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Theory and Analysis of Incomplete
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Koichi SATO
(Received August 28, 1991)

Abstract

This paper offers a set of partial differential equations designed to enable static
analysis of incomplete composite plates with regard to the thickness of a steel plate.
The paper also analyzes the relationship of lateral deflections among complete compos-
ite plates, incomplete composite plates, and individual plates which do not interact with
regard to simply supported rectangular composite plates. B=0 signifies complete com-
posite plates. 0<g<1 signifies incomplete composite plates. B=1 signifies individual
plates which do not interact. The paper also submits a diagram that represents the
essential features of the lateral deflection characteristics of simply supported rectangu-
lar incomplete composite plates that will be found suitable for most design purposes.
Lateral deflections can be derived by the use of the diagram without too much diffi-
culty. The present method can also be applied to the finding of lateral deflections of
continuous incomplete composite plates and other types of load.

1. INTRODUCTION

In recent years bridge-slab technology has increasingly come to use hybrid struc-
tures composed of such different materials as concrete slabs and steel plates. A con-
crete composite steeldeck plate (called here a "composite plate”) consists of a concrete
slab reinforced on its underside by a relatively thin flat steel plate (Fig.1). Although
a composité plate offers the combined advantages of both concrete and steel, we cannot
usually rely on a natural bond between such materials. Headed stud connectors, which
are welded to the steel plate and cast in the concrete, are therefore used to make the
whole act as a composite plate (Fig.2). Headed stud connectors, however, are
deformed by a horizontal shear. Complete interaction is therefore impossible. If the
parts of plates composed of two materials are not interconnected, each material acts
separately, while an actual composite plate is intermediate between a complete compos-
ite plate and individual plates which do not interact. The same is true of an actual
composite girder ; i. e, a cornposite plate acts basically in a manner similar to a com-
posite girder. A theory of incomplete composite plates seems to be given on p. 564 of
Ref.l. In that paper, however, it appears that the thickness of the steel plate is small
compared with that of concrete slab, and is of a negligible 6fder of magnitude. But, if
the steel plates are thick, we cannot neglect a consideration of their thickness. The
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Fig. 1 Concrete composite steeldeck plate
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Fig. 2 Composite plate

theory offered in the present paper can be applied to the formulation of a system of
equations which govern the elastic bending of incomplete composite plates consisting of
two layers of isotropic materials. The main objectives for this paper are as follows:
(1) To offer a set of partial differential equations designed to enable static analysis of
incomplete composite plates with regard to the thickness of a steel plate; (2) To show
that our theory of incomplete composite plates includes the theory of the incomplete
composite plates given on p.564 of Ref. 1; (3) To analyze the relationship of lateral
deflections among complete composite plates, incomplete composite plates, and individ-
ual plates; and (4) To submit a diagram that represents the essential features of the
lateral deflection characteristics of incomplete composite plates that will be found suit-
able for most design purposes.
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2. GENERAL CONCEPTS AND ASSUMPTIONS

The plate theory of composite plates used in this paper is based on the small deflec-
tion theory, generally attributed to Kirchhoff and Love.
All loads considered in this paper are static. If the concrete part of the section is
transformed into an equivalent steel plate (Fig. 3), the sectional properties of compos-
ite plates can be estimated from

Ac=h As=t, AVZAS—I——%L,
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Fig. 3 Cross section of composite plate

Notations are explained in APPENDIX [. In the theory of plates it is customary to
deal with internal forces and moments per unit length of the middle surface, and it
should always be kept in mind that all sectional properties are defined per unit length.

3. FUNDAMENTAL DIFFERENTIAL EQUATIONS OF A COMPOSITE PLATE

Unless otherwise stated, the sectional properties of composite plates defined by Eq.
(1) are used throughout this paper. And it should be remembered that interchanging
the two variables, X and ¥, is valid.

The governing differential equation of complete composite plates expressed in
terms of lateral deflection, w, (Fig. 4), of the middle surface is given by Ref. 2 or Ref.

Vzvzwv — B?{ ....................................................................................... (2)
. . o* 9%
e e
in which Vi= oz T oy’ €))

is the two-dimensional Laplacian operator, D, represents flexural rigidity of the com-
plete composite plate, and p, means the live load intensity. The bending moment, My
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Fig. 4 Deflection of composite plate

(Fig. 5), which acts on the middle surface of complete composite plate in the x direc-
tion, is given by the following formula expressed in terms of lateral deflection, wy :

2*w, 9wy
MVXZWDV< a}V(VZ +y a;’:’z > ............................................................... W

in which v represents Poisson’s ratio of a complete composite plate. This bending
moment, My, is distributed into My, Mg, and Nyx (Fig.5); i. e,

Moy = = M, concrete slab
nl,
Acs,
Nyy== My /(
nIv \ 1C SC g X
My €———— V
s
Mgx = %va Ss
v
_Acsse
Nox =25 Mox C {S steelplate

Fig. 5 Distribution of bending moment M,z (complete composite plate)

N,, = Acse MLy ##ereeseeesenesseneetene ettt 5)
al,

My :“—ILva .............................. (6), M :I—SMVX .............................. )
il 1,

in which My and M, signify bending moments that act on the middle surface of a
concrete slab and a steel plate, respectively; N,y signifies in-plane force acting on the
middle surface of a concrete slab and a steel plate. It is evident that the following
relationship exists:

My = Mex Mg 8¢ Ny creeesseernemenssom ettt ®
And we should mention that occasionally it might be an advantage to introduce what is
called the moment-sum in a form as follows:
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_ va+ny — < aZWV aZWV >_ — 2YA7 recenieecraasisnarstacnestinannns
M= = =Dy a5 ) = ~ DV )

The introduction of this moment-sum permits us to split the governing fourth-order
differential equation of a complete composite plate into two second-order differential
equations. Thus, we obtain
oM | 3*M
VZM:W'FTYZ:
and
_ 9wy n O*wy _ M

2 shsannesesernsansasnanasensnasanteretetanacaresrrivaniotsanann
Viw, = ox2 ay* D, an

4. DERIVATION OF THE FUNDAMENTAL DIFFERENTIAL
EQUATIONS OF AN INCOMPLETE COMPOSITE PLATE

In the case of incomplete composite plates, we can introduce simplifying assump-
tions which are practically the same as those assumed in analyzing incomplete compos-
ite girders?: (1) A continuous imperfect connection exists between the two separate
materials, i.e., the shear connection between the concrete slab and steel plate is
assumed to be continuous in all directions; (2) The amount of slip permitted by the
shear connection is directly proportional to the load transmitted; (3) The distribution
of strains throughout the depth of the concrete slab and steel plate is linear; and (4)
The concrete slab and steel plate are assumed to deflect equal amounts at all points in
all directions at all times.

Let us extend the concepts used in setting up the differential equation of an incom-
plete composite girder® to those of an incomplete composite plate. If we do, the proce-
dures involved in setting up the differential equation of an incomplete composite plate
subjected to lateral loads will be as follows:

The First Step:

Let us consider composite plates with complete interaction. The bending moment,
Myex, Which acts on the middle surface of incomplete composite plates in the x direc-
tion, is obtained by the following equation expressed in terms of lateral deflections, wye
(Fig. 4) :

2. 2

M, o= _Dv< aa‘;‘;\zfe 4y aa‘;’;/e ) ............................................................ 12)
This bending moment, Myex, is distributed into Meex, Msex, and Nex ; i. €.,

Nex= Acse Wlyoy “++reereesrnesssesseessensseessteteass e ste st aab et b et et sas s s 13)

aly
M _—___ILM ........................ (14) M :I—SM ........................... (15)
cox = g1, Mvex > Moex=7 "Mvex

It is evident that the following relationship exists:

Myex =Mooy + Mooy + 80 Ny -#veeereerererermmmseeammtenianiiinteniea s 16)

The Second Step :

Let us direct in-plane compressive forces N, in the x direction on the middle sur-
face of a concrete slab, and direct in-plane tensile forces N,y in the x direction on the
middle surface of a steel plate. If the concrete slab and steel plate are not intercon-
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nected, the curvatures of the deflected middle surfaces of»the concrete slab and steel
plate remain unchanged. Each material behaves separately, without any interaction,
and this causes an abrupt change in the strain distribution on the plane of the contact
surfaces. According to the definition of strain, &, we can write

S D D S N S ¢ - OO P T RU R UPR TR
‘EX‘{ A T EA, } Nox=F7A o Nex an

The bending moment due to N,x can be calculated from

T P PP (18)
Consequently, the total bending moment, M,s, acting on the middle surface of a com-
posite plate will be as follows:

Mlyx = My g b Mgy +oeeeeeeersmeessmmenmesennnrentr ettt e 19
And the total in-plane force, Nyex, acting on the middle surfaces of a concrete slab and
steel plate will be as follows:

Nuyor =Noyg b Npg coreerreessneemmmemeemniriar et 20)
The translation of Egs. (13), (14), (15), (16), (18) and (20) into (19) yields

Mux=Myex + Max = Moex + Mgex +5° Nex +8° (Nyex — Nex)

_ L+l
al,

Fig. 6 shows that the bending moment, My, which acts on the middle surface of com-

Mvex+<Sc+Ss>‘Nvex ......................................................... (21)

1\/Icf,x=ﬁI—f—Mvex concrete slab
Nyoy=teSen, + 220 o
B Iy * < IC Sc L x
Myx=Myex+Mayx €—"'—" vV - ‘
S
S
Mgox = _i‘s'Mvex s
v
__Acsc Moax /f
Nvex“l—iIV Myex+ s \ ‘fS Steel plate

‘Fig. 6 Distribution of bending moment M, (incomplete composite plate)

posite plate in the x direction, is distributed into Meex, Mgex, and Nyex.
The Third Step:

We have pointed out that headed stud connectors are deformed by a horizontal
shear. If we assume that the amount of deformation (slip) permitted by the shear
connection is directly proportional to the horizontal shear, we can define the amount of
slip by using a modulus; i. e, the spring constant of the headed stud connector will be
as follows :

S T T T T P 22)

in which & represents the amount of slip of the headed stud connector in the x direc-
tion ; K denotes the spring constant of the headed stud connector and can be obtained
by a Push-Out Test described in Ref.4; and H,ex signifies horizontal shears in the x
direction. As the force H,ex which acts on headed stud connectors are equal to the
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increment of the in-plane compressive force acting on the middle surface of concrete
slab, we can write
ONyex _
ox

And since the amount of the slip is produced by the addition of normal strains, we can
write

Eqgs. (12)—(24) express fundamental relationships in any consideration of deformations
of headed stud connectors.
The Fourth Step:

If we use Egs.(1) —(24), we can derive the governing differential equation of incom-
plete composite plates. After a derivative of Eq.(23) with respect to x, the use of Eq.
(22), Eq.(24), and Eq.(17) gives

) i

_@_;}I{%: EI’{XC . S5 Ny eeere e s (25)
We can obtain the governing differential equation of incomplete composite plates ex-
pressed in terms of lateral deflection, wye, by the following procedure (Fig.4). The
use of Egs.(21), (9) and (3) gives

VIM- (L) =T M+ My )5 V2 Ny + Ny v @6
Using Eqgs.(12) and (3) gives

V2(Myox + Myey) = — (1 1) e Dy e V2V 27y g #ovevereenersamsmsienmeinansnenieieerseninns N
The use of Egs.(25), (3), and (18) gives

§e V2 (Nvex+Nvey)“ A < (M2x+sz) ............................................. (28)
After obtaining M,, from Eq.(19), the use of Egs.(4) and (12) yields

—_p. (2w oWy > ( O’Wye | 0"Wye ) ..............................

Ma=—Di( e LR 29)
The use of Egs.(29) and (12) yields

Max+May=— (14 ) Dy (V2Wy = V2Wye)  coereresesmmmmmminmnmnnaieseinen, (30)
The translation of Eq.(30) into Eq (28) yields

80 V2(Nyex + Nyey) = E’ sS o Wy — V2Wyo) creereermreerennes 3D
After translating Eq.(27) and Eq.(31) into Eq.(26), using Eq.(10), we can write

I -I-Ic Kn
p, =D, DTl Gayy v+ Dy E;/r-{c ESC“(VZWV_VZer) ................................. 32)

The governing d1fferent1a1 equation of incomplete composite plates expressed in terms
of lateral deflection wy. is obtained by using the following form after dividing both

sides of Eq.(32) by fﬂgf-ﬂc

va4er _Dvuzvzwve — _DVKZVZWV + "Iﬁ{{il Pz creerrrreesereeseii, (33)
in which

}(2 — ﬁIV Kﬁ _§« ........................................................................... (34)

T als+I ElAL s
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Application of Eq.(3) to Eq.(33), the use of Eq.(2) yields

by — Pl vZ ALy G e
D, VWye — Dy x?ViwWye x%p, + AL +L V?p, (35)

Either Eq. (33) or Eq. (35), both of which can be derived from this paper, will be the
governing differential equation of incomplete composite plates expressed in terms of
lateral deflection, wye.

Or1 the other hand, the thickness of the steel plate in Ref. 1 is small compared with
that 6f the concrete slab, and is of a negligible order of magnitude.

A comparison of the sectional properties of composite plates according to both theories
is given in Table 1.

Table 1 Comparison of Sectional Properties of Composite Plates
According to Both Theories

Sectional Present Clarke’s
Properties Theory Theory
é)) N @ (3
A h
As t
A, A,
s 0.5¢h+t) 0.5h
5 0.5(1;;0 Xt 0
. 050D bsh
AA,
I h® h?
€ 12 12
ta
L 1 0
I, 1+I +AcScS L tix05nx0.5n
D. El, EJ.(1+30

After dividing both sides of Eq.(35) by D,, substituting (14+4C)=5—

1 al, 1
El. Eit als+I. Dy
and multiplying both s1des by Eid Et, and dividing by K(14+C) gives

Egt

2
(1+C) and instead of »?, %~ and

_Eéﬁ_[ Ect Vo — \vZ ]— ____E.’.._ 200 eireeieneiineaaen

12<1 C) K Wve (1 4C) Wye K(l C) Y Pz (363)
B e ——————

in which C= E h (36b)

Eq.(36) is the theory of the incomplete composite plates given on p.564 of Ref. 1. It is
obvious that Eq. (35) (the theory offered here) includes Eq. (36). Let us consider a
condition similar to that of an incomplete composite girder. As w, represents the lat-
eral deflection of a complete composite plate, it must satisfy Eq.(2); i.e., Eq.(38a),
and as wy represents lateral deflection of an incomplete composite plate, it must sat-
isfy Eq.(33). If we is defined as the difference between wy, and w,, we can obtain the
governing differential equation expressed in terms of lateral deflection, w., by adjudg-
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ing the difference between Eq.(33) and Eq.(2). Therefore, the differential equation
expressed in terms of, we, is given in the following form :

Acscs
Al +1. >”
Consequently, Eq.(33) consists of the two following differential equations; i.e., Egs.
(38a) and (38h):

D, Viwe —Dy2*Viwe =

V4Wv — BZ .................................................................................... (38&)
AV — 12V wW, = ]IE’)Z ........................................................................ (38b>

in which
D,=El,, D. :Dv% .................................................................. (38¢)

The sectional properties expressed in Eq.(38) have already been explained in Eq.(1).

D, defined in Eq.(38a) is identical with that of the two layered plates given on p. 391 of
Ref.2 and p.5 of Ref.6. It is interesting to note that Eq.(38b) has a form similar to
that of the partial differential equation with respect to the plate under lateral loads and
an in-plane force (De°x?).

The lateral deflection, wye, of the middle surface of incomplete composite plates
can be obtained by the following equations.

er:WV+We .................................................................................... (39)

By using Eqs.(12) and (4), we can obtain the bending moment, My.x, from the follow-
ing formula:

2
Mvex:_Dv< 9* er +p 9 Wye >=*Dv< ’wy . WV>

ox oy? ox? oy?
—p, (e | O°W ) D L s
DL +-L e )= M5 Meen 40)

in which

—_ 9w, Wy V. - o2 We 0 We>
va— DV< x> +v a 2 >, and Meex De< + v ay

By using Eqgs.(21), (14), (15), and I, in Eq.(1), we can obtain the in-plane force, Nyex,
from the following formula (Fig.6) :

Nvex:%<va_Mcex_Msex> = CSC (va Magy) +ereersessemnerermeneeranmninns (41

5. ANALYSIS OF THE SIMPLY SUPPORTED RECTANGULAR
COMPOSITE PLATES

Let us determine the lateral deflections of an incomplete composite plate for a
simply supported rectangular composite plate subjected to lateral loads. Since the
deflection and the bending moment along the boundary are zero, the formulation of this
type of boundary condition involves statements concerning displacements and forces.
For simply supported rectangular plates, Navier's solution offers considerable mathe-
matlcal advantages, since the solution of the governing fourth-order partial differential
equatxon is reduced to a solution of an algebraic equation. Thé boundary conditions of
rectangular plates, for which Navier’s solution is applicable, are :
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(Wv> x=0,x=a:0: (va) x=0x=a =0
(wy) y=0,y=b =0, Myy) y=oy=5=0
(We> x=0,x=a:0, (Meex) x=0x=a =0
(We> y=0.y=b =0, (Meey> y=0,y=b:0
which represent simply supported edge conditions at all edges. The solutions of the
governing differential equations of the plate (Eq.(38)) subjected to a lateral loading
are obtained by Navier's method as follows:

1. The deflections are expressed by a double sine series,

and

szgl ngmn-sin%-sinnb%y ................................................... (43a)
We :[21 xgleWmn'Sin m:X 'Sinnb%y ................................................... (43b)

which satisfy all the above-stated boundary conditions. In Eq.(43) the coefficients of

expansion Wy, and W, are unknown.
2. The lateral load p, may also be expanded into a double sine series :

— S eain K e

pz-mZJl ng}l Panesin QST 44)
The coefficients Py, of the double Fourier expansion of the load can be calculated :
SN SO Y LSNP « T2 PTG L. A N H RPN

Pun= ab[: l I N dxdy (45)

3. If we translate Eqgs.(43) and (44) into the governing differential equations; i.e.,
Eqgs.(38a) and (38b), we obtain algebraic equations from which the unknown Wy, and
«Wmn can be readily calculated. Thus, for specific m and n values, Eqs.(38a) and (38
b) become

mz\ /[nz\]? . max . nhx 1 . mzX . nw
vWon [(—-) +<——>]-sm a osin —2Y Punesin a osin 22

a b b D, b
...... (462)
and
[V (2 (5 i 2
a b a b a b
1 MZX | DY e
D Ponesin b (46b)
hence
—Pmo - Pon
v Wonn = Dv,umn4 (473); e Wi = De <,Umn4 + 7lelmn2) (47b)
in which
2,.2 2,.2
/lmnzzrna—z” nb72t ........................................................................... (48)

If we translate \Wq, in Eq.(47a) into w, in Eq.(43a), we obtain an analytical solution,
wy, for the deflection in Eq.(43a). In a similar way, we can also obtain w,. D, or D,
is the flexural rigidity of the strip of a plate of unit width. It is obvious that the lat-
eral deflections vary inversely as D, or D.. Upon the introduction of symbols and the
use of Eq.(1), the ratio, :Ze ,

v

becomes
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_We Dy o AsSeS o ASS 3 s
Y= D, BT AL AL AT AL L T (49)
in which
3> 4P""’2 —ogin 2K gin DY
_m=1aS1 e ey D (50)
ﬁ P P g hay e 5
2 2 —"-esin esin
Mm=1 051 Umn b ‘
We can then obtain the lateral deflection, wy., of incomplete composite plates
Wv+We WV<1+ > .................................................................. (51)

If we translate ¥ in Eq.(49) into wy, in Eq.(51), we find
Wye =Wy 1+ y)= Wv< +Ifi-ﬁ>

— Ies+Blesy
¥ Les
= et frle)  $ $ g TAZX | DY s
B Ot ) T § sin — —sin—p (52)
in which Iy =Ies+Lesy ; Les=1s +_I_; and Icsv:—““ACI_fCS .......................................... - (53)

(L3 1)

The subscripts “v” and “ve” of w, and wy. in Eq.(51) denote complete and incomplete
composite plates, respectively.

It should be remembered that the composite plates will be subdivided into the fol-
lowing three major categories, based on their structural action and depending on the
value of 8 defined by Eq. (50).

B=0, i.e., a=1; y=0, signifies complete composite plates.

0<p<y, i.e, a=1—4, y—f?“jfl £, signifies incomplete composite plates.
B=1, i.e, a=0, y:ﬁ?cic? , signifies individual plates which do not interract.
5 C

6. THE ESSENTIAL FEATURES OF LATERAL DEFLECTION
CHARACTERISTICS

Let us find the essential features of the lateral deflection characteristics for a sim-
ply supported rectangular plate subjected to a uniformly distributed load. The expan-
16pz

sion coefficient Py, defined by Eq.(45) will be Here, we consider ten terms of

the double Fourier series. Fig.7 shows the relatlonship between « and xa at (0.5a,
0.5b). In Fig. 7, « is given by the ordinate and xa is given by the abscissa. « is
defined by Eq. (49), while », defined by Eq. (34), is an important constant and multi-
plying ”"a” by x becomes a dimensionless constant.

Let us explain the manner in which the diagram which is shown in Fig 7. Firstly,
we can determine the value of » defined by Eq. (34) and can multiply ”a” by ». Sec-
ondly, we can find « graphically by plotting the value of xa. Therefore, =1—a can

Acses
al+1.

into its equivalent in Eq.(49), we can obtain lateral deflections of an incomplete com-

also be obtained. Thirdly, y can be calculated by A. Finally, if we translate y
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Complete Composite Plate
ICP=Incomplete Composite Plate
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oste 5 i L1 ]
b nl, o s )
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0.3 L
/MNP
0.2 / NCP ﬁ:lAS i e S
0.1 Ul v DAl .
I O I /l |/f | <

0.0

0 5 10 15 20

Fig. 7 a-curve (in static analysis)

posite plate by using wv. in Eq. (52).
tion by numerical calculations.

Let us illustrate the practical use of this opera-
The general dimensions of the incomplete composite
plate are as follows (Figs.2 and 3): Rectangular plate of size aXb=2mX3m, E,=
206010 MPa, [.s=2.481X10°m*/m, [.w=2.069%X10"°m*/m, K=98.1 MN/m/m
(assumed to be extremely small), t=0.006 m, h=0.13m, 1=7.385, v=0.3(assumed),
vs=0.3, 1.=0.2, s=0.068m, 5.=0.0173m, ss=0.0507 m, A.=0.13m?/m, As=0.006 m?/
m, A,=0.0236 m*/m, I.=1.831x10"*m*/m, [i=1.8X10"®m*/m, I,=4.55X10"°m*/m,
D, =1.03005X10* kN ¢« m?>/m, p,=9.81 X10°N/m/m. Ten terms of the double Fourier
series are again considered in this case. By using these general dimensions, we can
find x=4.21425/m, »a=8.4285, $8=0.1589, «=0.8411, and y=0.1325. The lateral
deflection w,=0.01177 m in the case of a complete composite plate can again also be
found. The lateral deflection wys=0.01333m in the case of an incomplete composite
plate can therefore be obtained from multiplying wy,=0.01177m by (1+9); i.e,
1.1325. Since we can calculate the lateral deflection wy. of incomplete composite
plates without too much difficulty by the introduction of dimensionless parameters «,
B, and y, the present diagram is very convenient for most practical purposes as a
means of determining the lateral deflection.

7. CONSIDERATION BY NUMERICAL CALCULATIONS OF BOTH THEORIES

In this section, in order to compare both theories of incomplete composite plates by
means of numerical calculations, let us determine lateral deflections at (0.5a, 0.5b) for
a simply supported rectangular plate subjected to a uniformly distributed load. .wye is
calculated by Eq.(36a), and .wv. is calculated by Eq.(38). For simply supported rec-
tangular plates, Navier's solution is available. K is variable(0~c). Ten terms of the
double Fourier series are once more considered in this case, likewise. In Fig. 8, the

; _E
E.

ratio of lateral deflections between both theories is given by the ordinate while C<
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R
1 K=0
1.0 - s
[ = .
0.9 - Q\\:\K 588\6 MPa
0.8 =
0.7 —
K=1275.3 MP
0.6 k a— : 2
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0.4 —
b |b -
03, =2 R=2Wre op(2, B
ganl]
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02 04 06 08 1.0 12 14

Fig. 8 Comparison by numerical calculation of both theories

—E) is given by the abscissa. Fig.8 shows that the greater C becomes, the greater

grows the difference between the two theories.

The computations were carried out with double precision by using a personal com-

puter (NEC PC-9801VM?2, made in Japan).
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8. CONCLUSION

The major conclusions of this investigation can be summarized as follows:

This paper considers the factor of steel plate thickness in its presentation of partial
differential equations in static analysis of incomplete composite plates.

This paper demonstrates that its theory of incomplete composite plates subsumes
the theory of the incomplete composite plates given on p.564 of Ref.1, and that it
can be applied to the formulation of a system of equations which govern the elastic
bending of incomplete composite plates which consist of two layers of isotropic
materials.

This paper offers a mathematical analysis of the relationship of lateral deflections
among complete composite plates, incomplete composite plates, and individual
plates which do not interact, as applied to simply supported rectangular composite
plates subjected to a uniformly distributed load.

B£=0, i.e, a=1, y=0, signifies complete composite plates. 0<g<1, i.e, a=1—4,

_ Acses A ses
Y THL AL Al + 1

signifies individual plate which do not interact. Dimensionless parameters «, f3,
and y can also be defined in the case of continuous incomplete composite plates
and other types of load. The present method can therefore also be applied to the
finding of lateral deflections of continuous incomplete composite plates and other
types of load.

[, signifies incomplete composite plates. g=1, i.e, a=0, y=
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(4) This paper submits a diagram that represents the essential features of the lateral

deflection - characteristics of simply supported rectangular incomplete composite
plates that will be found suitable for most design purposes. Lateral deflections wye
can be obtained by the use of the diagram without too much difficulty.
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APPENDIX 1

The following symbols are used in Eq.(1) :

A., As=sectional areas of concrete slab and steel plate per unit length, respectively ;
A . . . . .
AV=An+—E°—: sectional area of composite plate per unit length, defined by transforming a con-

crete part of the section into an equivalent steel plate ;
D, =El, : flexural rigidity of composite plate ;
E., Es=Young’s moduli of concrete and steel, respectively ;
135 and 1515’
h=thickness of concrete slab;
I, [is=moments of inertia per unit length about the middle surface of concrete slab and steel plate,
respectively ;

K., E= respectively ;

I . . . . .
Iv:Is+~ﬁ°—+Avscss: moment of inertia per unit length about the middle surface of composite

plate by transforming a concrete part of the section into an equivalent steel plate ;
E;

E.’

s=distance between the middle surface of concrete slab and steel plate;

n=

A, . . .
SC:A—SSI distance between the middle surface of composite plate and concrete slab ;
v

A, . . .
SS:_ﬁ—AC—S: distance between the middle surface of composite plate and steel plate;
v

t=thickness of steel plate; and
ve, us=Poisson’s ratios of concrete and steel, respectively.



