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             Dynamicai Singularities of Two.Layered Flow

                  at the Outlet of an Open Channel

                        Masakazu KASHIWAMURA'

                                 Abstract

    Dynamical singularities are at times experienced in a two-layered fiow, particu-

larly at the outlet of an open channel. A river mouth is a typical example, where

the fresh water accelerates its velocity and decreases its depth, and as a result,

the interfacial Frounde number must be unity. Equations of motion and continuity

describing the two-layeres flow are transformed into a certain partial differentia!

equation, under the assumption of a lighter fiuid irrotational, without friction and

mixing. The interfacial Froude number is a dominant parameter over the entire

motion of the fresh water. When this number is replaced by the Mach number,
the equation changes into a form exactly the same as the transonic flow in aerody-

namics. In other words, there is a similarity between the two-layered fiow and

the transonic fiow. From this viewpoint, various features are reconsidered con-

cerning a two-Iayered flow. It brings a better understanding upon the singularities

shown by the two-layered fiow at the outlet.

                              1. Introduction

    This paper describes singular properties, which are found in a two-layered

flow in the neighborhood of the outlet of an open channel, when a lighter fluid

flows out of a channel onto a stagnant heavier fluid which occupies a broad outer

area. The singularities are explainable from a theory which is quite similar to

that of a transonic flow in aerodynamics.

    For instance, if we take the fresh water, it flows out frorn a river mouthi

with gradual mixing with the sea water below, while the sea water intrudes
inwards along the river bed and forms a "salt wedge." In this case, it has been

understood so far that the interfacial Froude number Fi, which is defined by that
Ili=qlVegh, must be unity at the river mouth, where q and h denote the velocity

and the depth of the fresh water, respectively, g the gravitational acceleration and

e the density-difference parameter (p2-pi)!p2, in which pi and p2 are densities of

the fresh water and the sea water.

    There are some theories concerning the reason why Ft takes unity at the
river mouth, and also some experimental and fie}d data as proof thereof. However,

with regard to a horizontal distributlon of numerical values of Ft around the river

mouth, its importance has not been recognized as yet, because of the insuthciency

and the dithculty of theory and experiment.

 * Department of Engineering Science, Faculty of Engineering, Hoklcaido University, Sapporo,

    Japan.



94 Masakazu KASHIWAMURA

    The present author has come to recognize that the dynamics of the two-layered

fiow is essentially the same as that of the transonic flow, and from this viewpoint,

he has attempted to reconsider this problem.

                         2. Fundamental equations

    To describe a vivid two-layered flow, equations must include the effects of

eddy viscosity, entrainment, interfacial resistance, etc., but only an extremely simpli-

fied set of equations is employed here, to treat the behavior of the outfiow which

is only transient.

    Assumptions that the sea water is stagnant, the fresh water immiscible, and

the vertical component of velocity negligible, gives rise to the following equations.

        0ul                aul                        ou, lat),
         ot +"i 6c +W! azi ==-LPI,T at (i)

        Ov, Ov, Ov, IEip,                                                                   (2)
                                Pi OY         Ot +Ui Ox +Vi oy

                  1 a2)i
        O=-g-LpJ, az

              1 a2b,
        O=-Lpt, Ox

               1 ap,
        O=mmpT, ay

                  1 02b,
        O=-g--p7, a2

        Oh,               oo         at + ox (hiui)+ ay

    Subscripts 1 and 2

belong to the fresh water, Eqs.

6ontinuity of the fresh water.

x and y axes, pressure and

                      z

(3)

(4)

(5)

(6)

     (h, v,) =O (7)
represent the fresh water and the sea water. Eqs. (1)-(3)

      (4)-(6) the salt water, and Eq. (7) is the equation of

     Symbols u, v,p and h are velocity components in the

     depth, respectively. Those are illustrated in Fig. 1.
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Fig. 1. Diagram of two-layered flow.



      DynamicalSinlguaritiesofTwo-LayeredFlowattheOutletofanOpenChannel 95

   If the atmospheric pressure is given as po, the integration of Eq. (3) leads to

       Pi=Po+pig(hb+h,+hi-2) (s)
From this, the pressure at the interface is

    Integrating Eq. (6) vertically, and putting p2 =A.t at the interface, we obtain

       P2=Po+pighi+p2g(hb+h2-2) (lo)
    Substituting Eq. (10) into Eqs. (4) and (5), we get

        6oP.2 =p,g Ooh}' +p,g oO. (hb+h2) -O (11)

        aoPz/2 =p,g 66hy' +p,g oOy (h,+h,) :o (i2)

    Thus, Eqs. (1) and (2) are transformable, with Eqs. (8), (11) and (12), into the

following forms.

                       Ou, p,-p, Oh,        OUI               6ul
         ot +Ui ox +Vi 6y =- p, ga. (13)
                       Owi- p,-p, ahi,        OVI               OWI
         Ot +"i ox +Vi oy -- p, g6y (14)
    Those are final forms which govern the motion of the fresh water. If the

flow is assumed to be steady, they are arranged, with Eq. (7), omitting the subscript

1, into the following.

                       Oh         Ou                Ou
        Uo. +V ay +eg a. =O (15)
                6v Oh          Ov
        "o. +V oy +Eg oy =O (16)
         oo        a,, (h")+ ozl (hW)=O (17)
    Now, assuming that the fiow is irrotational, the velocity potential ip exists, and

the following relationships are obtainable.

        auaz, a¢                                    6¢        Ozi=ox' U=oc, W=oz/ (18)
    Transformation of Eq. (17) leads to

        -,Ogg+O,," +-,'-(u ,6.h +v g,h)-o (ig)

    On the other hand, dividing Eqs. (15) and (16) by egh, we obtain

        ,s, (u g: +w gif )+t g2 -o (2o,
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        ,S, (u gz +w gs )+t g,h -o (2i)

    Multiplying Eq. (20) by u, and Eq. (21) by v, and adding both, while taking

Eq. (19) into account, we get

        g:+gs -,&, (u(u g'i +w gs)+w(. g.v +. go] (,,)

    IB addition, using the relationships in Eq. (18), this is transformable into the

        (i- ,",2h)g2.ip2 -2 ,U,Vh oO,,'aip, +(inv ,W,2h) Z2ge :=:O (23)

    Eq. (23) is of the highest importance for a discussion of the flow characteristics.

If the term egh is replaced by the square of the sound velocity a, the equation

coincides exactly with the two-dimensional equation of a compressible fluid fiow.

In bther words, various features already discovered in the transonic flow can be

expected also in the field of the two-layered flow. It may be easily understood

that the interfacial Froude number iPli plays a dominant role on the entire flow
field, ini place of the Mach number M which is equal to q!a.

    The discriminant D can be derived from Eq. (23), as follows.

        D;(,UgZh' )2pm(1- ,"g2h)(1- ,"g2h)= ,qg2h '1=Fi' -1 (24)

    This implies that the mathematical situation of Eq. (23) is divided into the

following three categories.

        D<O for Fi<1,...elliptic, corresponding to a subsonic flow

        D==O for Fi=l....parabolic, sonic fiow

        D>O for Fi>1....hyperbolic, supersonic flow

    The above conditions suggest that the fiow of the fresh water gradually changes

its property downwards, from an elliptic type, through parabolic at the outlet or

the river mouth, and finally into the hyperbolic outside.

                 3. DiscussioRs on signgularities appearing

                         in the flow at the outlet

    It has been believed that the interfacial Froude number Fi must be unity at

the outlet or the river mouth, if a heavier fluid or the sea water intrudes into

a channel or a river.i},2)'3) This can be understood as a kind of hydraulic jump.

Namely, the lighter fluid decreases its depth gradually outwards with some transient

acceleration of its velocity at the outlet, where the stagnant internal jump is formed,

at the same time the numerical value of Fi becomes unity somewhere near the
outlet.

    The condition that IZi=1 plays an important part on dynamics of the salt
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wedge has long been accepted. Studies on the salt wedge are abundant and llumer-

ous data are available today, but in contrast, regarding detailed behavior of fresh

water shows little or no advancement at or outside the river mouth, in spite of

the fact of its importance in environmental problems.

    The present author has previously published a paper4', in which field data at

the Ishikaria River show that I?li increases along the stream, from a numerical value

smalier than unity inside the riven mouth, through unity at the mouth, finally to

a considerably larger value than unity outside. These were measured along the

center line of the fresh-water fiow. However, it was diracult to determine the

exact place where the value was unity. For example, numerical values of Ei were

scattered even on the same cross-section, particularly in the vicinity of the mouth.

    It is well known that the surface flow is fast around both corners at the river

mouth, where I71i exceeds unity earlier than at any other place. This kind of

acceleration in velocity seems to arise from the potential fiow. The author has

pointed out that there is another place of acceleration along the centerline at a

short distance outward from the mouth5). It cannot be understood from a common

potential flow in a homogeneous fluid, but it is peculiar to the density current,

namely, the two-layered flow. This singular zone may be a place where many
researchers conslder that the interfacial Froude number Fi is unity. And beyond

this zone, numerical values of ,l71i grow further towards the open sea.

    Another important matter must be added, namely flow pattern. There are
several kinds of flow patterns off the outlet or the river mouth, from one extreme

type in which the fiow spreads out in radial directions when the discharge is small,

to the other extreme type which is a turbulent jet whose boundary extends initially

parabolically and finally straight towards the open sea. There are some transitional

patterns between those two extreme types5). Corresponding to a change of the
flow pattern, the acceleration zone changes its position and area.

    Recently, the thermal discharge from nuciear or thermoelectric power plaRts

has been attracting public attention as one of environmental problems. This kind

of discharge has, in general, a high velocity at the outlet and attains a high value

of the interfacial Froude number, which gives rise to an intense mixing with the

sorrounding sea water and a rapid decrease in temperature. According to the
latest information, discharge of high velocity from deep layers seems more effective.

A more rapid decay of temperature through a process in which the thermal plume

buoys up to the sea surface may be expected. This requires a very high value

of Iili at the outlet, more than 10. This kind of the flow is a forced discharge,

and it differs from the outflow of a natural river. In a case where the discharge

is released horizontally from the outlet situated at sea level, the motion follows

Eq. (23) as well as the river discharge, and then the equation is hyperbolic as in

the case of Ili>1, and it corresponds to the supersonic fiow.

    On the other hand, as stated previously, a natural river gives a mixed fiow,

in which IZi varies from Fi<1 on the inside, to Fi>1 on the outside. This cor-

responds to the transonic flow, which can be seen around a slender body which
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is placed in a subsonic fiow of a comparatively high speed. The lnterfacial Froude

number at the upstream end of the salt wedge, I71io, is a dominant factor, with

which the flow pattern and the acceleration zone seem to change their figure and

surface area, Fio corresponds to M., which is the Mach number giving a ratio

of the speed of the body to the sonic speed at a distance sufllciently apart from

the body.

    In a flood season, the flow type sometimes becomes hyperbolic over the entire

area, whether inside or outside, since the river discharge exceeds a critica} value,

beyond which the salt wedge cannot intrude into the river. This type is the same

as that of horizontal thermal discharge as described before, and it is equivalent to

the air flow which is supersonic everywhere over the entire field.

    No attention has been paid as yet to what value the interfacial Froude num-

ber must attaiB at the outlet, when the discharge is extremely small. It is doubtful

to consider that Fi=1 at the outlet even in this case, because Eq. (23) approaches

72ip:=:O, namely it is elliptic everwhere, if the following conditions u21egh<1, and

w2!egh<1 are established･. One of the two extreme patterns, previously mentioned,

in which the flow expands horizontally in all directions under the condition o{

a very small discharge, may perhaps be caused by such circumstances. The fiow

pattern seems to approach the two-dimensional ideal fluid flow. In this case, the

depth of the lighter fluid h, must be nearly constant over the entire area.

    Numerous research work has been made to solve Eq. (23), in which Vegh is

replaced by the sound velocity a, in aerodynamics. In almost all cases, flying bodies

were assumed to be slender, namely, stream-lined in shape. Therefore, a few
approximation methods were applied to fit a slender body. They are, numerical

computations, series expansions, difference methods with relaxation technique, etc.6)

To obtain an exact solution, there is a hodograph method. But this method has

some difficulties in taking boundary conditions into account. The present author

has already derived a hodograph equation concerning the two-layered flow, from

a set of fundamental equations of motion and of continuity`). However, this is

incomplete yet because of diffculties to treat with the boundary conditions, particu-

larly, boundary shapes with rectangular corners at the outlet which are not slender.

    As the present paper has revealed the two-layered flow at the outlet is dy-

namically in the same category with the £ransonic flow in aerodynamics, hereafter,
the study must be directed first, towards, investigation of previous work in aerody-

namics, in more detail, particularly concerning a body, not slender but bluff, and

next towards further developments.

                                4. ConclusioR

    This paper has revealed that the two-layered flow, of a lighter fluid superpos-

ing on a heavier fiuid, which is observable at the outlet of an open channel, has

the same characteristics as that of a transonic flow in aerodynamics. This means

that there is a dynamically singu}ar point between the inside and the outside of

the outlet. Such examples are found at a river mouth with both the fresh water
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and the sea water superposed, and also in the case of a thermal discharge released

horizontally from thermal power plants.

    The problem has some difliculties which arise from the mixed type of the
partial differential equation, from elliptic to hyperbolic. Thus, further studies must

overcome such dithculties and attempts should be made to obtain a firm knowiedge

on the horizontal distribution of the interfacial Froude number around the outlet.
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