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Résumé

Equation of deflection of a moderately thick plate is obtained by expanding
components of displacement into power series in the coordinate perpendicular to
the surface of the plate. Assuming that the thickness of plate is small, equations
of deflection for a plate are given to the third order approximation. The present
equations are compared with approximate equations hitherto obtained.

The method presented here enables us to calculate more precise equations of
deflection with any desired accuracy. .

§ 1. Notations and Fundamental Equations

Notations
x;: rectangular coordinates, (=1, 2, 3)
¢;: components of displacement, (i=1, 2, 3)

1 <asj 3¢,

€= 2\ 9z, T 0z,

) : components of strain, (4, j=1, 2, 3)

&g = €1+ Eg0teg3

Ay = ey 045+ 2pe,; 0 components of stress, (7, j=1, 2, 3)
with Lamé’s constants 2 and g,

(l, m) =L+mp, (I, m, n) = L2+ miu+nd, etc.

h: thickness of plate,

h%0,1)(1,1) g i

D= 301, 2) : flexural rigidity of plate, and

2wy :  deflection of plate, 7. e. vertical displacement of the middle plane of plate.

We shall take x,- and x,-axes on the middle plane of plate, x;-axis being directed
downwards. (cf. Fig. 1)

Love’s treatment” of a moderately. thick plate starts from the stress-analysis
of a three-dimensional elastic body, and takes the trace of stress tensor to he
equal to @+ x36,, where 6, and 0, are plane harmonic functions.
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Xy

X
Fig. 1. Coordinate System.

Our present method is a natural extension of the method to treat the lon-
gitudinal vibration of a moderately thick bar proposed by one of the present authors,
Takizawa?, and is found to be similar to the method of initial functions by Vlasov®.
Fundamental Equatzons

Equations of equilibrium of an elastic body read :

0A 0 .
0="7 0= (0t g et pdé, (=123 (1-1)
with
0? 0*
4= oz =4+ 03

The strained state (I) caused in a plate under the distributed external pressure
P on its upper surface, can be decomposed into the two strained states, namely (II)
and (III) in ‘Fig. 2. The state (II) expresses the strained state under pressure — p/2
on the upper surface and +p/2 on the lower surface. While, the state (III) cor-

P ]

T, + I,
L ABARN

Plate —- //

(D (M (1)

Fig. 2. Strained state (I), decomposed into (IT) and (ITI).
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responds to the strained state under pressure —p/2 on the upper and lower surfaces,
respectively. ’ '

We shall treat here the problem in state (II). So, one can expand the com-
ponents of displacement as follows :

&= Z Ugkt1 a5,
k=0
< 241 '

&= ,;ovzkﬂxa i ’ (1-2)
L=-]

&= kZO Wy X5

where, g, v, and wyg, are functions of x, and ..

By means of (1-2), the right-hand sides of egs. (1-1) are also expressed in
power series in . Putting the coefficients of the same power in x; equal to zero
in egs. (1-1), we obtain the following equations* :

(—1)* k(1,1) 9
qu“:W Akuff‘"(i 2)) 4F 1%‘1‘{51—4100} , (£=0,1,2,..)

. (1-3)
C(=D)F . R(1,1) . 8 (_ '
Vet = REE T Lo+ 2 Vi IT%{EI_AUJO} , (k=0,1,2,--)
—1)* k(1,1) -
w%:((T),_[Akwﬁ (g’ 2)> A’"*‘{al—dwc}], (k=0,1,2, ) - . (1-5)
with
g w0y
= axl + 33:2 ) . (1_6)

By means of (1-3)~(1-6), components of strain and stress can be expressed
by 2, v;, and w,.

§ 2. Boundary Conditions at the Upper and
Lower Surfaces of the Plate

Boundary conditions at the surfaces of the plate shall be taken to be:

h
=+ lz) - A33 = depit+ 2/1833 , at xy;= =L 9
h
0= Ag = 2peq , at x3:i7
and
h
0= A32 - 2/1632 ’ at Xy == + —é
i.e.

* We understand that the zero-th power of the Laplacian operator is equal to unity, i. e 40=1.



360 Satoru IGARASHI, Akira MIYAUCH]I, Ei Iti TAKIZAWA and Tohru NISHIMURA

p o h 2511
25 = 5 (20, 2 25+ vt (1,0) Fue], 2-1)
0= Z:: <i 2> [ﬁw2k+(2k+l) uZlH—l]) (2-2)
and
o h 2k a
By means of (1-3)~(1-6), egs. (2-1)~(2-3) read :
4 o (— 1)t (2k42) [ B\ _
fant= goLderwi(?l) [(2k41, 28) 4200, (2043, 26+ 4) 4415,]
(2-4)
o (—1) <L1>2’°[ 2k(1, 1) ) (2k—1,2k—2) & ]_
Len\z) [Fat Ty e ST g Ym0
(2-5)
and
o (=1 (AN o L 2k(LY) . 9 (2k—1,2k—2) B
5 (o) [oot Mgt e g e R =,
(2-6)
with flexural rigidity D of plate of thickness A :
_ 0,111
b=""ay -
From (2-5) and (2-6), we have:
o __1 k h
5 ((Zk))! <?> [(2k+1, 2k42) 445, —(2k—1, 2k —2) 4412,] =0, (2-7)
and
oo . 2k
5 (5 ) #a= 2-8)
= (2k)!
with
_ 0wy vy
&= oz, oz (2-9)

§ 3. Approximate Equations of Flexural
Deflection of a Thick Plate

When the thickness 4 of plate is small compared with its lateral dimensions,
we obtain %, and v;, by means of (2-5)~(2-7), as follows:

5 Ry 2(L,l) |, @ AV2(1,1)(4,5) . @
U gy W ( > 1,2 4o ™™ (2> 31,28 om0
2(1,1) (27, 68 43 9
_<?> 151, 25 ddd 55w (8-1)
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and ‘ .
N AV 2(1,1) 8 A\ 2(1,1)(4,5)
0= =gy w5 ) g e (3) S 4
2(1, 1) (27, 68, 43) b : ..
() 2 s v (3-2)
From (3-1) and (3-2), we have:
_ Oy _ 0 _ '
0= az, oy =0. (3-3)
Eq. (3-8) shows that there is a function ¢ such that:
0 0 .
=gt w=gh (3-4)
with v :
51:A¢ (3“‘5)
Introducing (3- 4) into (3-1) and (3- ) we obtain :
h\2 1\
o=~ 1 (3 4 12> )< o) aea
2(1, 1) (27, 68, 43) h . T
Substituting (3-5) and (3-6) into (2-4), we obtain : ‘
p (13, 16) ‘/_1‘

(1479, 3704, 2332) /1
840(1, 2)2 AA/JA'IU()"{“

(35969, 135768, 171420, 72400) [\ | '
15120(1, 2)° T\ g ) dddddwit e 37T)

Another method to obtain (3~7) is as follows. Applying 6perators‘

2 (2k+3)
respectively to (2-4) and (2-7), and eliminating &,, we have :

(2k+1, 2k+2) <h >2kd’~'p _

-0 g
ok 2i+2)(2i+1—=Fk) [h
=3(1,2) D3 2 (—1)f ((21_j3>)({z—(|;e—z)})|< ) P,

2

(3-8)
Assuming that the thickness of plate A is small, one can ﬁnd that the irnverse of
the operator in the left-hand side of (3-8) takes the following form:

=1y {1+ 2(:(314%) <g> A+%€L2)224)<h>dd+ qéa,.(z)sl(l{) AAA+ }

(3—9) ,
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Applying this operator § to both sides of (3-8), we also obtain (3-7).

Truncating the series in (3-7), one can obtain the approximate equations for
deflection of a plate with any desired accuracy. We shall present here the equa-
tions to the third order approximation.

A)  Zero-th Order Approximation
Retaining the terms of O (A% in (3-6) and in the right-hand side of eq. (3-7),
we obtain :
p= —wy, (3-10)
p = DAddw, . (3-11)
Eq. (3-11) is the equation for deflection of a plate in the zero-th order approximation

in our theory, and is nothing but the usual equation for a thin plate. Egs. (3-4)
with (3-10) read:

0 0
U = — Txl Wy and V= — *a‘x‘:wo ) (3"12)

which are usually taken in the theory of thin plate.

B) First Order Approximation

When we retain terms of O(h% in (3-6) and in the right-hand side of (3-7),
we get:

g A (4, e
p= DAA{w0+ %(—’5—)2&%} : (3-14)

Eq. (3-14) is the equation for deflection of a plate in our first order approximation.
Equation given by Speare and Kemp?® {rom Reissner’s theory” has an elastic constant
(12, 16) instead of (13, 16) in our expression (3-14).
C) Second Order Approximation

If we retain terms of O(h% in (3~6) and in the right-hand side of eq. (3-7),
we have:

21, 1) (2 2(1,1) (4, 5) [ b\t
9= - (1 (5] 4 2 () 40 (3-19)

for ¢, and obtain equation :

- (13,16) [ h\? 1479, 3704, 2332) [ h \*

2

10(1, 2)
for deflection of a plate in our second order approximation.

D) Third Order Approximation

As for the third order approximation, we retain terms of O(h® in (3-6) and
in the right-hand side of eq. (3-7), and obtain :
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o= (om0 (s

2(1, 1“57)84$<h>dddwm , 317
B (13,16) [ A (1479, 3704, 2332) [ /
p'-LMA{wN+]0CL2)<2>Au%+ 810(L, 2 <Z>Adwr+

3 135768, 171420,
(35969, 135768, 17 72400) <h> Addwg} (3-18)

15120(1, 2)*

Eq. (3-18) is the equation for deflection of a plate in our third order approximation.
In a similar manner, we can continue the process of approximation, truncating

the series in (3-6) and (3-7) at higher order terms in A, and can obtain the ap-

proximate equations for deflection of a plate with any desired accuracy.

§ 4. Comments for Boundary Conditions at the Vertical Plane

As for the boundary conditions at the vertical plane of the plate, we shall
consider as follows :
a) For the case of fixed boundary, boundary conditions should be:

& =¢&,=&=0. at x;=const. and x,= const.
b) For a simply supported plate, these conditions may read:
=0, and A,;=A4,=0, at x; = const.
and
& =0, and An=A4,=0, at x, = const.

or, in the alternative forms :

&=&=0, and A,=0, at x; = const.
and
& =6&=0, and A,=0. at x; = const.
¢) For free boundary at the vertical plane, we should take :
An=A,=A,=0, at x; = const.
and
Ap=Ay—=Ayl=0. at x,= const.

These boundary conditions contain terms of integral powers of A and are
expanded into the power series in x; in the expressions of displacements and stress,
and we should take appropriate terms of higher order of A and z; for solving
approximate equations of the plate, namely eqs. (3-11), (3-14), (3-16), (3-18), etc.
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'S 5. Discussion
i) Approximate equations obtained from eq. (3-8) ,
From eq. (3-8), we obtained approximate ‘equations in the forms of egs. (3-11),
(3-14), (3-16), etc.’ Ity is. also' possible to obtain approxnnate equations from eq.

(3-8) in a somewhat different manner.
Retalmng terms of O (h?) in the left:hand side of (3-8), we obtain :

{1 2<:()’14%)<h> }/—DAAwO, “ | _ Y

which is slightly different from an equation given by Timoshenko and Krieger?,

and by’ Saléerno and Goldberg” from Reissner’s theory?. Our equation contains

h%4 in the left-hand side in (5-1), while these authors®” took £?%5 instead of h?%4.
Neglecting terms of O(h? in eq. (3-8), we have:

p=Ddduw, G

which is nothmg but the usual equation for deflection of a thin plate and coincides
with our zero-th order approximation (3-11). While, if we retain terms of O (4?
in both sides of eq. (8—8), we obtain :

(1= B985 o= Dfa— (4} ) st e

Applying the inverse of the operator in the right-hand side of (6-3) to both sides
of eq. (5-3), and retaining terms of O(A?, one can find that eq. (5-3) is reduced
to the following equation :

(U239 (00, b, -

which differs also from the equation derived by the authors cited above®?, who
took an elastic constant (12,16) instead of (13,16) in (5-4). We can find that
equations having differential operators-applied to p, such as in (5-1) and (5-4), are
reduced to eq. (5-2), when pressure p is distributed wniformly over the surface of
the plate. Here we showed egs. (5-1) and (5-4) merely for the sake of comparison
with the equations given by the authors cited above.

i) On the problem of a plate in state (I1I)

It is also necessary to treat the problem in state (III), if ‘we wish to have the
detailed stress in state (I). We can obtain the fundamental equations for state (III)
by means of a similar procedure as was given in §1 and §2. In this case, com-
ponents of displacement shall be taken to be :

cd
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oo

El - I:/;:OU% xgk ’

&= Z Vg, T3 (5-5)
Z w2k+1 x2k+l
Introducing (5-5) into equations of equilibrium (1-1), we have:
1)k k(1,1 0 N
Ugp, = ((2 )> [Akuo+ ((() )) Ak—laiml{50‘1“"&)1}-1 , (B=0,1,2, )
_ (=1 k1,1) @ 1 .,
=T | Aot G 0y 4 gy, (Bt} | (£=0,1,2,-)
d
an - LD ; (56-6)
= gyt 4o o) ()]s =012
with
- Ouy | O
S0 f)xl ax'z ’ /

Boundary conditions at the upper and lower surfaces of the plate shall read:

j h
— % = A33 = /.{Ekk‘}‘zﬂ‘?ga 3 at x3— -+ 7

h
0=Ay=2pe, at z=t75 (5-7)

and

O:A32:2ﬂ552. at xy,:i”}zl*

Introducing (5-5) into (5-7) with (5-6), we obtain the following equations :

2 ,20 ((;é)f <%>2k[(2k—1, Dh—2) 4w +(2k—1, 28) 445, , (5-8)
ki <é [Ak+1uo+ qu(;ll)Zk) A"%l‘w1+
B
and
5 2/;;)‘(11 z'c[ 21\;2;11)213) PN
L+ (ZkJ(rol)1<) ) 83962 5]:0_ (5-10)

From egs. (5-9) and (5-10), we have:
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oo (_l)k h 2%k .
3 Sl ) (241, 28) 444wy +(2k+ 1, 2k+2) 44918,] = 0, (5-11)

k=0 (2k+1) 1\ 2
and
o —1)E JAY
kZ::O (2(]3_{_)1-5 '<»§> A’HIQO =0 , S (5_12)
with
Juy _ 0vy
@ 0z,  Oxy S ‘ (5-13)

Egs. (5—8)~(5—10) (or egs. (5-8), (5-11), and (5-12)) can be used to obtain approxi-
mate equations for a moderately thick plate in state (III).

In Part II of our paper, we shall give solutions of the problem for a moderately thick
plate under distributed pressure over the surface of the plate, when the plate is simply

supported at its edge.
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