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                                 Abstmaet

   A simple and effective method is developed in this paper for free vibration analysis

of shells of revolution with either internal or external fluids. The fluid region is treated

analytically by the utilizing the eigenfunction expansions, and the collocation method

using the roots of the orthogonal polynominal as collocation points 'is used to solve the

integro-differential equations which govern the motion of the shell. The proposed

approach is formulated in some detail. The versatility and accuracy are illustrated

through several numerical examples. The method appears to be relatively easy to for-

mulate and gives satisfactory results.

                              1. gRtroduction

   The determination of the dynamic characteristics of shells of revolution in contact

with fluid is probably the first itern of interest in the dynamic analysis. Although

extensive work has been directed towards the study of free vibration characteristics of

circular cylindirical shells, little work has been done on the free vibration analysis of

general shells of revolution.

   Although the free vibration problems of shells of revolution, especially for cylindri-

cal shells, have been solved using various numerical methods, no attempt has been

made to date to analyze these problems by the collocation method. This method has

been modified and improved over the recent years, and successfully used in chemical

engineering.') The reason for employing the method in this paper lies firstly, in the

simplicity of the theory and the brevity of the associated computer code. In addition,

the method yields very good results even with a reasonably small number of collocation

points, if the roots of the orthogonal polynomial are used as collocation points.2)

   In this paper, the fluid motion is treated analytically by the use of eigenfunction

expansions, and the equations of motion of the shells are reduced to the integro-

differential equations in terms of the displacements of the shell. The resulting equa-

tions are then solved by using the collocation method. The objectives of this paper:

(1) To present a simple and effective solution procedure, based on the collocation

method, for the vibration problem of shells of revolution with either internal or exter-

nal fluids; and (2) to demonstrate the high accuracy of the method through several

numerical examples.
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                    2. Shell-Fluid System and Coordinate

   Fig,1 shows two typical shells investigated: (1) the fluid is contained within the

shell (this type will be referred to herein as an internal problem), such as in the case

of storage tanks; and (2) when the shell is submerged in fluid (this type will be refer-

red to herein as an external problem), such as in the case of offshore structures. The

shell is of uniform thickness h, and height L, made of homogeneous, isotropic material

with elasticity modulus E, Poisson's ratio v and mass density ps. The shell is in con-

tact with the fiuid of mass density IQf, to a height H and consists of the dry and wet

portlons.

    (a) rnternal problem (b) External problern
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                   Ng. 1 Shells investigated and coordinate system

   The Iocations of points in the shell are given by the orthogonal coordinates (x, e,

f), where x is the distance measured from an arbitrary origin along meridian, 0 is the

circumferential angle, and f is the normal, outward distance from the reference sur-

face. The shape of the shell is determined by specifying the two principal radii of

curvatures Ri, R2. The locations of points in the fiuid are specified by the cylindrical

coordinates (r, 6, z), where 2 is the distance rneasured from the still-fluid level, and

coincideswiththeaxisofsymmetry,andristhedistancefromthezaxis. '

                    3. Equations Goveriting Fl"id Motion

   The fluid is assumed to be incompressible and inviscid and the fluid motion

irrotational so that the flow can be described by a velocity potential, tp, which satisfies

the following Laplace equation:

                      a2op                                   1 a2fp                                           02op                           1 aep                      ar2+7ae+r2ae2+az2==O . (1)
   The shell-fluid boundary conditions for the velocity potential are as follows:

                      oo                                 aco                       az z.,H=O' at ...o=:O, Olr-co=O (2)
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                            otp aw                            an r-R= ot r.R (3)
where n is the outward normal to the surface of the shell, W is the normal displace-

ment of the shell, which will appear in the next section, and R is the radius at any

levei. The third expression of Eq.(2) is applicable only to the external problem. The

hydrodynamic pressure, P, acting on the surface of the shell can be determined from

the linearized Bernoulii equation and is given by

                                     ao                                                                       (4)                              P=-tQf
                                      ot

                    4. EquatioRs Goverming Shell Motion

   The analytical formulation is based on an improved shell theory with the effects of

transverse shear deformation and rotary inertia. This results in the same equations as

those given in Ref.(3), except for the term representing the hydrodynamic pressure due

to the fluid. Therefore, the material presented in this section will be discussed briefiy.

   The generalized displacement field consists of the displacement componets (CL V;

W) in the (x, 0, f) directions and the rotation components (xELx, /8b). All dependent

variables are expanded in Fourier series in the circumferential variable 0. Assuming

that the shell-fluid system is undergoing free vibration with a frequency bl, then the

displacements, the velocity potential ¢ and the hydrodynamic pressure P are described

as

             (Ci] V W)=illli Z. (u cos na vsin na wcos no)eitot (s)

                  (/(9x, ,(3e) :grh :lil(/6-lxcos na ,(-9esin ne)eiWt (6)

              ¢= iblEfiii3 ll] di cos noe`to', p =:iQfbl2 11Yi :. p cos noe`tut (7)

where i=A, a is a reference length, if is a reference stress, and n is the number of

circumferential waves.

ftlydrodynamic pressure

   An eigenvalue problem such as described by Eqs.(1) and (2) is a Sturm-Liouville

problem. Using the method of separation of variables, the solution di can be expressed

as

                              co                         diini= M.,AtLi(A!p)i(op) (8. a)
and

                             co                         diex=:AiKh(Aip).f}(ij) (8. b)
                             irm-1
where p=r/a, op==2/H(OE{;opsgl), Ai are unknown coefficients to be determined from

the boundary condition (Eq.(3)) at the shell-fluid interface, the subscripts in and ex

hold for the internal and external problems, respectively, and lh(aip) and Kh(Aip) are

the modified Bessel functions of the order n of the first and second kind, respectively.

In Eq.(8) the eigenvalues, Ai, and corresponding eigenfunctions, .E･, are given by
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                    A,-- (2i-2i)rrS .ri･(ty) =sin(ti-{l[ty) (g)

   Substituting Eq.(8) and the third expression of Eq.(5) into Eq.(3) gives

                             co                             :Aigi(ij)=w (10)
                             i--1
For the internal problem, gi(n) in the above equation becomes

              gi(op)rr(-fLi(1ip)+1iLz-i(Aip))sin(Ai-{illrp)n.

                                                                   (11. a)
                    +A,ih(A,p)cos(xi-llSop)nfl

and for the external problem, gi(op) is

             gi(ij)=(--ll'Kh(Aip)+AiKi-i(Aip)]sin(Ai-lilln)nr

                                                                   (11. b)
                    +AiKh(Aip)cos(Aih7op)nk

where nr, nk are the direction cosines of the outward normal n to the surface, and nr,

n2, and p are functions that depend on the variable ty.

   The orthogonality properties of the eigenfunctions i with respect to op can now be

utilized to determine the unknown coefficients Ai. Both sides of Eq.(10) are multiplied

by fi(atop) for l=1, 2, ･･･ in turn and integrated with respect to op over (O, 1):

               tW.,A,ygig,(op)i(op)dop=rdiwf(op)dop (i=i, 2,･･･) (i2)

which is an infinite linear system of algebraic equation. In the matrix form it becomes

                            [GF]{A}-{WF} (13)
with

             GF(4 i) =.(1'gi(rp).f}(op)dop=.C'gi(n)sin(At-{lty)dop (i4. a)

and

                a(F(i) == ,(;'wf(ij)dop=yC'w sin(Agop) dop a4. b)

where l, i--1, 2,･･･, oo.

   In the case of a cylindrical shell, the integral in expression (14. a) can be evaluat-

ed exactly, and the resulting matrix [GF] is a diagonal matrix. In the case of other

shells, the integral should be evaluated numerically, choosing an appropriate quadrature

rule, and the matrix [GF] is a full matrix. Eq.(13) can not, in general, be solved.

An approximate solution is obtained by truncating the series appearing in Eq.(8) to a

finite number of terms, I, and by solving the resulting linear system of l equations

with I unknowns.

   Since the matrix [GF] possesses an inverse, the solution for the unknowns {A} can

be obtained from the matrix multiplication of[GF]-i{MZF}. Once the potential is

known, the hydrodynamic pressure acting on the surface of the shell can be evaluated

by using the second expression in Eq.(7),

Dbn'vation of fandamental set of equations of shell

   Considering the hydrodynamic pressure exerted on the surface of the shell, the gov-
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erning equations are described by a system of integro-differential equations for har-

monic amplitudes of the displacement variables. These equations can be written in

matrix form:

                [C]{X"}+[D]{X'}+[E]{X}==fl2([F]{X}+{P}) (15)
where the primes indicate differentiation with respect to a nondimensional meridional

variabie s, which takes values O to 1, and [G], [D], [E], and [F] are the 5×5
matrices whose elements have been given in Ref.(5). In Eq,(15), a frequency para-

meter st2 is defined as

                          R2=p,(1-v2)a2bl2!E (16)
and {X} and {P} are the displacement and hydrodynamic pressure vectors given by

               {X}T=(u, v, zv, x3., K3e), {P}T=(O, O, Pw, O, O) (17)
where Pw is identical to an expression of added mass of shell-fluid system, and using

Eq.(8) it can be written as

                  pw=-Lf3g,--Z-ipin for internal problems (ls. a)

and

                  Pw=--i f,-fdiex for internal problems (18. b)

The evaluation of the potential appearing in Eq.(18) involves the integral in expression

(14. b), therefore, Eq.(15) is the so-called integro-differential equations which govern

the motion of shell.

   The stress resultants that appear in the statement of the boundary conditions are

M, IV}e, (2x, ua and uae. As before, these resultants for each Fourier harmonic are

taken as

          (M,Me,(2x)=on2:[nxcosnanxesinnaqxcosne]eitu` (lg.a)
                          n
               (ua, M]te) =on2Z[mx cos na mxe sin nO]eitut (19. b)
                             n
The Fourier coeflicients in Eq.(19) can be expressed in terms of the displacements,

i. e.,

                         {T}T-[G]{Xt}+[H]{X} (20)
where [G] and [H] are the 5×5 coeMcient matrices whose elements can be found in
Ref. 5), and {T} is the stress resultant vector given by

                       {T}T=(nx, nxe, (zx, mx, mxe) (21)
Finally, the boundary conditions at each edge of the shell are specified as a set of five

conditions, one from each of the following five pairs:

               (u, nx), (za nxe), (w, qx), (Px, mx), (rse, mxe) (22)

                           5. Method of Solution

   For the present study the shell is assumed to consist of dry and wet portions. As

shown in Fig.2, the dry and wet portions are divided into A12i and Allv elements, respec-

tively;i. e., the total number of elements is N= IVIi+IVla. A local nondimensional in-

dependent variable is denoted by g, where e takes the values O to 1 in each element.

Denote the point along the meridional coordinate by i, where i varies from O to AL Of

these points, the points from 1 to N-l are identified at the common boundaries of
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Fig. 2 Division of shell into AI elernents and location of discrete points in an element

different elements, and these points will be called "dividing points". The remaining

points O and N of the ends of the shell will be called "boundary points ". Let us con-

struct a set of AJlo+1 points O=th<si<･･･<sN. =1 in the range (O, 1) of the wet part of

the sheli, so that the location of these points coincides with that of the dividing points.

   The proposed method is to approximate a derivative and an integral as a linear

sum of the displacement values at discrete points so that the integro-differential equa-

tions can be reduced to a set of algebraic equations. To this end, over each element

we place a set of M+2 discrete points in Fig.2 which are composed of the end-points

4=:O, 4M+i=1 and the interior collocation points gj(j =1--M), such that O=4o<4i<

･･- <tijha+i==1. In this paper, the interior collocation points are selected to be zeros of

the Mth shifted Legendre polynomial`) PM(g) since these zeros are distributed near two

end-points and are therefore optimal for the boundary value problems.

   The displacement functions for the leth element are interpolated by

                           M+2                      XS･h)=:M(g)X)k,,) (i==1, 5) (23)
                            i=1
where the notation ( )(k) will designate quantities associated with the kth elernent, Xl

th- X5 correspond to u, v, w, 6x, Be, respectively, Al}(8) are the (M+2)th interpolation

functions, and .X[)･,i are the values of the displacements L･ at the ith discrete points.

   Before describing the details of the proposed method, the following comments seem

to be in order:

(1) To clecrease the computational effort required, the fo!lowing two matrices [A] and

[B] are used to approximate the first and second derivatives that appear in Eqs.(15)

and (20):

               {XS･h)'}=[A]{XS･k}}, {XS･k}"}=[B]{XS･h)} (i=1--/5) (24)
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where [A] and [B] are the (M+2)×(M+2) matrices and are obtained by
differentiation of the interpolation function, and the displacement vector {XS･h)}, etc. are

{xS.k)}T=(xS･k)(,gb), XS･h)(es), ･･･, XS･h)(ehr.i)), etc.

(2) The complete set of displacement vector {XS･)} is partitioned into two groups {XS･,)c}

and {XS･,I}, and the first one is associated with the interior collocation points while the

second one is associated with the end-points; thus

             {XS･pt}T= (xS･h)(,lji), XS･h)(gl,), -･･, XS･h)(,ijha))

                                                 (i=lnv5) (25)
             {XS･e,'}T = ( cS･k'(eb), XS･h'(,},.i))

Henceforth, the subscripts c and e appearing in Eq.(25) are used to designate quantities

associated with the interior collocation points and end-points, respectively.

(3) The integral involved in the evaluation of Eq.(14. b) is carried out by an appropri-

ate numerical integration rule.6) Let us recall that we select the interior collocation

points as the zeros of the shifted Legendre polynomial. It is natural, therefore, to

choose the Gauss-Legendre quadrature formula, with this set of points as the sampling

points. Before the application of the quadrature formula, the integral variable op is

related to the local meridional coordinate 4 of each element in the wet portion by the

          ,following equations:

                            d)7 == Lw sin g)cls (26. a)
                     s`"(4)=si-i+Ase, (i=1--AILv) (26. b)
                              ty=th(s) (26. c)
where zss=si-si-i, Lw is the meridional Iength of the wet part of the shell, q is the

meridional angle, and Eq.(26. c) represents the one-to-one relationship between the

coo'rdinates ty and s.

   With the aid of Eq.(26), the integral in Eq.(14. b) is approximated by

                   .lg"izvsjn(A,#n)d)2=:1.W,[y(j)]{wsNd+i)} (27)

where {wt"d"}} is the vector composed of the normal displacements at the interior collo-

cation points (i. e., the sampling points), and {YS')} is the 1XM row matrix whose

elements are defined as

               ysi} (7') == tlii' As Fa} sin[A,g th (s(i)(,ti)))]sin ep f,(i)(e,) (2s)

where the subscript l represents the number of terms in the series expansion of the

velocity potential and l)va are the weights in the interval (O, 1).

   From Eq.(23), the number of unknowns per element is 5(M+2). That is, the total

number of unknowns for the shell having IV elements is 5(M+2)NL The application of

the present method to Eq.(15) yields 5MA[ linear algebraic equations. In addition to

this, there are 10 boundary coRditions at the boundary points and 10(N-1) continuity

conditions of the displacements and stress resultants at the dividing points. Since

5MN +10+10(N -1) ==5(M +2)N we have the same number of equations as unknowns.

These equations will be explained further in the following subsections.

5MN equations

   By using Eq.(24) to approximate the derivatives and by using Eq.(27) to compute

the integral, Eq.(15) for the hth element leads to 5M linear equations. After dividing
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all of the unknowns into two groups as discussed previously, these equations can be

expressed in the matrix form as

                                           Nw           [a,]{6Lk'}+[crLk'6Lh']==fl2([MSSk']{6Sh'}+Z[MF`j']{wL"d"'}) (29)
                                           J'--1
where k==1,･･･, AL For the element in the dry portion, the second term on the right

hand-side of Eq.(29) vanishes. [aSlt)] and[a{ek)] are the 5MX5M and 5MxlO
matrices, which depend on the elements of [A], [B] (given by Eq.(24)) and [C], [D],

[E] (appearing in Eq.(15)). [MSSh'] is the 5MX5M matrix, which is dependent only

on the elements of [F] in Eq.(15). Moreover, by making use of the expression Eq.(25)

of the displacement vector, the vectors {6(ch)} and {diLh)} are as follows:

                                                  -               {(s"Lk'}T== ({uSk'}', {vSh'}', {w{.h'}', {x-3.`k,'}', {PSh.)}T)
               {cSSh'}T= ({uLk'}r, {vLk'}r, {wLh'}', {,(-3 (.h,'}', {x-il(,Z)}T) (30)

In Eq.(29), [MF{')] is the M×M matrix computed as

                                  co                          [MF(J')]=:[FY')][GY')] (31)
                                 t==1
where [FY')] is the M ×1 column matrix whose elements are defind as

         FSj)(7')=lh(A4)le,)sin[li-t711bfi(s")(e}･))]forinternalproblem (32.a)

        FS"(i)==Kh(Atple,)sin[Ai{l[lbp(s`"(4･))]forexternalproblem (32.b)

and using the inverse of the matrix [GF] in Eq.(13), the matrix [GY"] can be written

in the following form:

                          IGSJ')]=:i[GF]ri[YY(j}] (33)
where the matrix [YY(')] can be obtained by using the matrix [YS")] in Eq.(27) as fol-

                                     [ysj)]

                                     [Y8')]
                           [YY{j')]== .                                                                      (34)
                                       :
                                     [Y9')]

   Eq.(29) can be determined for each element separately, and for the overall shell,

these equations yield a system of 5MN algebraic equations and can be expressed in the

matrix form as

                  [a.]{(Sb}+[a,]{(Sle}=n2([M&]+[Ma]){(Sb} (35)
where [crc], [ae] and [M&] are the global matrices with submatrices only on the diago-

nal position; i. e.,

                 [ai]="[cvi･"], [cyS･2'],･･･,[tyS･"']ll, (i--c, e) (36. a)

                  [M&] == r[MSSi)], [MSS2)], ･･･, [MSSN>]J (36. b)
and {(Sb} and {of} are the global vectors denoted by

                 {di.}T=({6S.i}}T, {61.2)}r, ･･･,{(sl･N)}r), (i=c, e) (37)

In Eq.(35),[MSb] and [Ma] are the structural mass matrix and the added mass

matrix, respectively. [MjF}] is obtained by adding the submatrix [MF(c"')] (Eq.(29))

into the appropriate positions related to the normal displacement vectors {wSNd")}(7'm-I

A- IVIv) in the global vector {of}.

10 and 10(N-1) equations
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    From any given set of boundary conditions at the boundary points O and N, we

have 10 equation. Using Eqs.(20), (22) and (24), and repeating the similar procedure

which is used to obtain Eq.(29), these equations can be written as

                         [rgo']{6Y']+[rUe']{62i']=O
                                                                         (38)
                         [rgy"]{6S"']+!rL",B]{6gr']==O

where the subscripts i(=O, IV) following a comma represent the boundary points, [rLle)]

and [r(.",R] are the 5×5M matrices, and [r21o)] and [rScr"] are the 5×5 matrices.

    The remaining 10(IV -1) equations are obtained from the compatibility ancl equilib-

rium conditions at the dividing points. These conditions can be expressed as

               {X{')}i={X(i")}o, {T(i>}i={T{`"'}o, (i--1'N'IV-1) (39)
where {X} and {T}==the displacement and stress resultant vectors given by Eqs.(I7. a)

and (21), respectively, and the subscripts O and 1 which appear outside the braces,

refer to the values at 4=O and 4=1, respectively. Utilizing Eqs.(20) and (24) for Eq.

(39), we obtain an expression similar to Eq. (38) as follows:

       [rXl･]{6Si'}+[rLl'l･]{6S`'}+[rSi;･"]{cSSi'i'}+[rLl'Vi']{(SL"i'}=O(i=1--N-1) (4O)

where the subscript i refers to the dividing points, and [r`c,)i] ancl [rSM are the 10×5M

and 10×10 matrices, respectively.
    Eqs.(38) and (40) can be combined into a single matrix equation of the form

                            [rb]{(St}+[7le]{6le}-{0} (41)
where [7ld] and [ile] are the 101V ×5MIV and 10N ×10N matrices, respectively.

Eigenvaime Problem

    When Eq.(41) is solved for {(Sb} and the result is substituted into Eq.(35), we

obtain

                ([evc]L[ae][7'le]rmi[rb]){(5b}==st2(IM&]+[ME,]){of} (42)

Eq.(42) represents the generalized eigenvalue probiem, and is the condensed form that

contains only the unknowns associated with the interior collocation points. The solu-

tion of Eq.(42) yields the estimate for the 5MN eigenvalues and the corresponding

elgenvectors.

                            6. Numerical Examples

    In order to test the validity of the present method, three types of shells are em-

ployed as illustrative examples; i. e., (I) a cylindrical shell, (2) a spherical shell, and

(3) a hyperboloidal shell. Based on the past work5) of the author, the dry portion of

the shell was modelled by one eiement and the number of collocation points was taken

as M=11. In all the computations, unless otherwise stated, the following shell and

fiuid properties were used: E =206GPa, ps=7.84xl03kg/m3, tv=103kg/m3, and v=O.3.

Also in ail the following tables and figures,m denotes the number of half waves in the

meridional direction, n the number of circumferential waves. The numerical computa-

tions were carried out a HITAC M682H computer.

Cylindrical shelts

    For a fixed M, the convergence of the proposed method depends on the number of

elements in the wet portion of the shell Alle, as well as, the ninmber of terms I in the
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series expansion of the velocity potential. To examine the convergence characteristics

of the method, two shells which are clampecl at the base and free at the top, were

considered. For convenience these are referred to as fol!ows: (a) shell(A), its dimen-

sions are L=H=21.96m, a=7.32m, and h=1,09cm and (b) shell(B), its dimensions

are L=H=12.2m, a=18.3m, and h=2.54cm. calculations were performed by using
Allo =1 and IVin=2, and using various terms (i. e., I=18, 10, and 12).

   For the external problem, the frequencies for the first three modes are presented in

Table 1 for nml and n=5. The convergence of the solutions is reasonable even with

AJle=1, and is insensitive to choices of L The convergence characteristics of the inter-

nal problem are the same as those of the external problem, although they are not

shown here.

   In order to check the accuracy of the frequencies obtained, some comparative

studies were performed by using Ailo=1 and l=12. Firstly comparisons were made

with finite element solutions(FEM) of Ref. 7), for the internal problem of sheli (A)

mentioned previously. The results for various modes are given in Table 2 together

with those of Ref. 7). There are no appreciable differences between both the results.

A second set of comparisons was made with the Rayleigh-Ritz and matrix progression

solutions of Ref. 8), for the external problem. The shell considered was: L=80 m, a=

40 m, H:=64 m, and h=O.4 m. The present solutions are in good agreement with those

of Ref. 8), as summarized in Table 3.

    Table 1 Convergence ot natural frequencies (Hz) of cylindrical shells (external problem)

    (.a) shell (A)

Nw=1 IVw=:2
l n

m=1 m=2 m:=3 m=1 m=2 m:=3

8le12 111 5,96

5.95

5.95

17.56

17,54

17.54

26.30

26.25

26.25

5.96

5.95

5.95

17,55

17.53

17.53

26.20

26.26

26.25

8io12 555 1.25

1.24

1.24

3.76

3.74

3.74

8.85

8.80

8.79

1.25

1.24

1.24

3.76

3.74

3.73

8.80

8.78

8,78

(b) shell (B)

Ar.==1 Nw=2
I n

m=1 m:=:2 m==3 m=1 m=2 m=3
81012 111 7.18

Zl7

7.17

11.99

11.98

11.98

15,59

15.58

15,58

7.18

7.18

7.18

11.99

11,99

11.98

15,60

15.59

15.59

81012 555 2.74

2.74

2.74

8.47

8.46

8.45

13.21

13,20

13.20

2.74

･2.74

2.74

8.48

8.47

8.46

13.21

13,20

13,20
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Table 2 Natural frequencies (Hz) of a cylindrical shell (internal problem)

n
Method m

1 2 3 4 5 6

Present(IVw=

Present(Nw=

FEM

1)

2)

111 3,548

3.545

3,559

1,638

1.636

1,650

O.934

O.933

O.950

O.632

O.632

O.650

O,531

O.531

O.550

O.584

O.584

O.600

Present(Nto==

Present(iVw=

FEM

1)2) 222 10.338

10.334

10.45e

6.550

6.579

6,660

4.401

4.429

4.520

3.162

3.188

3.280

2.397

2,421

2.520

1,923

1.944

2.050

FEM: Finite element method

   Table 3 Natural frequencies (Hz) of a cylindrical shell (external problem)

n
Method m

o 1 2 3

Present(N.=1).

Present(Nw==2)

11 6.633

6.634

3.596

3.595

1.902

1.902

1,173

L173

Present(Nw==1)

Present(Nw==2)

MPM
RRM

2222 9,662

9.996

7.865

7.872

5,614

5,624

3,935

3,942

3.900

4.100

      MPM: Matrix progression method
      RRM: Rayleigh-Ritz method

demlsc}herical shells

   When closed shells of revolution are encountered, the equations of motion of the

shell become singular at the pole. Therefore, the conventionai analysis using FEM")

and FDMiO> (finite difference method) requires speciai treatments, such as the use of a

cap element and the use of a small hole with a free edge condition. The present

method does not require these treatments, and the necessary conditions are imposed to

ensure the existence of a finite solution at the pole.

   A fixed hemisphericai shell was considered. Its geomertric properties were: h/a

(thickness-to-radius ratio)=O.Ol, and H/a (fluid height-to-radius ratio)=O.5. The num-

ber of elements (AILv) in the wet portion was taken to be 2.

   For the internal and external problems, the convergence of the solutions is illus-

trated in Table 4 by computing the natural frequencies using various terms (i. e., I =8,

10, and 12) in the series expansion of the velocity potential. The results are expressed

in terms of dimensionless frequency st (Eq.(16)). From this tabie, we can see that the

convergence of the s.olution is insensitive to choices of L The convergence of the

external problem is the same as that of the internal problem, although they are not

shown here.

   For the internal and external problems, Table 5 presents the fundamental natural

frequencies, n, for the range of n from 1 to 5. In the table comparisons are made with

the RRM results obtained using the first five modes in air. Generally, the two methods
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      Table 4 Convergence of natural frequencies (fl)

(a) Internal problem

of a hemispherical shell

I n m=1 m=:2 m=3 m=:4 m:=5

81012 111 O.366

O.365

O.365

O.633

O.632

e.632

O.732

O.731

O.731

0896

O.895

O.895

O.939

O.938

O.937

81012 555 O.596

O.596

O.596

O.750

O.759

O.748

O.946

O.945

O,944

O.985

O.983

O.983

1.048

1.047

1,047

(b) External problem

I n m=1 m=2 m==3 m=4 m=5
81012 111 O.438

O,438

O.438

e.663

e.663

O.663

O,763

O.763

O.763

e.898

O,898

e.898

O.942

O.942

O.942

81012 555 O,643

O.643

O.643

O.779

O.779

O.779

O.947

O.947

O.947

O.988

O.988

O.988

1.e53

1.e53

1,053

Table 5 Comparison of fundamental frequencies (fl) of a hemipherical shell

Internalproblem Externalproblem
n

Present RRM Present RRM
1 O.365 O.367 O.438 O.439

2 O.484 O.494 O.576 O.584

3 O.535 e.546 O.609 O.619

4 O.569 O.575 O.628 O.633

5 O.596 O.599 O.643 O.646

       RRM: Ray}eigh-Ritz method

give similar results. The mode shapes and associated hydrodynamic pressure distribu-

tions are shown in Fig,3,

HL)tPerboloicial shells

    As shown in Fig.4, the five hyperboloidal shells with different throat radii, Rt,

were considered. In the extreme case where Rt/a=1, the shell becomes a cylindrical

one. The Poisson's ratio of the material was assumed to be O.15. Calculations were

carried out using AILv=2 and I=12.

    For the internal and external problems, the fundamental natural frequencies, n, are

given in Table 6 for shells having H/a of 2 and 2.5. Also included in the table are the

results obtained for the shell without fiuid, As expected, the frequency of the hyper-

boloidal shell approaches that of the cylindrical shell as the value of Rt/a increases.

Owing to the added mass of the fluid, the frequencies for the shell with fluid are lower
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than the corresponding ones for the shell without fluid It can be seen that the fre-

quencies of the shell with H/a=2.5 are lower than those of the same shell with H/a :

2.0, This is the obvious result since the added mass of the fluid increases with H/a,

which the structure stiffness properties remain unchanged.

   To illustrate the frequency characteristics of the internal and exterfial problems,

the relationship between the fundamental frequency st and the circumferential wave

number n are presented in Fig. 5, for shells having Rt/a of O,5 and O.8 and the same ll/

a of 2.5. Some points are worthy of note in these results. First, for the cases consid-

ered the minimum frequency occurs when n==4. Furthermore, we can see that when

n=O and 1, the frequencies of the external problem are Iarger than the corresponding

ones of the internal problem. It should be pointed out, however, that for higher values

of n (say n})2), the frequencies of both internal and external problems are nearly

equal.

Tabie 6 Variation of fundamental

       with Rt/a ratio (n=1)

frequencies (fl) of hyperboloidal shells

Internalproble Externalproblem
Rtla

H/a:2llla==2.5 Hla=2H/a:=:2.5

Shellwithout

fluid

O.50

O.65

O.80

O.95

1.00

o.o7so.e6s
O.069O.055
O.061O.047
O.053O,041
O.051O,038

O.090O,070
O.079O.065
O.070O.053
O.061O.046
O.058O.044

O.2860

O,2711

O.2532

O,2327

O.2255

O,20

or

  O.16
s
:
$ O.12
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                          7. ConcludiRg Rerrtarkg

   A reliable and computationally effective method is presented in this paper for the

free vibration analysis of shells of revolution with either internal or external fiuids. A

Iinear potential fiow theory is used, and an improved shell theory including the effects

of transverse shear and rotary inertia is used to describe the motion of shell. The fluid

motion is treated analytically using eigenfunction expansions, and the collocation

method using the Gaussian points as collocation points is used to solve the integro-

differential equations which govern the shell motion

   Numerical results are presented for three types of shells of revolution. These

examples show that the method yields relatively high accuracy even with a resonably

small number of collocation points. Therefore, the proposed method is usefulnot only

for a better understanding of the vibration characteristics of the shell but is also avail-

able for a check on other numerical methods such as FEM and BEM.
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