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Performance Evaluation of a Viterbi Detector

in the Presence of Correlated Noise

Yasutaka OGAwA* Masakazu SENGOKU** Tadashi MATSUMOTO*
(Received June 22, 1978)

Abstract

Viterbi algorithm detection is of considerable interest for high-speed data trans-
mission over a voiceband telephone channel. This paper describes the effect of
noise correlation on a data communication system which employs a Viterhi detector.
First, a new evaluation function is introduced in order to observe performance
characteristics of a Viterbi detector. And it is shown that the lower bound of
the evaluation function is expressed in terms of the equivalent Nyquist power spec-
trum of a noise component. Moreover, numerical calculations were made for single-
sideband systems with data rates of 10,000 bits/s and 12,000 bits/s.

1. Introduction

Recently, Viterbi algorithm detection has been studied extensively for the pur-
pose of implementing a high-speed data transmission system over a voiceband tele-
phone channel?~?:1?, However, the number of computations per symbol performed
by a Viterbi detector grows exponentially with the length of a desired impulse
response? (abbreviated as DIR). In order to simplify the implementation of the
Viterbi detector, a receiver filter placed in front of the Viterbi detector must be
adjusted in such a way that the length of the DIR is acceptably short. Because
the adjusted receiver filter is generally different from a whitened matched filter?,
the noise component at the input to the Viterbi detector is correlated. It should
be noted that even if the channel noise is white, the noise component at the input
to the Viterbi detector is colored by the receiver filter.

On the other hand, an effective signal-to-noise ratio is commonly used for the
performance evaluation of a Viterbi detector. The effective signal-to-noise ratio
is calculated by means of the minimum distance of an error event and the noise
variance which does not depend on an error event’. However, as stated in Sec-
tion 3, if the noise component is correlated, the distribution of the noise compo-
nent depends on an error event. Consequently, the conventional effective signal-to-
noise ratio is not an adequate evaluation function when the noise component is
correlated. Qureshi and Newhall have considered the performance of a Viterbi
detector in the presence of correlated noise?. Unfortunately, they did not show
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the general method of performance evaluation, but they only solved a simple exa-
ample. And their results are not sufficient to evaluate the performance of a factual
data communication system with a Viterbi detector. Accordingly, it may be said
that a systematic study has not been done on the correlated noise problem.

This paper deals with the effect of noise correlation on a communication system
which employs a Viterbi detector. In Section 2, a new evaluation function is defined
which is interpreted as the extention of the conventional effective signal-to-noise
ratio. Then, in Section 3, a new concept, called an equivalent Nyquist power spec-
trum of the noise component, is introduced. And the lower bound of the evalua-
tion function is derived analytically by using the equivalent Nyquist power spectrum.
Finally, in Section 4, numerical results are shown. The numerical calculations
were made for single-sideband amplitude modulation systems with data rates of
10,000 bits/s and 12,000 bits/s.

2. Notation and Basic Definitions

In a high-speed data transmission system over a voiceband telephone channel,
amplitude modulation and synchronous demodulation are employed in order to use
a channel passband efficiently. In this case a carrier transmission system is trans-
formed into an equivalent digital PAM baseband model by means of simple calcula-
tions®, Accordingly, it is possible to discuss our problem by using the equivalent
baseband model shown in Fig. 1.

Channel Noise
n'(f) Sampler
“Transmitt Recei 2i
Impulse aFisl:m er Channel A‘\ ;.C.lewer )ﬂ Viterbi I {@m)
« Seguence s ?r H{f) L Heer Detector
¥ amblt—mT) ) G
m=—co

' -~ T
DIR _.I__l—.l_

s0 R PO

Pig. 1. Equivalent digital PAM baseband model.

Necessary symbols are defined as follows.

F({f) : Frequency characteristic of the transmitter filter

H(f) : Frequency characteristic of the equivalent baseband channel

G(f) : Frequency characteristic of the receiver filter

g : Impulse response of the receiver filter

T : Signaling interval

{s 153! : DIR (an overall sampled impulse response of the communication system

seen by the Viterbi detector)
The Viterhi detector makes decisions on the assumption that the DIR
{sg%3' is the actual overall system response. Here, we express the

length of the DIR as K. Thus, we obtain
s;=0 for i<0 or i=ZK (1)
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SOSK—I:\:O- (2)

Lo : Message transmitted at time m7T
Each =z, is assumed to take on the values (M—1)/2, (M—3)/2, -,
(1—M)/2 with equal probability. It is also assumed that the sequence
{Zm}m-_e is a white stationary stochastic process with variance o2
Thus, we have

o E{xl)
= (M2—1)/12 (3)
where E{-} denotes ensemble average.

We consider that an impulse sequence ), x,d8(t—m7) is transmitted
mEe

to the channel H(f) over the transmitter filter F(f).

Em :  Estimated value of =z, decided upon by the Viterbi detector

{ex}¥=y  : Input error sequence associated with an error event? e
Each component ¢,; is defined as follows. Let the error event e have
the following relation between {z;}3_., and {£}_...

Xy =8y for i<l or i>I4+N (N>0) (4)
Tp1¥ L and  myyFLw (5)
Here, N is called a length of the error event e. Then, we define

Ezj a8

Cos 2 Ziyj—Fiyg (I=j=N). (6)
We consider all error events with the same input error sequence
{ez;35-1 to be identical.
Signal error sequence associated with the error event ¢
Each component ¢,; is defined as

lev 757

e,,jéigexj_isi for 1<j<N+K—1 (7)
where
;=0 ' for j<0 or j>N. (8)

Moreover, we define a signal error vector &,(¢) associated with the
error event ¢ as

&y(s) 2 [5y1 Eya *** €yN+K—1]T ( 9 )

where [---]” stands for a matrix transposed.
As can be seen from Eq. (9), ¢,(¢) has (N+K—1) rows.
d(e) :  Euclidean norm associated with the error event e

d(e) is defined as
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N+ K1

deey 2 & (10)

Channel noise
#(2) is assumed to be a 0-mean stationary stochastic process with a
power spectrum density Ny/2. And #'(¢) is also assumed to be sta-
tistically independent of {Zy}o- .
Input value to the Viterbi detector at time 7
Using the above symbols, z; is expressed as
w 1/2T o
= 5 | [FU)H) G e wraf
n=—00 —1/27 4
i (11)
+" w@gaT - de

—co

where [ X(f)], represents an equivalent Nyquist channel characteristict®
defined as
(5 X(F+HUT)  for |f|=1/2T
RCHINES Gy (12)
1 0 for |f]>1/2T.

Noise component at the input to the Viterbi detector at time {7
n; is defined as

K—1
A 2— ), STy (13)
o
Substituting Eq. (11) into Eq. (13), we obtain

n; = i +nP (14)

where

e 3 a " [Fi)H) G

n=—c0 —1/2T eq (15)
_ [ S( f)]eq} @I JF
TS s for |f|=<1/2T
[S(f)]eqé{ = (16)
0 for |f1>1/2T
n?)ésoj 7 () g T —7) dr . (17)

Here, #{¥ is interpreted as the vestigial error component which arises
because the DIR is not exactly equivalent to the actual sampled impulse
response of the system. And n{® is the filtered channel noise. The
sequence {n;}5 _. is a 0-mean stationary stochastic process. Here,
we define an autocorrelation sequence of {77 _. as {0)}7n_c 1. €.,

o & E{ngm) . (18)
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The variance of {n;} _. is represented by o2, i. e,

an, & E{nf} . (19)
We define a noise vector niZft4=1 ag
I+ N+I—
Z+1

n;; YA [y Mg o ygver-a]” (20)

Furthermore, we represent a norm of orthogonal projection of nif¥+%-!
on g,(¢) by At 1 (Fig. 2) Thus, #(e)if¥ 5! is expressed as

oy (" mE

o ( NIFNHI~1 21
el Vo, @7, (1)
The variance of #i(e)if¥**' is represented by g,(e)% i e,
oule 2 E{ (i) (22)

Note that ¢,(c)> does not depend on [ since {n;}{_. is stationary.

2l TNFK—1
M

ﬁ(e)/i{\]-{d\—l

Fig. 2. Orthogonal projection of I 51 on g, ().

ESN® . Effective signal-to-noise ratio
ESN® is defined as
dle)?

ESN® & g; min —~5— . (23)

n

Note that K represents the length of the DIR as mentioned previously.
ESN@® . Effective signal-to-noise-ratio- which takes noise correlation into account

ESN is defined as
2
ESN( 4 d; min —fn% , (24)

In a case where the noise component n; is (colored) Gaussian noise,
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the symbol error probability Pr(E) is dominated at a moderate signal-
to-noise ratio by the term imvolving ESN(™, i.e,,

PrB=KQ( 5|5 msvm (25

o

where K, is a constant depending on the error event ¢ which minimizes

d(e)¥o,(c)2. And Q(w) is defined as

N G ' ’
Qw) & —=— S e ?du. (26)
4/275 w

As can be seen from the expression (25), the greater ESN{™ is, a ten-
dency for a smaller symbol error probability Pr(E) is seen. Even if
the noise component 7; is not Gaussian noise, ESN!® is considered to
be an adequate evaluation function. The reason for this is that ESN®
takes into account both noise correlation and the Euclidean norm
associated with an error event. Therefore, we will use ESNY for
a performance evaluation function of the Viterbi detector.

3. Derivation of Lower Bound of ESN®

Although the new evaluation function ESN'® is introduced in the previous
section, it is impossible to calculate ESN® analytically. The reason for this is
that there is no analytical way to obtain the error event ¢ which minimizes d (¢)?/
o,{e)%.  Accordingly, we derive a lower bound of ESN'® for performance evalua-
tion. First, we show the following Lemma 1.

Lemma 1

Each p; is given by the following equation.

o=|" [Pp],ermmar (27)
where
e m e e, - [+ e fiewr,
[P()],2 for |f|<1/2T (28)
0 for |f1>1/2T.
Proof )

Because #'(t) is statistically independent of {x,}m-_., the stochastic processes
of (") _., and {n®)7_. are statistically independent of each other. Therefore,
we obtain ‘

o0 = E{(nf)+nf2) (nf 4 1)} 29)
— [051)_|_p§2)

where
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o & E{nf" nV} (30)
o 2 B ) 61

Substituting Eq. (15) into Eq. (30) and using the statistical properties of {x,)}z_ _,
PV is expressed as

=7 (7 (o[l
<{[F() B G~ [ ST e (32)

% i e IBGHIINT I d,

n=—oo

Furthermore, by using

n=--00

i e~ et — %mima <f— ‘7_7711“> (33)
Eq. (32) becomes

@ _ O-:z: Sl/ZT

= 72fIT JJf
01 T /2T e f (34)

[F) Hip) G~ [

From Eq. (17), p{® is expressed as

o =" |Gpfermaar. (35)
From Eq. (35), it is easily seen that p{® is given by
N, (12T
2) 0 2 ior
o= ~S‘—1/21*|:|G(f>l:Lqeﬂfway' (36)

Substituting Eq. (34) and Eq. (36) into Eq. (29), we obtain Eq. (27). (Q.E.D)
The Lemma 1 tells us that the sampled inverse Fourier transform of [P(f)],,

is equivalent to p, which is the autocorrelation sequence of {n}_.. And the band

of [P(f)]s is circumscribed within the Nyquist-band (|f|=<1/2T). Thus, we refer

to [P(f)]e, as the equivalent Nyquist power spectrum of the noise component {n;}{ _...
Then, we show the following Lemma 2.

Lemma 2

For an arbitary error event ¢, a,(¢)? is upperbounded by

oulef < - max [PU)],,.
(

7
171£1/27)

(37)

Proof

Let the error event e have the length J—K+1. Substituting Eq. (21) into
Eq. (22), we obtain
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&y ()" E{( niif) (nii1)"} &y (¢)

2:
e 54(97%,(0) -
_ &(e70Y &y ()
&y(e)7ey(e)
where &,(¢) is a column vector of dimension J and
09 & E{(nit)) (i) (39)

is a JxJ covariance matrix of the noise component {n;):_.. From Eq. (18) and
Eq. (39), it is seen that @9 is a symmetric Toeplitz matrix whose element ¢;; is
expressed as

Pis = Pri-s (40)

Thus, @ is written as

Qo P1 P e 0r-1
P1 Qo Py e P7—s
P2 P11 P
oo =| D e a
' ‘ ’ \\’Pl
Or-1 Py—2 Pr—8 2 (01\\(00

Let v; be an arbitary real and column vector of dimension J. Then, the following
inequality holds.
e?/ (S)T@(J) 81/ (5) vJT@(J) UJ

max — - apo 7y = max 42
e,(e) &y(e) ey (e) vy v,"v, (42)
Now, we express the maximum eigen value of @9 as AY).. Then, we obtain

v, L 0D p, ,
max — g = =0 (43)
vy 7 Ur

By using the Sturmian separation theorem?®, the inequality

s S AL (44)
is obtained. Note that AP is the maximum eigen value of @¥+2, Thus,
max A0 =lim 28, . (45)
J—ro0

Here, we define the Laurent series {;(2) as
J—1
CJ(z)éPo‘f‘ z§ Pl(zl‘|‘z_l) . (46)

From properties of a symmetric Toeplitz matrix,-lim A7, is equivalent to the maxi-

max
Jooo

mum value of the Laurent series- lim {,{(2) under the constraint that z is on the

J—roo

unit circle®, i. e,
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lim %), = max {po—f— i o (z“;—z“)} . - {47
J—ro0 z =1

Usl=1)
Then, we set 2 equal to €727, i. e,
z = eIt for. [f] =1/2T. (48)
Substituting Eq. (48) into- Eq. (47), we have
lim 22, = max {p0—|—2 ;\jl 0, COS 2nflT} . (49)
(r1g10)
Furthermore, by using expressions (38), (42), (43), (45) and (49), we get

max o, (e)? < max {.00 +2 i‘ 01 COS ZﬂflT} . (50)
© (1) =

From Eq. (28), Eq. (27) becomes

p= [ [P ey 1

57

Eq. (51) tells us that 7@, is a Fourier coefficient of [P(f)], Since [P(f)], is an

even function for |f]=<1/27T, we obtain

oot il o1 cos 2afIT = % [P()], for If1=1/2T. (52)

Substituting Eq. (62) into the inequality (50), we obtain the inequality (37). (Q.E.D.)
Now, we show that the lower bound of ESN® is calculated by means of

the equivalent Nyquist power spectrum ([P(f)],) of the-noise- component.

Theorem 1
The lower bound of ESN{™ is given by
ESN® > T_id_m_zinl__ (53%
- max [P(A)],
r1€1/2m)
where
Aonin = min dls) . ' (54)
Proof
The proof of this theorem is quite easy. From the definition of ESN (Eq.
(24)),
min d(e)?
ESN® = g2 e (55)

&

is obtained. Then, using Lemma 2 and Eq. (54), we get
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min d(e)? y
—E-Tg =71 = ' b
meaX (2P 5) ——71— max [P(f)]eq
(fﬂgfl/zl”)

From the inequality (55) and (56), it is seen that the inequality (53) holds. (Q.E.D.)

Using Theorem 1, the following corollary is obtained.

Corollary 1

When a receiver filter G(f) is adjusted in such a way that the variance ¢
defined by Eq. (19) is minimized for the given DIR, the lower bound of ESN®
is given by

2

2

ESN(]{) > Oz Amin . (57)
¢ p— N 2

- LS00,

27T
max

anduan, - [|FU) HUAP],+ Z

Proof

The optimum receiver filter structure is a matched filter followed by an in-
finite-length tapped delay line®. And the frequency chardeteristic of the optimum
receiver filter is given by

o TRGR HYR s (58
G(f)= 5 F<f+%> H(f—i—-%)z,—{—%’é«; , )

where * indicates a conjugate complex number. Substituting Eq. (58) into Eq. (28)
and using Theorem 1, inequality (57) is derived. (Q.E.D)

4. Numerical Results

In order to observe the performance, we made numerical calculations for com-
munication system with data rates of 10,000 bits/s and 12,000 bits/s. The calcula-
tions were made under the following conditions and assumptions.

1) SSB-AM (single-sideband amplitude modulation) is employed for the effi-
cient use of the transmission band. And the lower sideband is transmitted to the
channel. On the other hand, the baseband signal is regenerated by means of
synchronous demodulation. And it is assumed that carrier recovery and timing
recovery are performed perfectly at the receiver.

2) The parameters of the transmitted signals are shown below.

(A) 10,000 bits/s system
+ Carrier frequency 2,900 Hz
« Baud rate (1/7) 5,000 Baud
+ M (The number which each z, may take.) 4
» Transmitted wave shape Class 4 partial response, i.e.,
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i josin2afT,  for [f|<1/2T,

(59)
0 for |f1>1/2T,
(B) 12,000 bits/s system
« Carrier frequency 3,300 Hz
« Baud rate (1/7T%) 6,000 Baud
- M 4 :
« Transmitted wave shape Class 4 partial response, i.e.,
sin 22fTy  for |f|<1/2T
F(f):I]SIH 7f Ty or |f]|=1/2T% (60)
| o for |fI>1/2T4

Note that transmitted wave shape of the 10,000 bits/s system is normalized in such
a way that this system has the same transmitted power as the 12,000 bits/s system.

3) The frequency characteristics of the channel are shown in Fig. 3 and
Fig. 4. Both are voiceband telephone channels. We consider that Channel 2 is
a bad channel due to a very narrow and not very flat passband. k

Amplitude Delay
Amplitude Delay -« (dB) o Amplitude (m sec)
(dB) (m sec)
10 _s 10
Amplitude
0 8 —-10 8
~5 6 —15 6
—10 4 —20 4
—15 2 —25 L 2
Del.

_20 : ; 0 —30 — \ 0

0 1 2 3 Frequency 0 i 2 3 Frequency
(kHz) (kHz)

Fig. 3. Frequency characteristic of Fig. 4. Frequency characteristic of
Channel 1. Channel 2.

4) The power spectrum density of channel noise (N,/2) is determined in such
a way that the following equation holds.

" R HU = 10 61

TB -0 2TB B

where T'3=1/6000 and F(f) is given by Eq. (60). The physical meaning of Eq.
(61) is that in the 12,000 bits/s system the ratio of the signal power in the channel

2 e
(;f; y_mlF(f) H(f)|2df> to the noise power in the Nyquist-band (N,/27) equals
30 dB.

5) Filtering at the receiver is not done to the passband signal, but is done
to the baseband signal. The receiver filter (G(f)) and the DIR are determined in
such a way that the conventional effective signal-to-noise ratio (ESN®) is maxi-
mized®. In this case the lower bound of ESN® is given by the Corollary 1.
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The numerical results are shown.in Table I through Table IV. Although
the conventional effective signal-to-noise ratio (ESN) is also listed in those tables,

Yasutaka OGAWA, Masakazu SENGOKU and Tadashi MATSUMOTO

it should be noted that ESN'® is a better evaluation function than ESN®,

As stated previously, the receiver filter and the DIR are not optimized with

TasLE 1. 10,000 bits/s results on Channel 1

K DIR (eathst grmich of BNy | ESNUO (am).

2 {1, —1} {1} —3.0 16.4

3 1,0, -1} 1} 27.8 305

4 a-1-1y  |8¢ % 1,2,2,3,3,3, 26.9 31.0
TaABLE 2. 10,000 bits/s results on Channel 2

« bre st ghicn | Tower bovad | psvm o

2 {1, -1} {1} —3.0 17.5

3 {1,0, —1} {1} 19.3 26.2

4 {1, -1, -1,1} élé‘% 1{}1 122,333, 29.3 317
TaBLE 3. 12,000 bits/s results on Channel 1

A

2 {1, -1} {1} —3.0 15.1

3 {1,0, —1} {1} 21.0 27.9

4 1, -1,-1,1) é%‘% 1(}1 1,2,2,3,3,3, 24.9 29.9
TaBLE 4. 12,000 bits/s results on Channel 2

K DIR el i | RS | B @

2 {1, -1} {1} —3.0 154

3 {1,0, —1} {1} 8.6 194

4 {1.0148, —0.985, {1,1,2,2,8,3,3, 2.2 28.3

—0.985, 1.0148}

725 H
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respect to ESN), but they are determined in such a way that they maximize
ESN®, Neverthless, from lower bounds of ESN™, it is seen that a reasonable
performance is obtained even under correlated noise if the DIR length is chosen
at an adequate length (3 or 4). From those results, it may be said that noise
correlation does not have a serious effect on an SSB-AM system with a data rate
of about 10,000 bits/s.

5. Conclusions

We have investigated the performance evaluation of a Viterbi detector under
correlated noise. The numerical results showed that noise correlation does not give
rise to a serious performance degradation in a communication system with a data
rate of about 10,000 bits/s.

Although we made numerical calculations for SSB-AM transmission, QAM
(quadrature amplitude modulation) might be employed in a real data communication
system. Thus, studies should be done on the correlation noise problem in QAM
transmission.
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