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Katsuaki SAKAKIBARA

                              Abstraet

   A correspondence of arcs is established for the shortest spanning tree and an

arbitraryspanningtree. Thiscorrespondencegivessomepropertiestotheshortest

tour. These properties unifies the ways of provlng the shortest tour in a few

special cases and gives a new approach to the shortest tour in general cases.

                            gntroduction

   Shortest or efficient spanning trees are easily found (Kruskal 1956, Corley 1985),

but it is very difficult to obtain the shortest tour (Cook 1970, Karp 1972 and

Papadimitrious 1977). No one has presented any geometrica} method for finding

the shortest tour in the general case from Dantzig et al. (1959) to Padberg (1985)', but

some researchers such as Held and Karp (I970) suppose that the shortest tour should

have close relations with the shortest spanning tree. We are convinced that there

are many common arcs for the two. If these cornmon arcs are available, most

algorithms for the traveling salesman problem could be improved.

   Unfortunately these are unknown until the shortest tour is found, and we have

searched for ways of applying the "existance of common arcs" to construct the

shortest tour (Sakakibara 1980-1985).

   A one-to-one correspondence of arcs is set up for the shortest spanning tree

and an arbitrary spanning tree. This correspondence characterizes arcs corre-

sponding to each arc of the shortest spanning tree. This characterization gives

some properties of the shortest tour. The ways of proving the shortest tour in

some special cases are unified by the properties. And the properties give a new

approachtotheshortesttourinthegeneralcase. Inthisapproachtheshortesttour

should be obtained quicker when it has more common arcs with the shortest
     .spanmng tree.

1. A correspondence of arcs for spanming trees.
   Spanning trees in the undirected complete graph G (V, A), a node set V, IVI =

nk4 and the arc set A= {a}, are treated.
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    The weight (or length) of each arc is denoted by fi. An arbitrary spanning tree

is represented by an arc set {xk}==XCA, and the shortest by {bk} =BcA, where k

is an integer Sn-l. The arc sets C, X", and B" are defined as

       C= XA B, XrvC== X* and B"-･C= B",

which give

       x'AB"=:co.m"""m'"m"･m-･･･････--･･-･-･-----･･--･･･------･･･(1)
   The arcs ciEC are called the "common arcs" of the spanning tree and the
shortest, where i = 1, 2, ..., io, and O$io$n-1. These definita ions g!ve

       BUX*= (CUB*) UX*=(CUX*)UB*=XUB*. ---･--･-･---･-･--(2)
    This means that the shortest spanning tree becomes the spanning tree X when

interchanging B" into X".

    Here a one-to-one correspondence of arcs for an arbitrary spanning tree and

the shortest spanning tree is set up as follows:

    Proposition 1. Each arc Xk of an arbitrary spanning tree can correspond to an

arc in a path of the shortest spanning tree ;

    the path connects the ends of the arc xk.

    Proof. This proof has five steps :

   (1). If xk is ci, let it correspond to the arc equal to ci in B. The arc ci is the

path itself of the shortest spanning tree which connects the ends of xk = ci.

    (2). If xk is not ci for all i, that is, if xk is hjEX", let it correspond to an are in

B$ :{tj} according to jo as follows. Herej=1, 2, ..., jo, and io+jo=n-i.

    (2)-1. jo==O. Thiscaseiscoveredin(1).

    (2)-2. jo=1, HereX"={hi}andB*={ti}. ThegraphforBU{hi}hasaIoop
consisting of hi and the path of B (the graph of B) which connects the ends of hi.

From Equation (2) the graph becomes a spanning tree when rernoving ti, and the

graph cannot become a spanning tree without removing an arc from the loop.
Therefore, from equation (1), ti must be contained in the path of B which connects

the ends of hi. Let the arc hi correspond to ti.

    (2)-3. jo=m In this case it is assumed that each hjEX* corresponds to an

arc eB" in the path of B which connects the ends of hj.

    (2)rm4. jo=m+1. Lethm+idenoteanarbitraryarcinX'. ThegraphforBU
{h.+i} has a Ioop consisting of hm+i and the path connecting the ends of h.+i (see (a),

(b) and (c) in Fig. 1). From equation (2) the path contains one or more arcs in B".

One of these arcsjoins the two parts of the spanning tree X which are separated by

removing hm+i (see (c) and (d) of Fig.I). The reason is shown in the next para-

graph.

    Both parts contain the respective ends of h.+i (see solid circles in (d) of Fig. 1).

An arc in the path of B which connects the ends of h.+i showld join the two parts.

Since the common arcs ci are contained in the two parts, no common arcs can join

the two parts. For these reasons, an arc in B" and in the path of B showld join the

two parts. The arc is defined as tm+i.

    Let h.+i correspond to t.+i. It is clear that the arc t.+i is in the path of the

shortest spanning tree which connects the ends of hm+i.
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    Next, we consider the graph for ({t.+i} U X"v{h.+i}). This graph is a spanning

tree (see (d) of Fig. 1), and

       {tm+i}UX"V{hm+i}=(CU{tm+i})UX"-v{hm+i}.
    All the arcs of (CU{t.+i}) are common to the shortest spanning tree. The

number of arcs of (X"'w{h.+i}) is m. By the assumption in (2)-3, each arc hjG(X"

'x" {h.+i} forj-Sm corresponds to an arc of (B"-v{t.+i} in the path of B connecting

the ends of hj. The arc of (B""-{t.+i}) is denoted by tj. Let hj correspond to tj.

    This proves Proposition I by mathematical induction.

( ca ) ( bo)

o
Z

hm7/

f
(:>

(c) ( et )

Fig.1 Anexampleofasetofnodes.
(a) Theshortestspanningtree.

(b) Aspanningtree;commonarcsdrawnthin,andnotcommon
   arcs drawn thick.

(c) The loop consisting of h.+i and the path in the shortest

   spanning tree which connects the ends of hm+i. The ends

   are drawn in black.

(d) The two parts of the spanning tree separated by rernoving

   hm+i, and a not icommon arc in the shortest spanning tree

   which connects the two parts.
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   The following theorem is obtained from Proposition 1.

   Theorem 1. Each arc of an arbitrary spanning tree corresponds to a not-

longer arc in the shortest spanning tree.

   Proof. Proposition 1 states that an arc xk in an arbitrary spanning tree

corresponds to bk in the path of the shortest spanning tree which connects the ends

of xk. Every arc in this path is not longer than xk, because if the path contains an

arc longer than xk, we can make the shortest spanning tree shorter by interchanging

the arc into xk. Therefore
       bkSXk for all ke･･･t･･･････････････････････t･-･-････････-･･･････････････････････････････････-(3)

and
       $tk==bk for xk=ci. ･･･････t･･･････････････････････t･････････････････････t･････････････････.(4)

    Where the length of a graph, the sum of the lengths of its arcs, is shown by a

tilde,

          .v .v n-1 .v -. jO -L. .be
       O<--X-B= me (x,-b,)=: £ (h,-tj). ････････････････････････････････････-･-･･･････････(5)

                k=1 j#1
    This means that the spanning tree is longer than the shortest by 2j (fij -ej), and

that in general a spanning tree with more common arcs is shorter.

2. Charactercizing arcs whieh ca" cerrespomd to each bk

    In all arcs (denoted by the arc set A), the above correspondence defines the arcs

which can correspond to each arc in the shortest spanning tree. The arc bk (which

corresponds to xk) is contained in the path of the shortest spanning tree which

connects the ends of xk. Therefore, in all spanning trees, only the arcs with the

same ends as the paths of the shortest spanning tree which contain bk can corre-

spond to bk.

    Such arcs are the ones which can join the two parts of the shortest spanning

tree separated by removing bk, The set of these arcs is denoted by A" (k)={ak,q}

for q =1, 2, ..., q (k) for each k, where (n-1)Sq (k) == ev (n- ev)Sn2/4 when one of the

two parts of the shortest spanning tree has cr nodes. The suffix q is defined as

       ak,,(-ak,,' for q<q', ･････････････････････････････････････････････････････-･････-････････(6)

accordingly

       ak,i=Sk forallk.
    An arc aEA is contained in every A" (k) for 1< of all bk of the path of the

shortest spanning tree which connects the ends of the arc a, and such a path exists

for each a. Therefore, if a=bk, the arc is contained in only one A" (k) set for k =

k. If the shortest spanning tree is a spanning path, the arc joining the ends of the

spanning path is contained in every A" (k) set.

    It is clear from the correspondence of arcs in Proposition 1 that the spanning

tree has an arc in every A" (k). The shortest spanning tree consists of the first

element in each A" (k).

    Providing tables of (fik,,-5k) for each k and ali q, the set consisting of an arc

in each A" (k) for ail k can be constructed in the order of the sum of the lengths of

the arcs. Every such set does not represent a spanning tree, but every spanning

tree can be represented by such a set. Thus, all spanning trees can be obtained,

ordered by Iength, and they contain all spanning paths in a similar order. The
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mettod of efficient construction of arc sets which represent spanning paths wili be

shown in Section 4.

3. Applicatiom to find the shertest tour

   A tour (through every nodes exactly once) becomes a spanning path when
removing an arc, thus the tour contains an arc in A" (k) for each k. At the same

time, since the set A* (k) consists of all arcs which can join the parts of the shortest

spanning tree separated by removing bk, thus at least two arcs in the tour are

contained in A* (k) for each k. The reason is that if it does not, the tour cannot

pass through all nodes (Bellmore and Nemhauser, 1968).

    The first element of A* (k) is contained in no other set, accordingly the tour

must have at Ieast one arc not shorter than the maximum of {ak,2}, where {ak,2}

consists of the second element of all the A" (k) ={ak,q} sets. Let ah2 denote the arc

with the maximum weight of {ak,2}. The longest arc in A* (k) of the tour is denoted

by ahp, then 2<--P<=q (k). All tours can be classified by akp. When the shortest

spanning path with the same ends as ahp is denoted by

    P (k, P)={x (P)k} and x(P)k EA" (k) for all k, the shortest tour denoted by D (h,

P) which has aigp is

       D (k, P)={a.,} U P (k, P),･･･････････-････････････････････････--･･････････････--･･･････-(7)

    The shortest of the tours D (fe, P) for all P is the shortest of G (V, A). Equation

(6), (7) and 2K-P give

          N a.       O$D (fe, P)-(a.,+B). ･････････････-･････････････t･･････････････････-･･･････-･･････････････(8)

    The graph of (B U{ai,2}) is similar in shape to the 1-tree given by Held and

Karp (1970).

    Lemma 1. If the graph of BU{ah2} is a tour, the tour is the shortest tour ofG

(V, A),

    Proof, SeeEquation(8).

    Lemma 1 qnifies the ways of proving the shortest tour of some special cases.

The graph for BU {ah2} can only be a tour in the case that the shortest spanning

tree is a spanning path. In this case the arc joining the ends of the spanning path

is contained in every A* (k) and is not shorter than ak,2 for ali k. If this arc is

contained in {ak,2}, the arc is ah2, because the second element of A" (k) which

contains the arc (j oining the ends of the spanning path) as the third or that following

is not longer than the arc. Thus the following is obtained :

    (i). The regular polygon on the Euclidean plane is the shortest tour for the set

of nodes of the polygon, because, in this case, the shortest spanning tree is a

spanning path, the arc jeoining its ends is an arc of the polygon and the arc is the

second element of A" (k) for every k.

    (ii). For a set of nodes at every Iattice crossing with the same length 1 on both

sides, every spanning path having ends at a distance 1 forms the shortest tour

together with the arc joining the ends. This is because the arc joining the ends can

be the second element of every A" (k) (see Figure 2).

    (iii). Figure 3 presents a shortest spanning tree and a circle with center Vi and

radius vi vi6. This shortest spanning tree is a spanning path and the arc vivi6 is
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Vi 6

l

(:>-mN=-

Vl

V2

Fig. 2 A shortest spanning

set of nodes given

lattice crossing.

path for a

at every

Fig. 3 A shortest spanning tree whjch js a

spanning path, and the circle with

center vi and radius vivi6･

the second element of A* (k) for k of bk=vi v2. Therefore the spanning path

constructs the shortest tour together with vi vi6.

4. Practicalteehniques
   From Eq. (7), and if
       o<--b (k, p)-b (k, p')=(ahp')+2, (x lv),-X lo'),), ･･e･･･････････････････-･'･････(9)

for all P, the tour D (le, P') is the shortest tour of G (V, A).

   The following is useful for obtaining P (k, P) and comparing tours D (fe, P).

4-1. Shape of the shortest spanning tree

    (i) Using the tables (ak,q-Bk) for each k and all q, every set of (n-1) arcs

chosen from each A" (k) over all k can be constructed in the order of the length.

But every such set does not represent a spanning path. The shape (the degree of

each node) of the shortest spanning tree is applied to efficient construction of sets

representing spanning paths.

?

-ts-.

N -N{#i(

x

i--mn<:)

Fig.4 A shotest spanning tree, a temporary node drawn in

black, and new arcs.
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   Constructing P (fe, P) is equivalent to changing the shortest spanning tree into

P (k, P) by interchanging some bk into ak,,. The arcs bk to be interchanged are

defined by the shape of the shortest spanning tree. The degree of nodes in the

shortest spanning tree can be assumed to be three or fewer without eliminating the

generality, because the shortest spanning tree can be reduced to one having nodes

with three or fewer degrees by placing a few temporary nodes near each node with

four or more degrees (see Fig. 4).

   For the shortest spanning tree of this type, it is necessary to change the shortest

spanning tree into a spanning path by disconnecting at least one arc from each node

with three degrees and adding at least one arc to each node with one degree except

the two end nodes of the spanning path. This severely restricts the interchanges of

bk and ak,q that are needecl to change B into P, and this restriction makes it simple

to find P.

   When the number of nodes with one degree of the shortest spanning tree is

denoted by P,

       2$P$(n+2)/2.
   The number of nodes with three degrees is rs -2. An interchange of bk with ak,q

subtracts one degree from each of two nodes and adds one degree to each of two

other, so the number of interchanges of arcs is not smaller than (6-2)/2. This

number gives the maximum number of common arcs of the shortest spanning tree

and a tour. This maximum number is not larger than (n-P/2).

   Generally, P is obtained quicker when 6 is smaller. This means that the

shortest tour is found quicker when it has more arcs in common with the shortest

spanning tree. In some special cases of P =2, the shortest tour can be geometrically

obtained as shown above. An experimental example will be shown later.

   (ii) ThecomparisoninEq. (9)startswithD(2)andD(3),thesmallerofthetwo
is compared with D(4), and so on. If both parts of the shortest spanning tree

separated by removing bk= ahi contain two or more nodes, and if ah2 has a

common node with ahi, the comparison can be started with a larger P.

  This is because when both parts contain two or more nodes, the tour must have

two arcs with no common nodes which join the twe parts (Bellmore and Nemhauser,

I968).

4-2. Equation(9)
   The first term of the right hand side in Eq. (9) is not negative and increases

according to P. Therefore, there is P' so every P)P' satisfies Eq. (9). Such that

P is not so much larger than the starting P of the comparison in Eq. (9), because ahp

increases and 2k R (P) k decreases step by step.

  4-3. Experimentalexample
   The above-mentioned techniques were applied to an experimental example
shown in Fig. <4), which has 12 nodes including five extreme nodes. The longest arc

of {ak,2} is aio,2, the shortest arc in A" (10) which has no common node with bio is

aio,4, and aio,2 and aio,3 cross each other.
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   The starting P was 4, the seventh of the {x(4)k} sets was the first set represent-

ing a spanning path, P' was 6, and this spanning path constructs the shortest tour

together with ahp = aio,4. The shortest tour is represented by

   alo,4 and (al,1, a2,b a3,1, a4,1, as,2, a6,l, a7,2, a8,2, a9,1, alO,b all,2)･

   This shortest tour is obtained by interchanging only four bk into the second

element of the respective A" (k) sets. In this example, there is no path with the

same ends as aio,s which is shorter than D (10, 4), and

            4. fu       ah6+BID (10, 4) for all p l 6.

   Then q (le) = q (10) is 2 (12-2) =: 20. The weight of the arcs is in Table 1.

J
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Fig.5 An experimental example. The shortest spanning tree

consists of thick lines and broken lines. The spanning

path D (10, 4) is the thick and thin lines, the wave line is

ahp. Arrows show the interchanges of bk with ak,q.
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