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            Performance Evaluation of a Viterbi Detector

                 in the Presence of Correlated Noise

      Yasutaka OGAwA* Masakazu SENGoKu** Tadashi MATsuMoTo*

                            (Received June 22, 1978)

                                 Abstraet

    Viterbi algorithm detection is of considerable interest for high-speecl data trans-

Tnission over a voiceband telephone channel, This paper describes the effect of

noise correlation on a data communication system which employs a Viterbi detector.

FiTst, a new evaluation function is introduced in order to observe performance

characteristics of a Viterbi detector. And it is shown that the lower bound of

the evaluation function is expressed in terms of the equivalent Nyquist power spec-

trum of a noise component. Moreover, numerical calculations were made for single-

sideband systems with data rates of 10,OOO bitsls and 12,OOO bits!s.

                              1. Introduction

    Recently, Viterbi aigorithm detection has been studied extensively for the pur-

pose of implementing a high-speed data transmission system over a voiceband tele-

phone channeli)N7),ii). However, the number of computations per symbol performed

by a Viterbi detector grows exponentially with the length of a desired impulse

response3) (abbreviated as DIR). In order to simplify the implementation of the

Viterbi detector, a receiver filter placed in front of the Viterbi detector must be

adjusted in such a way that the length of the DIR is acceptably short. Because

the adjusted receiver filter is generally different from a whitened matched filter",

the noise component at the input to the Viterbi detector is correlated. It should

be noted that even if the channel noise is white, the noise component at the input

to the Viterbi detector is colored by the receiver filter.

    On the other hand, an effective signal-to-noise ratio is commenly used for the

performance evalua£ion of a Viterbi detector. The effective signal-to-noise ratio
is calculated by ineans of the minimum distance of an error event and the noise

variance which does not depend on an error eventi). However, as stated in Sec-

tion 3, if the noise component is correlated, the distribution of the noise compo-

nent depends on an error event. Consequently, the conventional effective signal-to-

noise ratio is not an adequate evaluation function when the noise component is

correlated. 9uresh! and Newhall have considered the performance of a Viterbi

detector in the presence of correlated noise2). Unfortunately, they did not show
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the general method of performance evaluation, but they only solved a simple exa-

ample. And their results are not suficient to evaluate the performance of a factual

data communication system with a Viterbi detector. Accordingly, it may be said

that a systematic study has not been done on the correlated noise problem,

    This paper ･deals with the effect of noise correlation on a communication system

which employs a Viterbi detector. In Section 2, a new evaluation function is defined

which is interpreted as the extention of the conventional effective signal-to-noise

ratio. Then, in Section 3, a new concept, called an equivalent Nyquist power spec-

trum of the noise component, is introduced. And the lower bound of the evalua-

tion function is derived analytically by using the equivalent Nyquist power spectrum.

Finally, in Section 4, numerical results are shown. The numerical calculations

were made for single-sideband amplitude modulation systems with data rates of
10,OOO bits!s and 12,OOO bitsls.

                     2. Notation and Basic Definitions

    In a high-speed data transmission system over a voiceband telephone channel,

amplitude modulation and synchronous demodulation are employed in order to use

a channel passband ethciently. In this case a carrier transmission system is trans-

formed into an equivalent digital PAM baseband mode! by means of simple calcula-

tionsie). Accordingly, it is possible to discuss our problem by using the equivalent

baseband model shown in Fig. 1.

                                   Chamiel Noise

     Irnpulse Xi Viterbi                                                                     {diln}
   X a:n;e(t-tnT)
  tJi=-oo

                       ･DIR -
                          SO SI '''' SK-1
                  Fig. 1. Equivalent digital PAM baseband model.

    Necessary symbo}s are defined as follows.

F(110 :Frequencycharacteristicofthetransmitterfilter
H(f) :Frequencycharacteristicoftheequivalentbasebandchannel
G(f) :Frequencycharacteristicofthereceiverfilter
g(t) :Impulseresponseofthereceiverfilter
T :Signalinginterval
{sOK･=Ho' : DIR(anoverallsampledimpulseresponseofthecommunicationsystem
            seen by the Viterbi detector)

            The Viterbi detector makes decisions on the assumption that the DIR

            {si}K･..1i is the actual overall system response. Here, we express the

            length of the DIR as K. Thus, we obtain

                si=O for i<O or i>=K (1)

ll' (t)
Samp]e

T)

･TransmStter

Filter

F(f)

Channel

II(f)

Receiver

Filter

G(f)
T'
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tm

So SK-1 )F O ･

: Message transmitted

  Each x. is assumed
  (1-M)!2 with equal
  {ircm}:=-. is a white

  Thus, we have

at time mT
 to take on the values (M-1)!2,
probability. It is also assumed that

 stationary stochastic process with

(2)

(M- 3)12, ･･･,

the sequence

 variance of.

i}m

{e.j･}S-i

    di !llj E {X?n}

where E{.} denotes ensemble average.

                                    ooWe consider that an impulse sequence Z x.6(t-mT) is transmitted
                                  M=,-oo
to the channel H(f) over the transmitter filter F(f>,

Estimated value of x. decided upon by the Viterbi detector

Input error sequence associated with an error eventi) e

Each component E.j is defined as follows. Let the error event e have

the following relation between {xi},co･=-. and {teD,E=-...

    AJ2i:::: Ct for iH<l

xL+i¥toL+i and

or i>l+N (N>O)

rcl+N# ibt+N

(4)

(5)

Here, N is called a

sxl- as

    sxj-A ci+j-Jet+j

length of the error event

(1 Sj' <= N).

e. Then, we define

(6)

{eyj･}j･=1N+ff-1

  We consider all error
  {exJ･}S..i to be identical.

: Signal error sequence

  Each component evd is

events with the same input error

associated with the error event e

 defined as

sequence

    lr-1
eyd-A- Z e.s･.alst

     t-:o

where

Exj -- O

for 1:-{:j':-E{N+K-1

for j'<O or 1`>N.

(7)

(8)

Moreover,

error event
we
 E

 define a

as

signal error vector ey(e) associated with the

Ey(s) 4i [eyiey2
'''
 eyiv+K"i]T (9)

d(e)

  where [･･･]T stands for a matrix transposed.

  As can be seen from Eq. (9), E,(e) has (N+K-1)
: Euciidean norm associated with the error event e

  d(e) is defined as .

rows.
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    d(e) =A. vt"1?l.;",rlie;,. (lo)

Channel noise
n' (t) is assumed to be a O-mean stationary stochastic process with a

power spectrum density No!2. And n'(t) is also assumed to be sta-
tistically independent of {x.},O,O,!-...

Input value to the Viterbi detector at time iT

Using the above symbols, 2i is expressed as

    2i =.=Zco-co XnSL?,',.[F(f) H(f) G(f)],,ej2of(`nd"'Tc(f

        +S-. n' (T) g(iT-T) clT

where [X(f)],q represents an equivalent Nyquist channel characteristiciO)

defined as

               co    [x(f)],,E!>ili=2']oooX(f+l!T)ffO.r,lil<=>i,12,TT. (i2)

Noise component at the input to the Viterbi detector at time iT

ni is defined as

            n-1    niS2i-Zsj ci-d. (l3)            ji.O

Substituting Eq. (11) into Eq, (13), we obtain

    ni=nE･i)+nS･2) (14)
where

    nS'" g' .;Zco-oo xnSL/i,T,.([F(f) H(f) G(f)]eq

                                                       (15)
                     -[S(f)],q] ej2of{z-n)Tc(rr

               g-1                            for Iflgl!2T    [s(f)],,icilTt6'S`endd2oft' f.,ifi>i!2T (i6)

    nS･2' ="･ See.. n' (T) g(iT-T) dr. (17)

Here, nS･i) is interpreted as the vestigial error component which arises

because the DIR ls not exactly equivalent to the actual sampled impulse

response of the system. And nS･2) is the filtered channel noise. The

sequence {ni},O･O.-.. is a O-mean stationary stochastic process. Here,

we define an autocorrelation sequence of {nD,co･..".. as {pt}ge=-.., i･ e･,

    pi=A-E{n,ne}. (18)
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            The varianee of {nD,e･e=... is represented by a9, i. e.,

                ak .A..-E{n3}'. (19)
            We define a noise vector nSi,N+"-i as

                nS++iiV+ii'Hi S. [nt+i nt+2 ･･･ ne+iv+K-i]T. (20)

            Furthermore, we represent a norm of orthogonal projection of nS++I+fi-i

            on E,(e) by fi(e)f'."i '"-i. (Fig. 2) Thus, 7Nz(e)#g'"-i is expressed as

                fi(e)sii,v+fl-i== leegEi{ll:I;,'/rlilitll-'i'i'r'. ' (21)

            The variance of fi(e)SiY'nHi is represented by a.(e)2, i. e.,

                a.(E)2!g;.E((fi(e):ifV"--')2). (22)

            Note that a.(e)2 does not depend on l since {ni},Es-. is stationary.

                                .ni+N+K-1
                                  t-l-1

                                 l
                                 I
                                 l
                                 I
                                 :
                                 l
                                 l
                                 l
                                 l
                                 I
                                 I
                                 l
                                 I
                                 :
                                 l
                                                 e,(e)
                      L-.d---v-.v..2
                       r,(e)S.+"+K-i

                 Fig. 2, Orthogonal projection of n#pt+ir`i on ey(e).

ESN(K) : Effectivesignal-to-noiseratio

            ESN`K) is defined as

                               d(s)2
                                 ,･ (23)                ESN`K) l>. agg min
                            E On

            Note that K represents the length of the DIR as mentioned previously.

ESN2rr) : Effectivesignal-to-noise･ratioewhichtakes-noisecorrelationintoaccount

            ESI?VE") is defined as

                ESNSif' i(ll di M,i" .d.(i))22' (24)

            In a case where the noise component ni is (colored) Gaussian noise,
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            the symbol error probability P)`(E) is dominated at a moderate signal-

            to-noise ratio by the term imvolving ESATE"), i.e.,

                Pr(JE)=tKb2(-ll-Vt, EsNEff)) (25)

            where K, is a constant depending on the error eventE which minimizes

            d(e)2!o.(6)2. And 2(w) is defined as

                                  '                                                 i                2(w)Av2-i.Sr.e-}2du.' '. (26)

            As can be seen from the expression (25), the greater ESNS-) is, a ten-

            dency for a smaller symbol error prQbability .Pr(E) is seen. Even if

            the noise component ni is not Gaussian noise, ESNEff) is considered to

            be an adequate evaluation function, The reason for this is that ESIVE")

            takes into account both noise correlation and the Euclidean norm

            associated with an error event. Therefore, we will use ESAXE") for

            a performance evaluation function of the Viterbi detector.

                 3. Derivatioll of Lower Bound of ESLZVSit)

    Although the new evaluation function ESNSff) is introduced in the previous

section, it is impossible to calculate ESNS") analytically. The reason for this is

that there is no analytical way to obtain the error event s which minimizes d(e)21

a.(e)2. Accordingly, we derive a lower bound of ESNS-') for performance evalua-

tion. First, we show the following Lemma 1.

    Lemma 1
    Each pi is given by the following equation.

        Pt=Sl[].[P(f)],,e"2of`Tof (27)
where

                  -[iZ [F(f) H(f) G(f)],,-[S(f)],,2+ Z)Ib [ld(f)l2],,

        [P(f)]eq4' forlflsl12T (28)
                     O for lfl>112T.
    Proof

    Because n'(t) is statistically independent of {c.}.co,=-., the stochastic processes

of {nS･')},e･e..-.. and {nS･2)},e･O=m.. are statistically independent of each other. .Therefore,

        pi = E((n8')+ n82)) (nSi)+ nS2)))

                                                                   (29)
          == pii) + pS2)

where
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        pSi' ff2>! E{n8i' nSi'} (30)
        pS2'!S,E{n82'nE2)}. (31)
Substituting Eq. (15) into Eq. (30) and using the statistical properties of {c.,},e.O=-co,

pS') is expressed as

        pS" - aZSIii,T,.Sl/i,T,.([F(.fl) H(fl) G(fl)],,-[S(fl)],,]

           ×([17(.ICI,) H(fie) G(fli)],,-[S(.ICIt)],,) e'2of2`T (32)

              co
           × Z e-j'2n(fi+f2)nTc(ICIc(1(>.
            7t=-oo

Furthermore, by using

        .=zOO-..ema2ofnT == iii .=zco-..6Qc- gg) (33)

Eq. (32) becomes

        PEi' = '!IZ7Slfi,T,. [F(f) H(f) G(f)],,-[S(f)],,2e'2of`T `ijC･ (34)

From Eq. (17), eS2) is expressed as

        ps2)=tllllbS℃.G(f)2ed2oftTqLf. ' (3s)

From Eq. (35), it is easily seen that pS2) is given by

        pS2'= `llilb SL/i,T,.[ G(f) 2],,e'2oft'`lyC' (36)

Substituting Eq. (34) and Eq. (36) into Eq. (29), we obtain Eq. (27). (Q.E.D.)

    The Lemma 1 tells us that the sampled inverse Fourier transform of [P(f)],,

is equivaient to pt which is the autocorrelation sequence of {ni},E=.oo. And the band

of [P(f)],, is circumscribed within the Nyquist-band QflSl!2T). Thus, we refer

to [P(f)],, as the equivalent Nyquist power spectrum of the noise component {ni} ge･=m...

    Then, we show the following Lemma 2.

    Lernma 2

    For an arbitary error event e, a.(e)2 is upperbounded by

       an(E)2$ i7 m,ax[P(f)],,- (37)
               (lflSl!2T)

    Proof

    Let the error event e have the length J-K+1. Substituting Eq. (21) into
Eq. (22), we obtain



56 YasutakaOGAWA,MasakazuSENGoKuandTadashiMATsuMOTO

               e,(E)'E{(nStf) (nS:il)'} E, (e)
        an (e)2 ::=
                      Ey(E)Tsv(e)

            - ey(6)Tdi(J)sy(e)

                 sy(s)TEy(e) ･
where sy(e) is a column vector of dimension J and

        di(J' =A.m E((n#f) (nS:f)']

is a JxJ covariance matrix of the noise component {nt},O･a..... From

Eq. (39), it is seen that di(J) is a symmetric Toeplitz matrix whose

expressed as

        gbid == pn-j'L

Thus, ¢(J} is written as

                PO PI P2"""HH"--"-""--PJ-1

                K)1 Po K)1---------------K).T-2

                P2K)iPo."'･.. I        di(J)= , ;Xs.. "･･,.."･･.. i .
                 b1't .'t J                 i l I',-.. '.,., ',... i
                 11itt ''                 1/1-t t. ..                 1titt ttt                 i l i "x.. "･,. Pi
               PJ-1 PJ-2 PJ-3 '-'-"'"H""'" Pl PO

Let vJ be an arbitary real and column vector of dimension J. Then,

inequality holds.

             Ey(e)Tdi(J)Ey(e)                                vJT di(J) vJ
        V.9,5 e,(E)Te,(e) Snl9X vJTv.

Now, we express the maximum eigen value of di(J) as 2fu'2.. Then,

             vJT di(J) vJ
        m.a.Tx vfvJ ==2fuJa..

By using the Sturmian separation theorem8), the inequality

        2fu'kx =<= 2fu'a"xi)

is obtained. Note that RfuJ.".i) is the maximum eigen value of ¢{'"i).

        max 2fuJa. = lim RfuJa..

         J J-oe
Here, we define the Laurent series 4J(2) as

                  J-1
        G(2) E>i pe+ Z pi(2`+2-`).
                  I=1
From properties of a symmetric Toeplitz matrix, lim 2fu'2. is equivalent

                                            J-oo
mum value of the Laurent series- limG(2) under the constraint that
                               .r-+co
unit circle9), i. e.,

(38)

 Eq.
element. ip

the

(39)

(18)

(40)

(41)

and

ig'. IS

following

     (42)

we obtain

     (43)

    (44)

Thus,

    (45)

to

2

 (46)

the maxi-

is on the
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       ttm..i:l'ia.=m.ax(po+,X.,p,(2i+2-t)). (47)
                (lzl-1)
         '
Then, we set 2 equal to ed2ofT, i.e.,

       2=ei-2of' for.[ICI$112T. (48)
Substituting Eq. (48) into･ Eq. (47), we have

       II, Em 2SJkx= m,ax (po+2,Zoo., pi cos 2njEITi)･ (4g)

               (lflSl12T)

Furthermore, by using expressions (38), (42), (43), (45) and (49), we get

       mgx a. (e)2 S- m,ax (po +2,Z.,kcos 27ofZT). (50)

                 (lflSl12T)

From Eq. (28), Eq. (27) becomes

        pL=:Sli,2,',.[P(f)],,ed2of`Talf. (sl)

Eq..(51) tells us that TPi is a Fourier coeflicient of [P(f)],,. Since [P(f)],, is an

even function for lfl h<.112T, we obtain

        Pe+2,Zco=,PtCOS27ofZT=Lilii[P(f)],,forlflSl/2T. (52)

Substituting Eq. (52) into the inequality (50), we obtain the inequality (37). (9. E. D.)

    Now, we show that the lower bound of ESI?VE") is calculated by means of
the equivalent Nyquist power spectrum ([P(f)],,) pf the- noise- component.

    Theorem 1

    The lower bound of ESN5") is given by･

                     og.d.2i.

        ESAXE-')-1 .. (53pt･                 ZiT M,aX tP(f)1,,

                  (lfl$1!2T)

where

        cl.i.=min d(e). (54)               e
    Proof

    The proof of this theorem is quite easy. From the definition of ESNS") (Eq.

(24)),

                   min d(e)2

        ESAJ5"'kdi mgxa.(e)2 (5N
                    e
is obtained. Then, using Lemma 2 and Eq. (54), we get

57
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         mM,:x" olll,(ie)9 iii L{i>,?,,.,.,.Ij(::Mil"p(f)],, (56)

From the inequality (55) and (56), it is seen tha,t the inequality (53) holds. (9. E. D.)

    Using Theorem 1, the following corollary is obtained.

    Corollary 1

    When a receiver filter G(f) is .adjusted in such a way that the variance ff?,

defined by Eq. (19) is minimized for the 'given DIR, the lower bound o'f ESNE-)

is given by

        ESNSff'l fNT`,IiTli,in[s(f)],,2 (57)

                   max                 aflsfi"2T)rlF[IF(fl)H(f)l2],q+illiolps , ,

    Proof

    The optimum receiver filter structure is a matched filter followed by an in-

finite-Iength tapped delay line3). And the frequency characteristic of the optimum

receiver filter is given by

                               r-1      ' TF(f)" H(f)' Z s. e-j2dii'
        G(f)==,,=zOe-..F(lf+-iF')HG'iO-g")2.tlgkT , (58)

where * indicates a conjugate complex number. Substituting Eq. (58) into Eq. (28)

and using Theorem 1, inequality (57) is derived. (Q.E.D.)

                           4. Numerical Results

    In order to observe the performance, we made numerical calculations for com-

munication system with data rates of 10,OOO bits!s qnd 12,OOO bits!s. The calcula-

tions were made under the following conditions and assumptions.

    1) SSB-AM (single-sideband amplitude modulation) is employed for the efli-

cient use of the transmission band. And the lower sideband is transmitted to the

channel, On the other hand, the baseband signal is regenerated by means of

synchronous demodulation, And it ls assumed that carrier recovery and timing

recovery are performed perfectly at the receiver.

    2) The parameters of the transmitted signals are shown below.

      (A) 10,OOO bitsls system

        .Carrierfrequency 2,900Hz
        .Baudrate(1!TA) 5,OOOBaud
        .M(The number which each x. may take.) 4
        .Transmittedwaveshape Class4partialresponse,i.e.,
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     ", 6                               for lfi .<.1127MLi･ '        F(f)= 7'-s sin2of7Li (sg)
                 O for lfl>1!2TA "' '
      (B) 12,OOO bitsls system

        .Carrierfrequency 3,300Hz
        ･Baudrate(1!71B) 6,OOOBaud

        ･M4 ,･
        .Transmittedwaveshape Class4partialresponse,i.e.,

                       tt        F(f)..{i'sion27ofTB io.r,lfflllllC221.F (60)

Note that transmitted wave shape of the 10,OOO bitsls system is normalized in such

a way that this system has the same transmitted power as the 12,OOO bits!s system.

    3) The frequency characteristics of the channel are shown in Fig, 3 and
Fig. 4. Both are voiceband telephone channels. We consider that Channel 2 is

a bad channel due to a very narrow and not very fiat passband.

                                       Amplitude De]ay
                               Delay`(dB)o Ampiitude (MSec) Amplitude

                                (m sec}  (dB)

                                10                                                                     10                                          -5            Arnplitude

                                                                     s

                                4 m2o 4    -10

                                2 -2s 2    -15
             Delay                                o De]ay    -20                                          -30                                                                     o
      O 1 Z 3Frequency O l Lt 3Frequency
                              (kHz) (kHz)
    Fig,3,Frequencycharacteristicof Fig.4.Frequencycharacteristicof

           Channel l. Channe1 2.
    4) The power spectrum density of channel noise <Nb12) is determined in such

a way that the following equation holds.

        TOi:. sc.. F(f) H(f)2dJi(/ 2ij. -103 (6o

where TB=1!6000 and F(f) is given by Eq. (60). The physical meaning of Eq.
(61) is that in the 12,OOO bitsls system the ratio of the signal power in the channel

(Z S℃.. F(f) H(f)2dlf) to the noise power in the Nyquist-band (Nb1271.) equals

30 dB.

    5) Filtering at the receiver is not done to the passband signal, but is done

to the baseband signal. The receiver fi!ter (G(f)) and the DIR are determined in

such a way that the conventional effective signal-to-noise -ratio (ESN(K)) is maxi-

mizedii'. In this case the lower bound of ESNEZ) is given by the Corollary 1.
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    The numerical results are shown in Table I through Table
the conventional effective signal-to-noise ratio (ESN(K)) is also listed

it should be noted that ESNSn) is a better evaluation function than

    As stated previously, the receiver filter and the DIR are not

IV. Although
in those tables,

ESN(K).

optimized with

TABLE 1. lo,ooo bitsls results on Channel 1

K

2

3

4

DIR

{1, -1}

{1, O, -1}

{1, -1, -1, 1}

{exj}jNi which
 gives.dinin

{1}

{1}

{1} & {1, 1, 2, 2, 3, 3, 3,

2, 2, 1, 1}

Lower bound
of ESATE"' (dB)

-3.0

27.8

26.9

ESN(ir) (dB),

16.4

305

31.0

TABLE 2. lo,ooo bitsfs results on Channel 2

K

2

3

4

DIR

{1, -1}

{1, O, -1}

{1, -1, -1, 1}

{exs'}jty-1

 gives
which
dmin

{1}

{1}

{1} & {1, 1, 2, 2, 3,

2, 2, 1, 1}

3, 3,

Lower bound
of ESATE:'i' (dB)

-3.0

19.3

29.3

asAJ<tr) (dB)

17.5

26.2

31.7

TABLE 3. 12,ooo bitsls results on Channel 1

K DIR
{e.j･}de.1

 gives
which
dmin

Lower bound
of ESNE!r) (dB).

ESIV(iT) (dB)

2 {1, -1} {1} -3.0 15.1

3 {1, O, -1} {1} 21.0 27.9

4 {1,-1,-1,1}
{1}&{1,1,2,2,3,3,3,2,2,1,1}

24.9 29.9

TABLE 4. 12,ooo bitsls results on Channel 2

K

2

3

4

DIR

{1, -1}

{1,O,-1}

{1.0148, -O.985,
-O.985,1.0148}

{exj}jN-i

 gives
which
dmin-

{1}

{1}

{1, 1, 2, 2, 3, 3, 3,

2, 2, 1, 1}

Lower bound
of ESN£.ff' (dB)

-3.0

8.6

24.2

ESIV<rr) (dB)

15.4

19.4

28.3
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respect to ESNE"), but they are determined in such a way that they maximize
ESN(K). Neverthless, from lower bounds of ESNSff), it is seen that a reasonable

performance is obtained even under correlated noise if the DIR length is chosen

at an adequate length (3 or 4). From those results, it may be said that noise

correlation does not have a serious effect on an SSB-AM system with a data rate

of about 10,OOO bitsls.

                              5. Conclusions

    We have investigated the performance evaluation of a Viterbi detectoer under

correlated noise. The numerical results showed that noise correlation does not give

rise to a serious performance degradation in a communication system with a data

rate of about 10,OOO bits/s.

    Although we made numerical calculations for SSB-AM transmission, 9AM
(quadrature amplitude modulation) might be employed in a real data communication

system. Thus, studies should be done on the correlation noise problem in 9AM

transmlsslon.
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