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On the Flexural Deflection of a Rectangular Beam

with Moderately Large Depth

Satoru IGARASHI*
(Received June 30, 1980)

Abstract

Equation for deflection of a beam of narrow rectangular cross-section with
moderately large depth is derived from the equation for deflection of a thick plate
proposed in the previous paper, considering that one of the lateral dimensions of
a rectangular plate is much smaller than the other.

Assuming that the depth of beam is small compared with its length, the ap-
proximate equations for deflection of a beam can be obtained with any desired
accuracy. ‘

For a simply supported rectangular beam under uniform load, the exact solu-
tion for deflection of the beam and solutions for its approximate equations, are
given in this paper.

The results obtained here are compared with those given by the usual beam
theory.

§ 1. Notations and Fundamental Equations for
Deflection of a Thick Plate

Notations

x;: rectangular coordinates, ({=1,2, 3)

& : components of displacement, (=1, 2, 3)

1 (351‘ 0&; ) ) )

€= "5 -4+ =>~|: components of strain, (7,7=1,2,3
i— 2\ 0z, oz, p (4,7 )
&xr = €11+ €ga €3,
Ay = Aegfi;+2p;; 0 components of stress, (7, /=1, 2, 3)
with Lame’s constants 2 and g,

(I, m)=L+myu, (, myn) =124+ miu-+np?, etc.

h: depth of beam,
b: breadth of beam,
E:w: Young’s modulus,

bh?

I:v: moment of inertia -of the cross-section of beam, and

We: deflection of beam.

* Institute of Precision Mechanics, Faculty of Engineering, Hokkaidé University, Sapporo,
JAPAN.
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Fundamental Equations

The approximate equations for deflection of a moderately thick plate were
obtained and solved in the previous paperst®. The present author proposes here
the equation for deflection of a rectangular beam with moderately large depth,
with reference to the equation of a moderately thick plate.

At first the author summarizes the method to treat the bending problem of
a moderately thick plate, then shows how the fundamental equations of a beam
with large depth can be derived from the equation of the plate.

We shall take z;- and x,- axes on the middle plane of the plate, xy- axis being
directed downwards. The thickness of the plate shall be taken to be A.

When one treats the problem of a plate in a bending state, one expands the
components of displacement as follows :

-
& = Z 1¢2k+1x§k+1 s

&= ’;0 Vg 05T (1-1)
&= ];szkx?%k s

where u;, vi and wy, are functions of z; and z,.
Introducing (1-1) into equations of equilibrium of an elastic body :

A, il .
0= axjj - (1 1) a 5kk+(0 1) A Sz ’ (2 = 1’ 2» 3) (1"2>
with
0? 0*
A= 0y = AT Gup

and comparing the coefficients of the same power in x;, one finds that all the
coefficients of power series in eqs. (1-1) can be expressed in terms of wu,, v, and
w,, as follows™* :

(=1* T k(L 1) 1,
U1 = WW[A u;+ (1’ 2) {~1 Awo}] >
(k=0,1,2, )
(=1 T k(1, L,
e "<’2‘7é’3rT>!*[" w2 4y B A ] (1-3)
(k=0,1,2, )
and
with

* We understand that the zero-th power of the Laplacian operator is unity, 7. ¢ J0=1,
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- aul a'Ul
=1 axl axz ' (1—4)

Boundary conditions at the surfaces of the plate are given:

0 = A=, 0w t20, Ve,  at x

3

Il
-+

(1-5)
0 — Agi == 2(0, 1) €3i s (lzl, 2) at

I
H+
NIENSE

X3
where p=p(x,, x) is the distributed external pressure over the upper surface of
the plate. Introducing (1-1) with (1-3) into (1-5), we obtain the following equations :

4 p e (—DFRE42) (R
3L =4 k) ’(’2‘) X

x[(@k+1, 2k) 44 2wy — (2k+3, 2k+4) 415, ],  (1-6)

&y

o (1) [/ h\2k _
b <(2k)>! (%) [(2k+1, 2k+2) 448, (2k—1, 2k—2) 41y

=0, (1-7)
and
oo (_1)76 i 2k .
S lz) £a=0, (1-8)
with flexural rigidity D of the plate of thickness A:
R0, 1)(L, 1)
D=""310,2
and
_ O Gvy -
&= oz " om (1-9)

§ 2. Equation for Deflection of a Beam with
Rectangular Cross-Section

When the breadth, say b, of a plate is small, the equation of a thick plate

can be reduced to the equation of a narrow rectangular beam® of large depth.

Because of the narrow breadth of the beam, we can take:
0=A4,=(1,0) e02+2(0, 1) esy, (1=1,2,3)

(2-1)
in the interior of the beam:.

Introducing (1-1) into (2-1), equating the coefficients of the same power of z,
and taking (1-3) into account, we obtain the following equations :

0Vgp41 0gpi 1 = o _
axl axz -‘07 (k—o7 1, 27 ) (2 2>
dwWay

Az +(2k+1) vy =0, (k=0,1,2,-) (2-3)
Xy
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and
vaer  (1,0) [Bugeys 1P| _ .
0, T 4(1, 1) { ox,  2k11 oxf 0. (k=0,1,2,)  (2-4)
From (2-2)~(2-4) with k=0, one can find:
5! Fu |
et =0, and = =0, (s=3) (2-5)
By means of (2-2)~(2-5), egs. (1-3) read:
‘ —1) o 2
Upir1 = i, §) (2/1_1_1)! Py [(Sk—l-él 2k—+4) u,—k(3, 2)- oz wg],
(k=0,1,2, ) (2-6)
_1 k aZk
Vary1 = (2<T+%)T oz vy (k=0,1,2,-+) (2-7)
and
(_ ) a?k 1 a
(k—O, 1, 2, ) (2-8)
From egs. (2-5) and (2-2)~(2-4) with k=0, terms uy, v, and 1wy, are expressed
as follows :
(Lo ,a d
= Ut g0, 1) @ aa |V e Vo)
Lo 4 d
VST S dey |V am W) (2-9)
and
1,0 d
wy = Wi+ é(l, i) [U1 """ "Vo],

where U; and W, are functions of x; alone.
Introducing (2-9) into (1-6)~(1-8) and retaining terms of O(af), we obtain the
following equations :

g 3 2 (=1F1(2k+2) (B 2’°><
EL = 203,20 2 (k3!  \2
d2k+3 d
XW{(BIH—& 2k+4) U,—(3k+1, 2k) Ao Wo] , (2-10)
and ' ,
_ o (1) (R dr d_
0= kZ:O EHT\2) (3k+2, 2k+2) U —(3k—2, 2k—2) . W,
- (2-11)
where q:SW/ p(xy, x,) dxy, is the intensity of external load, E=(0,1)(3, 2)/(1,1) is
~b/2
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Young’s modulus, and I=56h%12 is moment of inertia of the cross-section of the
beam.

When the depth i of beam is small compared with its length, U; in eq. (2-11)
can be expressed as follows :

U= =g [ o (2) P (2)
P BIEAID (1Y 8 Ty

Introducing (2-12) into (2-10), we obtain :

@ (21, 16) " (1957, 3018, 1166) (1}t d*
¢=EL j [H 20(1, 1)( ) dz 1680(1 1 dat
(6941, 15378, 9852, 2828) [ h\6 b
T 60480 (1, 18 2 d oW (2-13)

We can also obtain (2-13) from egs. (2-10) and (2-11) in a quite similar manner
as was described in the previous paper“ for a thick plate. Applying operators:

> (3k+2, 2k+2) 2k 2k
kZ:] (—1)* 21 2 A and

S 1)% (2k+2> (3/3+5, 2/€j|ﬂ /i Zkii?{”ﬂ
IcZ::O(_ ) (2k+3)! 2 ) dxi o

respectively to (2-10) and (2-11), and eliminating U, we have:

1 (BRE2,2642) (e
(=1) 28 2 ) AT

(2i+2) (2i+1—k) [\ @urs
=6(L,1) KI5, 3(—1) 243 @l—9) <§> g Mo (2714)

D8

k

The inverse of the operator in the left-hand side of (2-14) can be written as:

1 (5, 4) & (67,106, 42) by
9=30,1 )[H Al 1>< ) d=r a8, 1)2 dat Tt
(4447, 10500, 8274, 2176) ( b\ o
+ 2880(1, 1) d T (2-15)

Applying the inverse operator & to both sides of (2-14), we obtain eq. (2-13).

Truncating the series in £ in the right-hand side of eq. (2-13), we obtain the
approximate equation for deflection of a beam with large depth. For instance,
if we retain the term of O(h% in the right-hand side of (2-13), we have:

g=EI-<—W,. (2-16)

d 4
Eq. (2-16) is the equation for deflection of a beam in the zero-th order approxima-
tion in the present theory, and is nothing but the usual equation for a beam of
small depth.



384 Satoru IGARASHI

While, retaining terms of O(h?) in the right-hand side of (2-13), we obtain
the equation :

o d (21,16) (h V&
9= Bl [W°+ 20(1, 1) <?> da? Wﬂ]’ (2-17)

for deflection of a beam in the first order approximation.

In a similar manner, we can obtain the approximate equations for deflection
of a beam with any desired accuracy, after truncating the series in eq. (2-13) at
the terms of higher order of A. Eq. (2-13) shows the terms to O(h% explicitly.

§ 3. Solution of Equation for Deflection of a Simply
Supported Beam under Uniform Load

We shall solve a set of equations (2-10) and (2-11) for a simply supported
beam of moderately large depth under uniformly distributed external load ¢, per
unit of longitudinal length.

Let a beam of breadth b and length / be simply supported at x;==+1/2. The
boundary conditions shall be taken to be:

{

&=20, and A;=0. at x,= =+ o (3-1)

The solution of eqs. (2-10) and (2-11), satisfying the boundary conditions (3-1),
can be written as:

Wo= 2] A, cos (a,x), (3-2)
n=1
Ui= 3, B,sin(a,x), (3-3)
n=1
where,
9p—
a, :Lnl—l)n , n=1,2,3,-+)
with constants A, and B,. While, the uniform load g=const.=gq, can be expressed
as
%= 2 qn COS (@ 21), (3-4)
with
4 ( — 1)71—1

Gn = ? (271_”1")*(]0 . (71:1, 2, 3, ) (3_5)

Introducing (3-2)~(3-4) into egs. (2-10) and (2-11), we obtain:

cosh <an —g—) + (3,2) sinh <an %)

_ 1 g 4(1, 1) ™
A= 6EI o (an B sinh (a, h) —a, h ’

(n=1,2,3, ) (3-6)
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and

1 COSh <an %) ~<3 2) smh (an 7]2L>
Qn / )3 - )

_ 401, 1)
= BEI of (@ sinh (a, )~an/z
(nzl: 27 8! ) (3—7)

B,

Expressing the right-hand side of eq. (3-6) in the form:
1 quf,, (2,16) [ A (262,227) [ h
A ="FT ot [H 20(1, 1) <“" 2> 420001, )\ % 2) T

144 1572 6 :
(14407, 1157 )< %)_] (n=1,2,3,) (3-8)

~756000(1, 1)

and truncating the series at O{A*), we obtain the solution of equation in the n-th

order approximation,
For example, retaining the term of O(A% in the right-hand side of (3-8), we

W= 5arr {(é)z—rl} {5<%>2—xf}. (3-9)

Eq. (3-9) is the solution of equation for deflection of a beam in the zero-th order
approximation and is nothing but the usual solution for a simply supported beam

have :

of small depth.
While, if we retain terms of O(4% in the right-hand side of eq. (3-8), W,
can be written as:

ool (o) -l [0Sy ()] oo

Eq. (3-10) is the solution of equation for deflection of a beam in the first order

approximation,

In a similar manner, we can obtain the solution of equation in the n-th order
approximation, after truncating the series in the right-hand side of eq. (3-8) at
the terms of O(h?),

§4. Discussions

A) Approximate equations obtained from eq. (2-14)

From eq. (2-14), we can have approximate equations (2-16), (2—17), etc. It is
also possible to obtain approximate equations from (2-14) in a somewhat different

manner.
Retaining terms of O(h?) in the left-hand side of eq. (2-14), we get:

(5,4 (h\ & _ d*
{1' AM,O\Z) dar ) 1= El g Wa. (4-1)
While, if we retain terms of O(h? in both sides of eq. (2-14), we arrive at the
following equation :
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(5,4) [(h\ & } ad* { 1/h\ &
(-t (2) v g5 () W 4-2)
which can be transformed into :
(21,16) (Y &
{1— 2001, Y\2) d (1™ EI Wo (4-3)

Egs. (4-1) and (4-3) correspond to the equation given by Timoshenko? :

~EI {M+ 2(?1 2%) <]21> q} = dzz Wo, (4-4)

where M is the bending moment of the beam (g= —d?M/dx?. Eq. (4-4) is obtained
from the usual equation of deflection for a beam of small depth, taking into ac-
count the effect of shearing stress at the cross-section of the beam.

Egs. (4-1) and (4-3) are reduced to eq. (2-16), when the external load ¢ is
uniformly distributed along the length of the beam, 7. e. the effect of the depth of
the beam disappears in the left-hand side of (4-1) and (4-3). The author showed
here egs. (4-1) and (4-3), for the sake of comparison with eq. (4-4).

B) Numerical Example

As for numerical examples, the maximum deflections W, of a simply sup-
ported rectangular beam under uniform load are calculated from solutions obtained
in this paper.

The maximum deflection corresponding to the exact solution is given by eq.
(3-2) with a;=0:

lllilX Z An b (4_5)

n=1
where expression (3-6) is to be used. The maximum deflections in the zero-th

and the first order approximations are derived from egs. (3-9) and (3-10), and
are written as:

5 qo (I}
I/Vmax ’24 EI (‘) (4_6)
and
5 g (L, 3(21,16) (A
Winux = 54 EI<2>{1+ 2501, 1 (z)} (4-7)
‘While, from the solution of eq. (4-4), we can obtain the maximum deflection :
_ 5 @ (LYf L 6(5,2) iz}
Wnax =54 EI(Z){H_ 5L\ (4-8)

Numerical results W, for the exact solution are calculated after truncating
the series {4-5) at appropriate terms (n=11). For several values of 2//, numerical
results Wi/ W, calculated from eqs. (4-6)~(4-8) are listed in Table 1, in which
the ratio 2/p is taken to be 3/2, with Poisson’s ratio (4/2)/(24)=0.3.
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TaBLE 1. Comparison of the maximum deflections
of a simply supported rectangular beam
under uniform load.

(A 1t=13/2, and Poisson’s ratio=0.3)

Wmax/We (We: exact solution)
hfl .
] e e | o e o | Bl ol shesrng
0.05 0.994 1.000 1.002
0.10 0.978 1.000 1.008
0.15 0.951 1.000 1.018
0.20 0.917 1.000 1.031
0.25 0.876 1.001 1.047
0.30 0.831 1.002 1.065
0.35 0.784 1.003 1.084
0.40 0.737 1.005 1.104

In the zero-th order approximation (the usual beam theory), the relative error
[1—(Whnae/ Wo)| 1s comparatively small for a beam of small depth (e. g. less than
5% for h/l=0.15), while, the error increases with increasing depth of the beam
(from ca. 8% for h/[=0.2 to ca. 269 for h/[=0.4).

In case of eq. (4-8), the error is comparatively small for a beam of small depth
and also for a beam of relatively large depth, e. g. the error is less than 5% for
h/1<0.25.

In concluding this paper, the author wishes to mention that the values of
Wimax in the first order approximation in our theory agree very well with the
values from the exact solution W, for any value of A/l, e.g. the error is less than
0.1% for n/{<0.2 and is 0.5% for h/l=0.4.

The author thanks Prof. E. I. Takizawa for his encouragement and discussions
throughout this investigation.
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