOI:

INIT:
ITI:

IT2:

READ:

RDI:

WRITE:

ERROR:

CONV:

ASST:

EXPR:
EXI:

EX2:

VAR:

STI:
Sll:

ST2:
S21:

ST3:
S31i

STOP;

CALLREAD;
CALLCONV;
CALLWRITE;
GOTO MOI;

SUB;
OUT(11,l,t,"INPUTDEVICE.,.T'TY(T)ORPTR{?}? ,'};
INCIO,DV); DV=DV&177;OUT(Il,DV);
ON(DVI'T") DV=10;GOTOIT2;
ON(DV="P") DV=12;GOTOIT2;
GOTOITI;
ouT(11, LLI);
END;

SUB;
?I=O;BI{O)=O;
INfDV.BI(PI)):BI(PI)=]I(PI>&177:OUT(11,BI(PI));
ON(BIreI)=O,12,40,177)GOTORDI;
ON(BI(PI)X=15)Pl=PI+1;GOTORDI:
OUT(11,t);
END;

SUB;
evOH=iOiEB(OB60&i60}it.is) po=po+i; ouT"i,Bo(po));

oUT(11,l,Ll);
END;

SUB;
OUT(11,L"ERROR",LD;
END;

SVB;
?I=1: PO=1; ,PUSH(O);
CALLASST;
END;

SUB;
CALLVAR;BO(PO)=Il;PO=PO+1;
eN(BI(PI)N="=") CALLERROR;
.PUSHe+="); PI=PI+1;
CALLEXPR;
ON(BI{Pl)X=15) CALL ERROR;
CALLST3;
END;

SUB:
ON(BI(PI)X="(")CALLVAR;BOreO)=ll;PO=PO+1;GOTOEX2;
.PUSH{"{"); Pl=PI+1; CALL EXPR;
ONCBI(PI}N=")")CALLERROR;
CALLSTI; PI=PI+1;
ON(BI(Pl)="t",V*Z"1","+","-")CALLST2;GOTOEXI;
END;

SUB;
ON(Bl(Pl)<=100) CALLERROR;
ON(BICPI)>=133}CALLERROR;
Il=BI(PI); PI=PI+1; 12=O;
ON(BI(PI)>=60) ON{BI(PI)<=71)I2=BI{?I); PI=PI+1;
.PACK(Il,I2:Il):
END;

SUB;
,?op{op);
ON(OP="=")CALLERROR;
9NNERPX="(") BOceo)=op; po=po+1; GoTosll;

SUB;
.POP{OP);
ON(BI(PD="t") ON{OPI't"} BO{PO)=OP; ?O=PO+1; GOTO S21;
ON(Bl(PI)="*","l")ON<OP="t","*","t")BOC?O)!OP;PO=PO+1;GOTOS21;
ON(BI(PI)=:"V',"-")ON(O?XF"C","=:")BO(PO)=OP;PO=PO+1;GOTOS21;
.PVSH(OP,BI(PI));Pr=PI+1;
END;

SUB;
bPNO (Po/:l!Xl･･) cALL ERRoR;

go,(,p.oB g,!i;t=.p.O.'/ii,

BO(?O)=15;
END;

1111
36

OUTPUTFORM=1

.LOC 642
;ARRAY,,.2
:#:gg? l :s

;CONST... 26
OOOell ; -176
OOOOIO ; -175
OOO177 ; -174
OOO124 ; -173
OeOO12 ; -172
OOO120 ; -171
oooooe ; -17o
OOO040 ; -167
OOOOOI ; -166
OOOO15 ; -165
OOO07S ; -164
OOO050 ; -163
OOe051 ; -I62
OOO136 ; -r61
OOO052 ; -160
OOoo57 ; -157
OOO053 ; -156
Ooo055 ; -ISS
oooloe ; -ls4
eOO133 ; -IS3
oooo6e ; -ls2
OOO071 ; -151

;S.VAR...6
OOOooO ; PI
oooooo ; ?o
OOOOOO ; Il
OOOOOO ; I2
OooOOO ; DV
oooooo ; op

OOI042
L.O:

LDA 2,-1,1

JSR @,+1
 INiT
MOI:
 JSR @.+1
 READ
JSR @.+1
 CONV
JSR @.+1
 WRIT
jMP @.+1
 MOI
INIT:

STA 3,@44
DSZ 44
ITI:

LDA O,-176,2
JSR @7
 3
 3
 4
 047111 ; IN
 OS2520 ; PU
 020124 ; T
 042S04 ; DE
 044526 ; Vl
 e42503 ; CE
 027040 ; .
 0270S6 ; ..
 OS20tlO ; T
 OS4S24 ; TY
 OS20SO ; (T
 020051 ;)
 051117 ･ OR , 050040 ; P
 OS1124
 050050
 e2oosl
 020077
 020040
 OOO040
 o
LDA
ISR @46
 1
 -144
 o

; TR
; (P
;)
;?
;

;

O,-175,2

; DV

-2eo
-177

-l50
-i47
-146
-14S
-144
-143

;OOOOII

;OOOOIO

LDA
LDA
AND
STA
LDA
JSR
 1
 -144
o

LDA
LDA

O,-I44,2 ;
1,-174,2 ;
1,O

O,-144,2 ;
O,-176,2 ;
@47

;DV

 O,-144,2
 1,-173,2
SUBZ#O,1SZR
JMP L,l
LDA O,-175,2
STA O,-144,2
JMP @,+1
 IT2
L.1:

LDA O,-144,2
LDA L-171,2
SUBZ#O,1SZR
JMP L.2
LDA O,-172,2
STA O,-144,2
JMP @,+1
 IT2
L.2:

JMP @,+l
 ITI
IT]:

LDA O,-176,2
JSR @47
 3
 3
 3
 o
ISZ 44
LDA 3,@44
JM? 1,3

READ:
STA
DSZ
LDA
STA
LDA
LDA
STA
RDI:
LDA
 JSR
 2
 -2eo
 -150
 o
LDA
LDA
 ADD
 LDA
 LDA
 AND
 LDA
 LDA
 ADD
 STA
LPA
 JSR
 2
 -200
 -150
 o
 LDA
 LDA
 ADD
 LDA
LDA

3,@44
44
O,-170,2
O,-ISO,2
O,-170,2
3,-200,2
O,O,3

O,-144,2
@46

; BI

; Pl

DV
OOO177

DV
OOOOII

; DV
; OOO124

; OOOOIO
; DV

; DV
; OOO120

; OOOO12
; DV

; OOOOII

;

;

;

;

;

oooooe
PI

oooooo
BI
oooooo

; DV

3,-200,2 ; BI
1,-150,2 ; PI
1,3
O,O,3
1,-174,2 ; OOe177
1,O
3,-200,2 ; BI
1,-150,2 ; PI
1,3
O,O,3
O,-176,2 ; OOOell
@47

; BI
; PI

3,-2eO,2 ; BI
1,-150,2 ; PI
1,3
O, O, 3

1,-17o,2 : ooeooo
SUBZ#O,1SNR
JMP
LDA

L.3

1,-172,2 ;
SVBZ#O,1SNR
JMP
LDA

L.3

1,-167,2 ;
SUBZ#O,1SNR
JMP
LDA

L.3

1,-174,2 ;
SUBZ#O,1SNR
JMP
LDA
INC
STA
L.3:

LDA
LDA
ADD
LDA
LDA

OOOO12

eooo4o

eoo177

L,3

O, -150,2 : PI
o,o
O,-150,2 ; PI

3,-200,2 ; BI
1,-150,2 ; PI
1,3
e,o,3
1,-165,2 ; OOoo15

SVBZ#O,1SNR
JMP L.4
JMP @.+1
 RDI
L.4:

ISZ 44
LDA 3,@44
JMP 1,3

