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                [Theory axtd AptaRysis of gncowapAete

                          Cogxiposite P]ates

                                            '

                               Koichi SATo
                           (Received August 28, 1991)

                                 Abstract

   This paper offers a set of partial differential equations designed to enable static

analysis of incomplete composite plates with regard to the thickness of a steel plate.

The paper also analyzes the relationship of lateral deflections among complete compos-

ite plates, incomplete composite plates, and individual plates which do not interact with

regard to simply supported rectangular composite plates. 6 :O signifies complete com-

posite plates. O<B<1 signifies incomplete composite plates. P=1 signifies individual

plates which do not interact. The paper also submits a diagram that represents the

essential features of the lateral deflection characteristics of simply supported rectangu-

Iar incomplete composite plates that will be found suitable for most design purposes.

Lateral deflections can be derived by the use of the diagram without too much diffi-

culty. The present method can also be applied to the finding of lateral deflections of

continuous incomplete composite plates and other types of load.

                           1. INTRODUCTION

   In recent yea'rs bridge-slab technology has increasingly come to use hybrid struc-

tures cornposed df such different materials as concrete slabs and steel plates. A con-

crete composite steeldeck Plate (called here a "composite plate") consists of a concrete

slab reinforced on its underside by a relatively thin flat steel plate (Fig. 1). Although

a composite plate offers the combined advantages of both concrete and steel, we cannot

usually rely on a naturai bond between such materials. Headed stud connectors, which

are welded to the steel plate and cast in the concrete, are therefore used to make the

whole act as a composite plate (Fig.2). Headed stud cOnnectors, however, are

deformed by a horizontai shear. Complete interaction is therefore impossible. If the

parts of plates composed of two materials are not interconnected, each material acts

separately, while an tactual cotnposite plat'e is intermediate between a complete compos-

ite plate and individual plates which do not interact. The same is true of an actual

composite girder; i. e., a coMposite plate acts basically in a manner similar to a com-

posite girtier. A theory of incomplete composite plates seems to be given on p.564 of

Ref,1, rn that paper, however, it appears that the thickness ef the steel plate is small

cempared with that of concrete slab, and is of a negligible erder of magnitude. But, if

the steel plates ar.e thick, we cannot neglect a ¢onsideration of their thickness, The

Department of Civil Engineering, Faculty of Engineering, Hokkaido University



2 Koichi SATO

'

b ,,i
      !/
     l! Z
    !1
   11
  //
 !/
!/

foptuqmmpop::'=muopmaim

    P
  .P
.cS

of,i5)

x

  11
 !1
IZ

y
  stee[ plate

Mg. 1 Concrete cemposite steeldeck plate
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    Fig. 2 Composite plate

theory offered in the present paper can be applied to the formulation of a system of

equations which govern the elastic bending of incomplete composite plates consisting of

two layers of isotropic materials. The main obiectives for this paper are as follows:

(1) To offer a set of partial differential equations designed to enable static analysis of

incomplete composite plates with regard to the thickness of a steel plate; (2) To show

that our theory of incomplete composite plates includes the theory of the incomplete

composite plates given on p.564 of Ref. 1; (3) To analyze the relationship of lateral

deflections among complete composite plates, incomplete composite plates, and individ-

ual plates; and (4) To submit' a diagram that represents the essential features of the

lateral deflection characteristics of incomplete composite plates that will be found suit-

able for most design purposes.
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              2. GENERAL CONCEPTS AND ASSUMPTIONS

   The plate theory of composite plates used in this paper is based on the small deflec-

tion theory, generally attributed to Kirchhoff and Love.

All loads considered in this paper are static. If the concrete part of the section is

transformed into an equivalent steel plate (Fig. 3), the sectional properties of compos-

ite plates can be estimated from

        Ac=h, As :t, A.=As+4C, ･
                             n
        s= h;t, s, :-iAlc}-s, ss "-KXAft;-s. ,

        ic= ¥i, is= i32, i.=i,+-lt;-+A.s,s,,

        Dv= Eglv,

           E6                    Ec                              Es        fi=: EE' EE=1-.z' E's=1ww.g ''"'''""m"""'"'''"'"'m"'"'""""'"'"""'(D

t

h

T

c
v

s

sM
c

mictcitesurface
concretestabof-L'pptiptdipanmv-e-

×
h

s,Smiddlesurface

m-ptHH-ml

midcitesurface

t

Notations are explained

deal with internal

should always be kept

 3. FUNDAMENTAL DIFFERENTgAL EQUATIONS OF A COMPOSITE PLATE

   Unless otherwise stated,

(1) are used throughout

the two variables,

   The governing
terms of lateral deflection,

3

        v2V2w.=

inwhich V2
is the two-dimensional

plete composite plate,

 u nit

length of steel plate
     Mg. 3 Cross section of composite plate

     in APPENDIX I. In the theory of plates it is customary to

 forces and moments per unit length of the middle surface, and it

   jn mind that all sectional properties are defined per unit length.

        the sectional properties of composite plates defined by Eq.

     this paper. And it should be remembered that interchanging

x and Y is valid.
        '
  differential equation of complete composite plates expressed in

       w. (Fjg. 4), of the middie surface is given by Ref.2 or Ref.

                                   '
 Bt ･･-･-･･･--･･････････････-･･-････････････-･-･-･-･-･-･-･･-･-･-･-------･･(2)

   a2        02= Ox2 + oy2 ''"'H''''''''''H''''''''''''''''h'''''''''''"'''''''''"''"'""H'''(3)

    Laplacian operator, Dv represents flexural rigidity of the com-

   and p, means the live load intensity. The bending moment, Mvx
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(Fig.5), which acts on the middle surface of complete composite plate in the x direc-

tion, is given by the following formula expressed in terms of lateral deflection, wv:

         M..= -D.( ao2Wx,v +v aa2Wy,v ) ･･-･-･･････････-･-･-･･--･･････--･-･-･･-･-･-･-･････(4)

in which v represents Poisson's ratio of a complete composite plate. This bending

moment, Mvx, is distributed into M,x, Msx, and Nvx (Fig. 5); i. e.,

                       Ie                 Mox" fi I,Mvx

            N.x-2ei?Oi J: (rri[;.ldi

                 Msx" -li-t' Mvx

            Nvx = ft9ISveMvx w4--(l{--i

           fig. 5 Distribution of bending moment M.x (complete composite plate)

            - AcSc
                  Mvx '''''"'''''''''''''''''''H'H'"'''''''''''''''''''H'''''''''''''H'"'"'"'''''(5)         Nvx            - fiIv

         Mcx= fiIi. Mvx ''''''''''''''''''''''''''''''(6), Msx= -ie'-Mvx ''''''''''''''''''''''''''''''(7)

in which Mcx and M,. signify bending moments that act on the middle surface of a

concrete slab and a steel plate, respectively; Nvx signifies in-plane force acting on the

rniddle surface of a concrete slab and a steel plate. It is evident that the following

relationship exists:

         Mvx=Mcx+Msx+S"Nvx ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''"''''''''(8)

And'we should mention that occasionally it might be an advantage to introduce what is

called the moment-sum in a form as follows:

concreteslab

g Sc ×

s steeLlate
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         M= Mvix++ l)!vy == -D.( aa2.W,v + ao2Wy,v )== -D.v2w. -･･････････････-･t････････-･･････(g)

The introduction of this moment-sum permits us to split the governing fourth-order

differential equation of a complete composite plate into two second-order differential

equations. Thus, we obtain

         v2M== Z2.M, + aa2yM, =-p, ･･････-･-･････-･･･---･･-･･････-････--･････････････-･--･-････(io)

and

                      a2w. M               a2wv
                ax2 + ay2 =M D. ''"''''''''''''''''''''''H'H''''"''H'''''''''`'''`''""''(ii)         V2wv ==

         4. DERIVATIONOFTHEFUNDAMENTALDIFFERENTIAL
            EQUATIONS OF AN INCOMPLETE COMPOSITE PLATE

   In the case of incomplete composite piates, we can intrdduce simplifying assump-

tions which are practically the same as those assumed in analyzing incomplete compos-

ite girders`): (1) A contjnuous imperfect connection exjsts between the two separate

materials, i.e., the shear connection between the concrete slab and steel plate is

assumed to be continuous in all directions; (2) The amount of slip permitted by the

shear connection is directly proportional to the load transmitted; (3) The distribution

of strains throughout the depth of the concrete slab and steel plate is linear; and (4)

The concrete slab and steel plate are assumed to deflect equal amounts at all points in

all directions at all times.

   Let us extend the concepts used in setting up the differential equation of an incom-

plete composite girder5) to those of an incomplete composite plate. If we do, the proce-

dures involved in setting up the differential equation of an incomplete composite plate

subjected to Iateral loads will be as follows:

The First Step:

   Let us consider composite plates with complete interaction. The bending moment,

Mvex, which acts on the middle surface of incomplete composite plates in the x direc-

tion, is obtained by the following equation expressed in terms of lateral deflections, wve

(Fig. 4) :

         M.,. = - D.( ag:;e + v agU,ve ) ･･-･･････-･･･････-･-･-･･-････-･-･･････-･･-･･･････-･a2)

This bending moment, Mvex, is distributed into Mcex, Msex, and Nex; i. e.,

              AcSc
                  Mvex ''mm'''"''''H''''"'''''e'''H''''"'"''H''''"'"''''H''''''"'"''-'(13)         Nex ==
              fiIv

         Mcex = flC. Mvex ''''''''''''''''''''''''(14), Msex==f' Mvex'''''''''''''''''''''''''''(15)

It is evident that the following relationship exists:

         Mvex =Mcex+Msex+SeNex ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(16)

The Second Step:

   Let us direct in-plane compressive forces N2. in the x direction on the middle sur-

face of a concrete slab, and direct in-plane tensile forces N2. in the x direction on the

middle surface of a steel plate. If the concrete slab and steel plate are not intercon-



nected, the curvatures of the deflected middle surfaces of the concrete slab and steel

plate remain unchanged. Each material behaves separately, without any interaction,

and this causes an abrupt change in the strain distribution on the plane of the contact

stirfaces. According to the definition of strain, E., we can write

         Ex "( EEIA, + EglA, ) e N21 = E?Al?,,N2x '''''''''''''''''''''''''''''''''''''''''''''''''''(17)

The bending moment due to N2. can be calculated from

         M2x=seN2x ''''''''"'''''･--･-･----･--･･･-･･･-･-･･･--･-･-･-･-----････---･-･-･･(18)

Consequently, the total bending moment, M.., acting on the middie surface of a com-

posite plate will be as follows:

         Mvx =Mvex+M2x'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(19)

And the total in-plane force, N.ex, acting on the middle surfaces of a concrete slab and

steel plate will be as follows:

         Nvex ::Nex+N2x ''"''''''''''---''''''''''''''''''H'"'-'"'"'"'m''''''m"'"'H''(20)

The translation of Eqs. (13), (l4), (15), (16), (18) and (20) into (19) yields

         Mvx==Mvex+M2x=Mcex+Msex+S'Nex+S"(Nvex-Nex)
              fiIs + Ic
            == fiI. Mvex+(Sc+Ss)"Nvex''''''''''''H'''m"''''"'"'''''''''''H'''m'''''''(21)

Fig.6 shows that the bending moment, M.., which acts on the middle surface of gom-

                          !c
                   Moex " -n I . Mvex

          Nvex=Ail',aeii e.MMv:,x,++ MMsi,X (r!.f:rm

                   Msex = -il-tt Mvex

         Nvex=ft.alSvCMvex+ Ms2X di4--KII!--

         ･Ng. 6 Distribution of bending moment Mvx (incomplete composite plate)

posite plate in the x direction, is distributed into Mcex, Msex, and Nvex.

The Third Step:

   W. e have pointed out that headed stud connectors are deformed by a horizontal

shear. If we assume that the amount of deformation (slip) permitted by the shear

connection is directly proportional to the horizontal shear, we can define the amount of

slip by using a modulus; i. e., the spring constant of the headed stud connector will be

as follows:

         Hvex=K(Xc'''''"''''"''"''''''"'"'"'''''''"''''''''''H'H''''"'''''''"'''''"'''"''"''''(22)

in which of represents the amount of slip of the headed stud connector in the x direc-

tion; K denotes the spring constant of the headed stud connector and can be obtained

by a Push-Out Test described in Ref.4; and H.,. signifies horizontal shears in the x

direction. As the force H.e. which acts on headed stud connectors are equal to the

concreteslab

g Sc ,×

s stee[late
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increment of the in-plane compressive force acting on the middle surface of concrete

slab, we can write

         ONvex -                Hvex ''H''''''''''H''''m'''''''''"'''''''''''''''''''''''''''''''H'mH'"''"'H'(23)
          ax -
And since the amount of the slip is produced by the addition of normal strains, we can

write

         aof            =Ex'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(24)

         ax
Eqs. (12)-(24) express fundamental relationships in any consideration of deformations

of headed stud connectors.

The Fourth Step:

   If we use Eqs.(1) - (24), we can derive the governing differential equation of incom-

plete composite plates. After a derivative of Eq.(23) with respect to x, the use of Eq.

(22), Eq(24), and Eq.(17) gives

         02Nvex Kfi S           ax2 = EgA, -5I-N2x ''''''''''''''''''H'''''''''''''''''''-''''''''''''''''''･･"''･-････(2s)

We can obtain the governing differential equation of incompiete composite plates ex-

pressed in terms of lateral deflection, wve, by the following procedure (Fig.4). The

use of Eqs.(21), (9) and (3) gives

                     fiIs + Ic
                           V2(Mvex+Mvey)+SeVZ(Nvex+Nvey) '''''''''''''''''''''(26)         V2Me(1 + v) =
                      fiIv
                                                                    'Using Eqs.(12) and (3) gives

         V2(Mvex + Mvey) = - (1 + v)"Dv"V2V2Wve ''''''''''''''''''''''''''''''''''''''''''''''''(27)

The use of Eqs.(25), (3), and (18) gives

         s"V2(Nvex+Nvey)== E5,X, -(Il;-(M2x+M2y) '''''''''''''''''''''''''''''''''''''''''''''(28)

After obtaining M2. from Eq.(19), the use of Eqs.(4) and (12) yields

         M,. = -D.( oo2.w,v +.agv,v )+D.( agage +, agv;e) ........................,.....(2g)

The use of Eqs.(29) and (12) yields

         M2.+M2,=m(1+v)eD.e(V2wvwwV2w.,) ･････････････-･･--･････-･････････････-･･･････(30)

The translation of Eq.(30) into Eq.(28) yields

                          Kfi s         S"V2(Nvex+Nvey)= EgA, se{-(1+v)"Dv}"(V2wv-V2w..) ''''''''''''''''''(31)

AftertranslatingEq.(27)andEq.(31)intoEq.(26),usingEq.(10),wecanwrite: '

                              Kfi s               fiIs+Ic
                fiI. V`Wve+DvEgA, -gEm(S;72Wv-V2wve) ''''''''''''''''''''''''''''-････(32)         Pz == Dv

The governing differential equation of incomplete composite plates expressed in terms

of lateral deflection w., is obtained by using the following form after dividing both

                 rtIs + Ic
sides of Eq.(32) by
                   fiIv

         DvV`wve-DvM2V2wve=-Dvx2rc72Wv+ fiI?I+'I,Pz ''''':''''''''''''''''''''''''''''''(33)

         "2= nl?I+'I, EIi'iX, -i;l-'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(34)



Application of Eq.(3) to Eq.(33), the use of Eq.(2) yields

                                     fiIv
         DvV76wve - Dvx2V'`Wve = - z2Pz + fiI, + I. V2Pz ''''''''''''''''''''''''''''''''''''''''''(35)

Either Eq, (33) or Eq. (35), both of which can be derived from'this paper, will be the

governing differential equation of incomplete composite plates expressed iR terms of

lateral deflection, wve.

    On the other hand, the thickness of the steei plate in Ref. 1 is small compared with

that 6f the concrete slab, and is of a negligible order of magnitude.

A 6bmparison of the sectional properties of composite plates according to both theories

iS given in Table 1.

             Table 1 Comparison of Sectional Properties of Composite Plates

                    According to Both Theories

Sectional Present Clarke's
Properties Theory Theory
(1) (2) (3)

ttt tttttttt

Ac h h

As t t

As+JI}L' Ac
Av rn n

s O.5(h+t) O.5h

O.5(h+t)Xt
Sc

Av
o

b.5hSs
riAv

Ic
h3

Tt

h3-:12

I.
t3

Tt e

Iv
Is+kt+Ac..Scs

n

-lg'-+t×o,sh×o.sh

Dv Egl, EEIc(1+3C)
.-. t.

                                                      KAfter dividing both sides of Eq.(35) by D., substituting (1+4C) .Eg,t,

EII, EK,,t(ld-C) andEEil, instead ofx2, IIil and ftfiI-i'-I, Dl.

and multipiying both sides by Etl,Egt, and dividing by K(1+C) gives

         12(Eilli3c)[tttS<76wvem(l+4C)V`wve]==-pz+K(Iilitic')'SC72pz''''''''''''''''''(36a)

in which c= gi -ii- ･･･-･･･--････ny･･･････････････････････････-･･･-･-･･････････････････････････-･･･-･･･････ti･･(36b)

Eq.(36) is the theory of the incomplete composite plates given on p. 564 of Ref. 1. It is

obvious that Eq. (35) (the theory offered here) includes Eq, (36). Let us consider a

condition similar to that of an incomplete composite girder. As w. represents the lat-

eral deflection of a complete composite plate, it must satisfy Eq.(2);i,e., Eq.(38a),

and as wve represents lateral deflection of an incomplete composite plate, it must sat-

isfy Eq.(33). If we is defined as the difference between w.e and w., we can obtain the

governing differential equation expressed in terms of laterai deflection, we, by adjudg-
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ing the difference between Eq.(33) and Eq.(2). Therefore, the differ¢ptial equation
expressed in terms of, we, is given in the following form:

                           Acscs
        DvSC7`We-DvM2VT2We = fiI,+I. Pz ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(37)

Consequently, Eq.(33) consists of the two following differential equations; i. e., Eqs.

(38a) and (38b):

          v4w.= gz. ････････････････････---･････-･･････-･--･･･-･-･･････-･･-･･--･･-･-･･･--･-･-･･･････････(3sa)

          V`wermx2Vwe= BZ, ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(38b)

in which

                        fiIs+Ic
        Dv :EEIv, De=Dv A,s,s ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(38C)

The sectional properties expressed in Eq.(38) have already been explained in Eq.(1).

D. defined in Eq.(38a) is identical with that of the two layered plates given on p. 391 of

Ref.2 and p.5 of Ref.6. It is interesting to note that Eq..(38b) has a form similar to

that of the partial differential equation with respect to the plate under lateral loads and

an in-plane force (D,ex2).

   The lateral deflection, wve, of the middle surface of incomplete composite plates

can be obtained by the following equations.

        Wve=Wv+We ''"'"''H''i"''''''''''''''''''''''"''''"'''''''''''''"''''H'"''''''''''''''(39)

By using Eqs.(12) and (4), we can obtain the bending moment, M.,., from the follow-

ing formula:

        M.,.=-D.( Og:}e +v Og¥,ve) :-D.( Oo2Wx,v +v Oa2Wy,v)

              rmDv( Oo2.W,e + Oa2yW,e ) =Mvx+ B: Meex''''''''''''''''''''''''''''''''''''''''''(40)

in which

        M..=:-Dv( aa2Wx,V +v"Cl;21SLW,V ); and M,..=-D,( ao2xW,e +v aa2yW2e )

By using Eqs.(21), (14), (15), and I. in Eq.(1), we can obtain the in-plane force, N.ex,

frorn the following formuia (Fig. 6):

                                  AcSc               1         Nvex=-g-(Mvx-Mcex-Msex)= fiI.                                      (Mvx ww Meex) ''''''''''''''''''''''''''''''''''''(41)

        5. ANALYSIS OF THE SIMPLY SUPPORTED RECTANGULAR
           COMPOSITE PLATES

   Let us determine the lateral deflections of an incomplete composite plate for a

simply supported rectangular composite plate subjected to laterai loads. Since the

deflection and the bending moment along the boundary are zero, the formulation of this

type of boundary condition involves statements concerning displacements and forces.

For simply supported rectangular plates, Navier's solution of.fers considerable mathe-

matical advantages, since the solution of the governing fourthL6rder partial differential
     ,T
equati6n is reduced to a solution of an algebraic equation. The boundary gonditions of

rectangislar plates, for which Navier's solution is applicable, are

       'i' '
       tt



         (Wv)x=o,x==a=O, (Mvx)x==o,x=a=O
                                       '''''･･-･････････'･'･･'-････'･･''･･''''''''''''''''(42a)
         (Wv)y-o,y-=b=O, (Mvy)y-o,y==b=O '
and
         (We)x==o,x==a=O, (Meex)x=o,x==a=O
                                       ･-･････････････････････････････････････････････････(42b)
         (We)y=o,y=b=O, (Meey)y=o,y=b=O

which represent simply supported edge conditions at all edges. The solutions of the

governing differential equations of the plate (Eq.(38)) subjected to a lateral loading

are obtained by Navier's method as follows:

1. The deflections are expressed by a double sine series,

         Wv=.:co=,.:co..ivWmn"Sin MarrXeSin nbrrY ''''''''''''''･･･････-･･-･･-･･-････-･････････-･････(43a)

         We=.:co..,.:co.,eWmn"Sin MaZXesin nbnY ････････..,..,..........,,...................,.....(43b)

which satisfy all the above-stated boundary condjtions. In Eq.(43) the coefficients of

expansion vWmn and eWmn are unknown.

2. The lateral load p. may also be expanded into a double sine series:

        Pz :,ilcol]=,.Zco.,Pmn'Sill MarrX "sin nbrrY '''''･･-･･･-･･･-･･･････..･･...............,..,....I.,.,..(44)

The coefficients Pm. of the double Fourier expansion of the load can be calculated:

         Pmn= a4b ./ga yCbpzesin MaZX esin nbrrY dxdy '･･･････････････････-･-･･-･-･-･･-･･･-･･････(4s)

3. If we translate Eqs.(43) and (44) into the governing differential equations;i.e.,

Eqs.(38a) and (38b), we obtain algebraic equations from which the unknown .Wm. and

eWmn can be readily calculated. Thus, for specific m and n values, Eqs.(38a) and (38

b) become

        .w.. [( Marr )2+( nbrr )2]2esin MarrX esin nbrrY = Dl. p.,osin MarrX "sin nbrrY

                                                                 ･･････(46a)

and

         ,w..([( Marr )2+( nbn )2]2+x2[( Marr )2+( nbrr )2])esin MaTX esin nbrrY

          :B.Pmn"sin MarrX"sin nbrrY ････--･･･-･････.......,..........,..,..,....................(46b)

hence

                                                      '                                                  Pmn             - Pmn             riD.Jt..` '''''''''''''''(47a)' eWm"=:D,(pt.,`+z2st..2) '''''''''''''''(47b)         vWmn

in which

              m2rr2 n2rt2
        ,ttmn2= a2 + b2 ''''"''''''Hm'''H''''"`H'''''"''''''-'''"'''''''H''''''''`'"''(48)

If we translate vW.n in Eq.(47a) into wv in Eq.(43a), we obtain an analytical solution,

w., for the deflection in Eq.(43a). In a similar way, we can also obtain we. Dv or De

is the flexural rigidity of the strip of a plate of unit width. It is obvious that the lat-

eral deflections vary inversely as D. or De. Upon the introduction of symbols and the

use of Eq.(1), the ratio, We, '
                     Wv
becomes
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         7== lille = DDv, "p= fil,clcSi,efi= fi2,cicSi,'(i-ev) '''''''･･'･'･･････････････････'･････-･･(4g)

in which

         ,--Zco-itlili$,fs-l4/9tfll21zli"i#'i..lliff,,ie#,;i,"gY .,..,........,.,.........,.......,........,,,,

We can then obtain the lateral deflection, w.,, of incomplete composite plates

         wve=wv+we=wv(1+wW.e)''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(51)

If we translate 7 in Eq.(49) into w.. in Eq.(51), we find

         wve = wv (1 -F 7) == wv(1 + IIC,S,V "I3)

                Ics+X3`Icsv
            == Wv                   Ics
            " EgSIilS,I+Pil,:S)".)I,, .:co=,.:"..P, ptP.M.", "sin Ma"X "sin nb"Y ･･･--･･-･･--･･･････････t･･･(s2)

in which I.= Ics+I,,.; I,,=I,+L' ; and I,,.== Ac.ScS -･･---･･-･････････,･･･････････--･････････････(s3)

The subscripts ttv" and ttve" of w. and w.e in Eq.(51) denote complete and incomplete

composite plates, respectively.

   It should be remembered that the composite plates will be subdivided into the fol-

lowing three major categories, based on their structurai action and depending on the

value of P defined by Eq. (50).

6=O, i. e., cr=1; 7= O, signifies complete composite plates. ･
O<p<1, i. e., ev =1-fi, 7=fi2,CICSI.fi, signifies incomplete composite plates.

P=1, i. e., a =O, 7= fil,CiC?,, signifies individual plates which do not interract.

        6. THE ESSENTIAL FEATURES OF LATERAL DEFLECTffON
            CHARACTERISTICS

   Let us find the essential features of the lateral deflection characteristics for a sim-

ply supported rectangular plate subjected to a uniformly distributed Ioad. The expan-

                                         16pzsion coefficient P.. defined by Eq.(45) will be rr,mn. Here, we consider ten terms of

the double Fourier series. Fig.7 shows the relationship between ev and xa at (O.5a,

O.5b). In Fjg.7, ev is gjven by the ordinate and xa is given by the abscissa. ev js

defined by Eq. (49), while x, defined by Eq. (34), is an important constant and multi-

plying "a" by M becomes a dimensionless constant.

   Let us explain the manner in which the diagram which is shown in Fig; 7. Firstly,

we can determine the value of x defined by Eq. (34) and can multiply "a" by x. Sec-

ondly, we can find ev graphically by plotting the value of xa. Therefore, 6==1-cr can

                                           Acscs
also be obtained. Thirdly, 7 can be calculated by                                                fi. Finally, if we translate 7
                                           fiIs+Ic
into its equivalent in Eq.(49), we can obtain lateral deflections of an incomplete com-
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                  CCP= CompIeteCompositePlate
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                        Fig. 7 a-curve (in static analysjs)

'posite plate by using w., in Eq. (52). Let us illustrate the practical use of this opera-

tion by numerical calculations. The generai dimensions of the incomplete composite

plate are as follows (Figs.2 and 3): Rectangular plate of size aXb==2mX3m, Es=

206010 MPa, I,,=2.481×10-5m`/m, I,,.=2.069×IO-5m`/m, K==98.1 MN/m/m
(assumed to be extremely small),t=O.O06m, h=O.13m, fi=7.385, v:=O.3(assumed),

big=O.3, ile =O.2, s=O.068 m, s,=O.Oi73 m, s,=O.0507 m, A,=O.13 m2/m, A,= O.O06 m2/

m, Av==O.0236m2/m, I, :1.831×10-`m`/m, I,=1.8×10-8m`/m, I.=4.55×10-5m`/m,

D.=1.03005×10`kNem2/m, p,=9.81×105N/m/m. Ten terms of the double Fourier
series are again considered in this case. By using these general dimensions, we can

find x==4.21425/m, za=8.4285, 6=O.1589, ev=O.8411, and 7=O.1325. The lateral

deflection w.=O.Ol177 m in the case of a complete composite plate can again also be

found. The lateral deflection wve=O.O1333 m in the case of an incomplete composite

plate can therefore be obtained from multiplying w.=O.Ol177m by (1+7);Le.,

l.1325. Since we can calculate the lateral deflection wve of incomplete composite

plates without too much difficulty by the introduction of dimensionless parameters ev,

P, and 7, the present diagram is very convenient for most practical purposes as a

means of determining the Iateral deflection.

                                                              '
 7. CONSIDERATION BY NUMERXCAL CALCULATIONS OF BOTH THEORIES

    In this section, in order to compare both theories of incomplete composite plates by

means of numerical calculations, let us determine Iateral deflections at (O.5a, O.5b) for

a simply supported rectangular plate subjected to a uniformly distributed load. awve is

calculated by Eq.(36a), and ,w., is calculated by Eq.(38). For simply suppbrted rec-

tangular plates, Navier's solution is available. K is variable(O--oo). Ten terms of the

double Fourier series are once more considered in this case, likewise, In Fig.8, the

ratio of lateral deflections between both theories is given by the ordinate while C(= gi

ICP=IncompleteCompositePlate
NCP=IndividualPlates

rca->cotK-->oo B
ccp
a=1
p=o.
7=OIIIb-=3.0

al.5
tckt-curve ICP

P=1-a
v='
iSAIiLfi#e-ii-:ii+:,P

b-=1
a

b-=1,O
a

fiIvfis-Ka:K ffIs+IcE'sAcse a

NCP

a=O
fi=1
,Acscs Ka->O,K->o
7= -nIs+Ic rca
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-i:-) is given by the abscissa. Fig.8 shows that the greater C becomes, the greater

grows the difference betweeR the two theories.

    The computations were carried out with double precision by using a personal com-

puter (NEC PC-9801VM2, made in Japan).

                              8. CONCLUSION

    The major conclusions of this investigation can be summarized as follows:

(1) This paper considers the factor of steei plate thickRess in its presentation of partial

    differential equations in static analysis of incomplete composite plates.

(2) This paper demonstrates that its theory of incomplete composite plates subsumes

    the theory of the incomplete composite plates given on p. 564 of Ref.1, and that it

    can be applied to the formulation of a system of equations which govern the elastic

    bending of incomplete composite plates which consist of two layers of isotropic

    materials.

(3) This paper offers a mathematical analysis of the relationship of lateral deflections

    among complete composite plates, incomplete composite plates, and individual

    plates which do not interact, as appiied to simply supported rectangular composite

    plates subjected to a uniformly distributed load.

    fi=O, i.e., cr==1, 7 :O, signifies complete composite plates. O<6<1, i.e. a=1-fi,

    7==fil,CICSI,6, signifies incomplete composite plates. p==1, i.e., a=o, 7=fil,CICSI,,

    signifies individual plate which do not interact. Dimensionless parameters a,6,

    and 7 can also be defined in the case of continuous incomplete composite plates

    and other types of load. The present method can therefore also be applied to the

    finding of lateral deflections of continuous incomplete composite plates and other

    types of ioad.



14 Koichi SATO

(4) This paper submits a diagram that represents the essential features of the lateral

    deflection･characteristics of simply supported rectangular incompiete composite

    plates that will be found suitable for most design purposes. Lateral deflections wve

    can be obtained by the use of the diagram without too much difficulty.
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                                 APPENDIX I

   The following symbols are used in Eq.(1):

 A,, A,=sectional areas of concrete slab and steel plate per unit length, respectively;

    A.=An+ 4C : sectional area of composite plate per unit length, defined by transforming a con-

            n
        crete part of the section into an equivalent steel plate;

    D.=Egl.: flexural rigidity of composite plate;

  E,, E.==Young's moduli of concrete and steel, respectively;

      , Ec                  Es
  EE, Es=1-.z and 1-.g, respectively;

     h=thickness of concrete slab'
                            '
   I., I,= moments of inertia per unit length about the middle surface of concrete slab and steel plate,

        respectively;

     Iv==Is+m!g'"+Avscss: moment of inertia per unit length about the middle surface of composite

           n
        plate by transforming a concrete part of the section into an equivalent steel plate;

      m Eg
      n= Eaj

      s= distance between the middle surface of concrete slab and steel plate;

     s, =i-itile-sS : distance between the middle surface of composite plate and concrete slab;

     ss= -Iiti)lftrsAC. : distance between the middle surface of composite plate and steel plate;

      t=thickness of steel plate; and

   tle, ag==Poisson's ratios of concrete and steel, respectively,


