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Abstract

We develop a mathematical theory of time operators of a Hamiltonian with
purely discrete spectrum. The main results include boundedness, unboundedness
and spectral properties of them. In addition, possible connections of a time operator
of H with regular perturbation theory are discussed.
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1 Introduction

This paper is concerned with mathematical theory of time operators in quantum mechan-
ics [2, 3, 4, 6, 12]. There are some types of time operators which are not necessarily
equivalent each other. For the reader’s convenience, we first recall the definitions of them
with comments.

Let H be a complex Hilbert space. We denote the inner product and the norm of H

by ⟨ · , · ⟩ (antilinear in the first variable) and ∥ · ∥ respectively. For a linear operator A
on a Hilbert space, D(A) denotes the domain of A.

Let H be a self-adjoint operator on H and T be a symmetric operator on H.
The operator T is called a time operator of H if there is a (not necessarily dense)

subspace D ̸= {0} of H such that D ⊂ D(TH)∩D(HT ) and the canonical commutation
relation (CCR)

[T,H] := (TH −HT ) = i (1.1)

∗Corresponding author. The work is supported by the Grant-in-Aid No.17340032 for Scientific Re-
search from Japan Society for the Promotion of Science (JSPS).
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holds on D (i.e., [T,H]ψ = iψ, ∀ψ ∈ D), where i is the imaginary unit. In this case, T is
called a canonical conjugate to H too.

The name “time operator” for the operator T comes from the quantum mechanical
context where H is taken to be the Hamiltonian of a quantum system and the heuristic
classical-quantum correspondence based on the structure that, in the classical relativistic
mechanics, time is a canonical conjugate variable to energy in each Lorentz frame of
coordinates. Note also that the dimension of T is that of time if the dimension of H is
that of energy in the original unit system where the right hand side of (1.1) takes the
form i~ with ~ being the Planck constant h divided by 2π. We remark, however, that
this name is somewhat misleading, because, in the framework of the standard quantum
mechanics, time is not an observable, but just a parameter assigning the time when a
quantum event is observed. But we follow the convention in this respect. By the same
reason as just remarked, T is not necessarily (essentially) self-adjoint. But this does not
mean that it is “unphysical” [2, 12]. Note also that we do not require the denseness of
the subspace D in the definition stated above. This is more general. In fact, there is an
example of the pair (T,H) satisfying (1.1) on a non-dense subsapce D [8, 10].

From a representation theoretic point of view, the pair (T,H) is a symmetric repre-
sentation of the CCR with one degree of freedom. But one should remember that, as for
this original form of representation of the CCR, the von Neumann uniqueness theorem
([13], [14, Theorem VIII.14]) does not necessarily hold. In other words, (T,H) is not
necessarily unitarily equivalent to a direct sum of the Schrödinger representation of the
CCR with one degree of freedom. Indeed, for example, it is obvious that, if T or H is
bounded below or bounded above, then (T,H) cannot be unitarily equivalent to a direct
sum of the Schrödinger representation of the CCR with one degree of freedom.

A classification of pairs (T,H) with T being a bounded self-adjoint operator has been
done by G. Dorfmeister and J. Dorfmeister [7]. We remark, however, that the class
discussed in [7] does not cover the pairs (T,H) considered in this paper, because the
paper [7] treats only the case where T is bounded and absolutely continuous.

A weak form of time operator is defined as follows. We say that a symmetric operator
T is a weak time operator of H if there is a subspace Dw ̸= {0} of H such that Dw ⊂
D(T ) ∩D(H) and

⟨Tψ,Hϕ⟩ − ⟨Hψ, Tϕ⟩ = ⟨ψ, iϕ⟩ , ψ, ϕ ∈ Dw,

i.e., (T,H) satisfies the CCR in the sense of sesquilinear form on Dw. Obviously a time
operator T of H is a weak time operator of H. But the converse is not true (it is easy
to see, however, that, if T is a weak time operator of H and Dw ⊂ D(TH) ∩ D(HT ),
then T is a time operator). An important aspect of a weak time operator T of H is that
a time-energy uncertainty relation is naturally derived [2, Proposition 4.1]: for all unit
vectors ψ in Dw ⊂ D(T ) ∩D(H),

(∆T )ψ(∆H)ψ ≥ 1

2
,

where, for a linear operator A on H and ϕ ∈ D(A) with ∥ϕ∥ = 1,

(∆A)ϕ := ∥(A− ⟨ϕ,Aϕ⟩)ϕ∥,
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called the uncertainty of A in the vector ϕ.
In contrast to the weak form of time operator, there is a strong form. We say that T

is a strong time operator of H if, for all t ∈ R, e−itHD(T ) ⊂ D(T ) and

Te−itHψ = e−itH(T + t)ψ, ψ ∈ D(T ). (1.2)

We call (1.2) the weak Weyl relation [2]. From a representation theoretic point of view, we
call a pair (T,H) obeying the weak Weyl relation a weak Weyl representation of the CCR.
This type of representation of the CCR was extensively studied by Schmüdgen [17, 18]. It
is shown that a strong time operator of H is a time operator of H [12]. But the converse
is not true. In fact, the time operators considered in the present paper are not strong
ones.

There is a generalized version of strong time operator [2]. We say that T is a generalized
time operator of H if, for each t ∈ R, there is a bounded self-adjoint operator K(t) on H

with D(K(t)) = H, e−itHD(T ) ⊂ D(T ) and a generalized weak Weyl relation (GWWR)

Te−itHψ = e−itH(T +K(t))ψ (∀ψ ∈ D(T )) (1.3)

holds. In this case, the bounded operator-valued function K(t) of t ∈ R is called the
commutation factor of the GWWR under consideration.

We now come to the subject of the present paper. In his interesting paper [9], Galapon
showed by an explicit construction that, for every self-adjoint operator H (a Hamiltonian)
on an abstract Hilbert space H which is bounded below and has purely discrete spectrum
with some growth condition, there is a time operator T1 on H, which is a bounded self-
adjoint operator under an additional condition (for the definition of T1, see (2.12) below).
To be definite, we call the operator T1 introduced in [9] the Galapon time operator.

An important point of Galapon’s work [9] is in that it disproved the long-standing belief
or folklore among physicists that there is no self-adjoint operator canonically conjugate
to a Hamiltonian which is bounded below (for a historical survey, see Introduction of [9]).

Motivated by work of Galapon [9], we investigate, in this paper, properties of time
operators of a self-adjoint operator H with purely discrete spectrum. In Section 2, we
introduce a densely defined linear operator T whose restriction to a subspace yields the
Galapon time operator T1 and prove basic properties of T and T1, in particular the
closedness of T . It follows that, if T is bounded, then T is self-adjoint with D(T ) = H

and a time operator of H. We denote by T# one of T1, T and T ∗ (the adjoint of T ). In
Section 3, we discuss some general properties of T#. Moreover the reflection symmetry
of the spectrum of T# with respect to the imaginary axis is proved. Sections 4–6 are
the main parts of this paper. In Section 4, we present a general criterion for T to be
bounded with D(T ) = H, while, in Section 5, we give a sufficient condition for T to be
unbounded. In Section 6, we present a necessary and sufficient condition for T to be
Hilbert-Schmidt. In Section 7, we show that, under some condition, the Galapon time
operator is a generalized time operator of H, too. We also discuss non-differentiability of
the commutation factor K in the GWWR for (T1, H). In the last section, we consider a
perturbation of H by a symmetric operator and try to draw out physical meanings of T1

and K in the context of regular perturbation theory.
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2 Time Operators

In this section, we recapitulate some basic aspects of the Galapon time operator in more
apparent manner than in [9].

Let H be a complex Hilbert space and
H be a self-adjoint operator on H which has the following properties (H.1) and (H.2):

(H.1) The spectrum of H, denoted σ(H), is purely discrete with σ(H) = {En}∞n=1, where
each eigenvalue En of H is simple and

0 < En < En+1

for all n ∈ N (the set of positive integers).

(H.2)
∞∑
n=1

1

En
2 <∞.

Throughout the present paper we assume (H.1) and (H.2).

Remark 2.1 The positivity condition En > 0 for the eigenvalues of H does not lose
generality, because, if H is bounded below, but not strictly positive, then one needs only
to consider, instead of H, H̃ := H + c with a constant c > − inf σ(H), which is a strictly
positive self-adjoint operator.

Property (H.2) implies that

En → ∞ (n→ ∞). (2.1)

Let en be a normalized eigenvector of H belonging to eigenvalue En:

Hen = Enen, n ∈ N. (2.2)

Then, by property (H.1), the set {en}∞n=1 is a complete orthonormal system (C.O.N.S.) of
H.

Lemma 2.1

(i) For all m ∈ N,
∞∑
n̸=m

1

(En − Em)2
<∞. (2.3)

In particular, for each m ∈ N,

∞∑
n̸=m

1

En − Em
en

converges in H.
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(ii) For all n ∈ N and vectors ψ in H, the infinite series

∞∑
m̸=n

⟨em, ψ⟩
En − Em

(2.4)

absolutely converges.

Proof. (i) By (2.1), we have

Cm := sup
n̸=m

1(
1 − Em

En

)2 <∞. (2.5)

Hence we have
∞∑
n̸=m

1

|En − Em|2
≤ Cm

∞∑
n̸=m

1

E2
n

<∞.

(ii) By the Cauchy-Schwarz inequality, the Parseval equality and part (i),
we have

∞∑
m̸=n

∣∣∣∣ ⟨em, ψ⟩
En − Em

∣∣∣∣ ≤
(

∞∑
m̸=n

|⟨em, ψ⟩|2
) 1

2
(

∞∑
m̸=n

∣∣∣∣ 1

En − Em

∣∣∣∣2
) 1

2

≤ ∥ψ∥

(
∞∑
m̸=n

∣∣∣∣ 1

En − Em

∣∣∣∣2
) 1

2

<∞. (2.6)

�
By Lemma 2.1-(ii), one can define a linear operator T on H as follows:

D(T ) :=

ψ ∈ H
∣∣ ∞∑
n=1

∣∣∣∣∣∑
m̸=n

⟨em, ψ⟩
En − Em

∣∣∣∣∣
2

<∞

 , (2.7)

Tψ := i
∞∑
n=1

(
∞∑
m̸=n

⟨em, ψ⟩
En − Em

)
en, ψ ∈ D(T ). (2.8)

Note that

∥Tψ∥2 =
∞∑
n=1

∣∣∣∣∣
∞∑
m̸=n

⟨em, ψ⟩
En − Em

∣∣∣∣∣
2

. (2.9)

For a subset D ⊂ H, we denote by l.i.h.(D) the subspace algebraically spanned by the
vectors of D.

The subspace
D0 := l.i.h.({en}∞n=1) (2.10)

is dense in H.
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Lemma 2.2 The operator T is densely defined with D0 ⊂ D(T ) and

Tek = i
∞∑
n̸=k

1

En − Ek
en, k ∈ N. (2.11)

Proof. To prove D0 ⊂ D(T ), it is sufficient to show that ek ∈ D(T ), k ∈ N. Putting

cn(k) :=
∞∑
m̸=n

⟨em, ek⟩
En − Em

,

we have ck(k) = 0 and cn(k) = 1/(En−Ek) for n ̸= k. Hence, by Lemma 2.1-(i), we have

∞∑
n=1

|cn(k)|2 =
∞∑
n̸=k

1

(En − Ek)2
<∞.

Hence ek ∈ D(T ) and (2.11) holds. �
In general, it is not clear whether or not T is a symmetric operator. But a restriction

of T to a smaller subspace gives a symmetric operator. Indeed, we have the following
fact:

Lemma 2.3 ([9]) The operator
T1 := T |D0 (2.12)

(the restriction of T to D0) is symmetric.

Proof. It is enough to show that, for all ψ ∈ D0, ⟨ψ, Tψ⟩ is real. For a complex number
z ∈ C (the set of complex numbers), we denote its complex conjugate by z∗. We have

⟨ψ, Tψ⟩ = i

∞∑
n=1

⟨ψ, en⟩
∞∑
m̸=n

⟨em, ψ⟩
En − Em

.

Hence

⟨ψ, Tψ⟩∗ = i

∞∑
n=1

⟨en, ψ⟩
∞∑
m̸=n

⟨ψ, em⟩
Em − En

.

Since ψ is in D0, the double sum on m,n with m ̸= n is a sum consisting of a finite term.
Hence we can exchange the sum on n and that on m to obtain

⟨ψ, Tψ⟩∗ = i
∞∑
m=1

⟨ψ, em⟩
∞∑
n̸=m

⟨en, ψ⟩
Em − En

= ⟨ψ, Tψ⟩ .

Hence ⟨ψ, Tψ⟩ is real. �
The operator T1 defined by (2.12) is the time operator introduced by Galapon in [9].

Obviously we have
T1 ⊂ T. (2.13)

Hence
T ∗ ⊂ T ∗

1 . (2.14)
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Remark 2.2 It is asserted in [9] that T1 is essentially self-adjoint without additional
conditions. But, unfortunately, we find that this is not conclusive, because the proof of it
given in [9] (pp.2678–2679) has some gap: the interchange of the double sum in Equation
(2.30) on p.2678 in [9] may not be justified, at least, by the reasoning given there. The
assertion is true in the case where T1 becomes a bounded operator under an additional
condition for {En}∞n=1, as we show below in the present paper. But, in the case where T1 is
unbounded, it seems to be very difficult to prove or disprove the essential self-adjointness
of T1. We leave this problem for future study.

Lemma 2.4 The subspace

Dc := l.i.h.({en − em ∈ H|n,m ≥ 1}). (2.15)

is dense in the Hilbert space H. Moreover

Dc ⊂ D0 ⊂ D(T ). (2.16)

Proof. Let ψ ∈ D⊥
c (the orthogonal complement of Dc). Then, for all m,n ≥ 1,

|⟨en, ψ⟩|2 = |⟨em, ψ⟩|2. By the Parseval equality, ∥ψ∥2 = limN→∞N |⟨em, ψ⟩|2．This im-
plies that |⟨em, ψ⟩|2 = 0 for all m ≥ 1 and ∥ψ∥ = 0. Hence ψ = 0. Thus Dc is dense in
H. Inclusion relation (2.16) is obvious. �

Theorem 2.5 ([9]) It holds that

Dc ⊂ D(T1H) ∩D(HT1) (2.17)

and
[T1, H]ψ = iψ, ψ ∈ Dc. (2.18)

Theorem 2.5 shows that T1 is a time operator of H.

Remark 2.3 It is easy to see that, for all k ∈ N, T1ek ̸∈ D(H). Hence D0 ̸⊂ D(HT1).
Therefore one can not consider the commutation relation [T1, H] on D0. Moreover, by
direct computation, we have

⟨T1ek, Heℓ⟩ − ⟨Hek, T1eℓ⟩ = −i(1 − δkℓ), k, ℓ ∈ N. (2.19)

This means that (T1, H) does not satisfy the CCR in the sense of sesquilinear form on
D0 (a weak form of the CCR), either. These facts suggest that the pair (T1, H) is very
sensitive to the domain on which their commutation relation is applied.

In concluding this section we discuss shortly non-uniqueness of time operators of H.
We introduce a set of symmetric operators associated with H:

{H}′Dc
:= {S|S is a symmetric operator on H such that

Dc ⊂ D(SH) ∩D(HS) and SHψ = HSψ, ∀ψ ∈ Dc}, (2.20)

which may be viewed as a commutant of {H} in a restricted sense. It is easy to see
that, for all real-valued continuous function f on R, the operator f(H) defined via the
functional calculus is in {H}′Dc

.
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Proposition 2.6 For all S ∈ {H}′Dc
, Dc ⊂ D((T1 + S)H) ∩D(H(T1 + S)) and

[T1 + S,H]ψ = iψ, ψ ∈ Dc. (2.21)

Proof. A direct computation using Theorem 2.5 and (2.20). �

Proposition 2.7 Let T2 be a time operator of H such that Dc ⊂ D(T2H)∩D(HT2) and

[T2, H]ψ = iψ, ∀ψ ∈ Dc.

Then T2 = T1 + S with some S ∈ {H}′Dc
.

Proof. We need only to show that S := T2 − T1 is in {H}′Dc
. But this is obvious. �

3 General Properties

3.1 Closedness of T and symmetry of T ∗

Lemma 3.1 D0 ⊂ D(T ∗) and T ∗|D0 = T1, i.e., T1 ⊂ T ∗.

Proof. It is enough to show that, for all k ∈ N, ek ∈ D(T ∗) and T ∗ek = Tek(= T1ek).
It is easy to see that, for all ψ ∈ D(T ),

⟨ek, Tψ⟩ = i
∞∑
m̸=k

⟨em, ψ⟩
Ek − Em

. (3.1)

By Lemma 2.2, the right hand side is equal to ⟨Tek, ψ⟩. Hence ek ∈ D(T ∗) and T ∗ek =
Tek. �

Proposition 3.2 The operator T is closed and

T ∗ ⊂ T. (3.2)

In particular, if T is bounded, then T is self-adjoint with D(T ) = H.

Proof. Let ψk ∈ D(T ), k ∈ N and ψk → ψ ∈ H, Tψk → ϕ ∈ H as k → ∞. Then
supk≥1 ∥Tψk∥ <∞. Hence, by (2.9), there exists a constant C > 0 independent of k ∈ N
such that

∞∑
n=1

∣∣∣∣∣∑
n̸=m

⟨em, ψk⟩
En − Em

∣∣∣∣∣
2

≤ C.

By (2.6), we have

lim
k→∞

∞∑
n̸=m

⟨em, ψk⟩
En − Em

=
∞∑
n̸=m

⟨em, ψ⟩
En − Em

. (3.3)
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Hence it follows that
∞∑
n=1

∣∣∣∣∣
∞∑
n̸=m

⟨em, ψ⟩
En − Em

∣∣∣∣∣
2

≤ C.

Therefore ψ ∈ D(T ). By (3.1) and (3.3), we have for all ℓ ∈ N

lim
k→∞

⟨eℓ, Tψk⟩ = ⟨eℓ, Tψ⟩ .

Hence ⟨eℓ, ϕ⟩ = ⟨eℓ, Tψ⟩ , ℓ ∈ N, implying ϕ = Tψ. Thus T is closed.
To prove (3.2), let ψ ∈ D(T ∗). Putting η = T ∗ψ, we have ⟨η, χ⟩ = ⟨ψ, Tχ⟩ for all

χ ∈ D(T ). Taking χ = ek (k ∈ N), we have

⟨η, ek⟩ = i
∞∑
n̸=k

⟨ψ, en⟩
En − Ek

, (3.4)

which implies that
∞∑
k=1

∣∣∣∣∣
∞∑
n̸=k

⟨ψ, en⟩
En − Ek

∣∣∣∣∣
2

= ∥η∥2 <∞.

Hence ψ ∈ D(T ). Then, by (3.1), the right hand side of (3.4) is equal to ⟨Tψ, ek⟩. Hence
η = Tψ. Thus (3.2) holds.

Let T be bounded. Then, by the denseness of D(T ) and the closedness of T , D(T ) =
H. Hence D(T ∗) = H. Thus, by (3.2), T ∗ = T , i.e., T is self-adjoint. �

Corollary 3.3 The operator T ∗ is symmetric.

Proof. By Lemma 3.1, T ∗ is densely defined. Hence, by Proposition 3.2, T ∗ ⊂ T =
(T ∗)∗. Thus T ∗ is symmetric. �

Thus we have
T1 ⊂ T ∗ ⊂ T. (3.5)

Corollary 3.3 shows that T ∗ also is a time operator of H.
For a closable operator A on a Hilbert space, we denote its closure by Ā.

Proposition 3.4 T̄1 = T ∗.

Proof. Note that T̄1 = T ∗ if and only if T1
∗ = T . By (3.5), we have T̄1 ⊂ T ∗. Hence

T ⊂ T1
∗. Thus it is enough to show that D(T1

∗) ⊂ D(T ). For all ψ ∈ D(T1
∗), we have

⟨T1
∗ψ, el⟩ = ⟨ψ, T1el⟩ = i

∑
n̸=l

⟨ψ, en⟩
En − El

.

Hence we obtain

∞ > ∥T1
∗ψ∥2 =

∞∑
l=1

| ⟨T1
∗ψ, el⟩ |2 =

∞∑
l=1

∣∣∣∣∣∑
n̸=l

⟨ψ, en⟩
En − El

∣∣∣∣∣
2

,

implying that ψ ∈ D(T ). Thus D(T1
∗) ⊂ D(T ). �
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3.2 Absence of invariant dense domains for T under some con-
dition

We first note the following general fact:

Proposition 3.5 Let Q be a bounded self-adjoint operator on H and P be a self-adjoint
operator on H. Suppose that there is a dense subspace D in H such that the following
(i)–(iii) hold:

(i) QD ⊂ D ⊂ D(P ).

(ii) D is a core of P .

(iii) The pair (Q,P ) obeys the CCR on D : [Q,P ]ψ = iψ,∀ψ ∈ D.

Then σ(P ) = R.

Proof. Since Q is a bounded self-adjoint operator, we have for all t ∈ R

eitQ =
∞∑
k=0

(itQ)k

k!

in operator norm. Conditions (i) and (iii) imply that, for all k ∈ N and ψ ∈ D

QkPψ − PQkψ = ikQk−1ψ.

Hence, for all t ∈ R and vectors ψ in D, we have

eitQPψ = Pψ +
∞∑
k=1

(it)k

k!
QkPψ

= Pψ +
∞∑
k=1

(it)k

k!
(PQk + ikQk−1)ψ

= Pψ +
∞∑
k=1

{
P

(itQ)k

k!
ψ − t

(itQ)k−1

(k − 1)!
ψ

}
.

It follows from the closedness of P that eitQψ is in D(P ) and

PeitQψ = eitQPψ + teitQψ. (3.6)

By condition (ii), this equality extends to all ψ ∈ D(P ) with eitQψ ∈ D(P ),∀t ∈ R,∀ψ ∈
D(P ). Hence the operator equality e−itQPeitQ = P + t follows. Thus σ(P ) = σ(P + t) for
all t ∈ R. This implies that σ(P ) = R. �

Theorem 3.6 If T is bounded (hence self-adjoint by Proposition 3.2), then there is no
dense subspace D in H such that the following (i)–(iii) hold:

(i) TD ⊂ D ⊂ D(H).
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(ii) D is a core of H.

(iii) The pair (T,H) obeys the CCR on D,

Proof. Suppose that there were such a dense subspace D as stated above. Then we
can apply Proposition 3.5 with (Q,P ) = (T,H) to conclude that σ(H) = R. But this is
a contradiction. �

Remark 3.1 A special case of this theorem was established in [7, Theorem 9.5].

3.3 Reflection symmetry of the spectrum of T1, T
∗ and T

We first recall the definition of the spectrum of a general linear operator (not necessarily
closed). For a linear operator A on a Hilbert space K, the resolvent set of A, denoted
ρ(A), is defined by

ρ(A) := {z ∈ C|Ran(A− z) (the range of A− z) is dense in K

and A− z is injective with (A− z)−1 bounded}.

Then the set
σ(A) := C \ ρ(A)

is called the spectrum of A. The set of eigenvalues of A, called the point spectrum of A,
is denoted σp(A).

We denote by T# any of T1, T
∗ and T .

We define a conjugation J on H by

Jψ :=
∞∑
n=1

⟨ψ, en⟩en, ψ ∈ H. (3.7)

Proposition 3.7 The spectrum σ(T#) of T# is reflection symmetric with respect to the
imaginary axis, i.e., if z ∈ σ(T#), then −z∗ ∈ σ(T#). In particular, if T is self-adjoint,
then σ(T ) is reflection symmetric with respect to the origin of the real axis. Moreover, for
all z ∈ σp(T

#), −z∗ is in σp(T
#) and

J ker(T# − z) = ker(T# + z∗), ∀z ∈ σp(T
#). (3.8)

Proof. It is easy to see that operator equality JT#J = −T# holds (JD(T#) = D(T#)).
Hence, for all z ∈ C, we have J(T# − z)J = −(T# + z∗) · · · (∗). This implies that, if
z ∈ ρ(T#), then −z∗ ∈ ρ(T#). Thus the same holds for the spectrum σ(T#) = C\ρ(T#).
Equation (3.8) follows from (∗). �
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4 Boundedness of T

In this section we present a general criterion for the operator T to be bounded. For
mathematical generality and for later use, we consider a more general class of operators
than that of T . Let b := {bnm}∞n,m=1 be a double sequence of complex numbers such that

∥b∥∞ := sup
n,m≥1

|bnm| <∞. (4.1)

Then, in the same way as in Lemma 2.1-(ii), for all ψ ∈ H, the infinite series

∞∑
m̸=n

bnm
En − Em

⟨em, ψ⟩

absolutely converges. Hence one can define a linear operator Tb on H as follows:

D(Tb) :=

ψ ∈ H
∣∣ ∞∑
n=1

∣∣∣∣∣
∞∑
m̸=n

bnm
En − Em

⟨em, ψ⟩

∣∣∣∣∣
2

<∞

 , (4.2)

Tbψ := i

∞∑
n=1

(
∞∑
m̸=n

bnm
En − Em

⟨em, ψ⟩

)
en, ψ ∈ D(Tb). (4.3)

Obviously T = Tb with b satisfying bnm = 1 for all n,m ∈ N. In the same way as in
the case of T , one can prove the following fact:

Lemma 4.1 The operator Tb is closed.

The following lemma is probably well known (but, for the completeness, we give a
proof):

Lemma 4.2 Let A be a densely defined linear operator on a Hilbert space K. Suppose
that there exist a dense subspace D in K and a constant C > 0 such that D ⊂ D(A) and

| ⟨ψ,Aψ⟩ | ≤ C∥ψ∥2, ψ ∈ D.

Then A is bounded with ∥Ā∥ ≤ 2C, where Ā is the closure of A.
If A is symmetric in addition, then ∥Ā∥ ≤ C.

Proof. Let ψ, ϕ ∈ D. Then, by the polarization identity

⟨ψ,Aϕ⟩ =
1

4
(⟨ψ + ϕ,A(ψ + ϕ)⟩ − ⟨ψ − ϕ,A(ψ − ϕ)⟩

+i ⟨ψ − iϕ, A(ψ − iϕ)⟩ − i ⟨ψ + iϕ, A(ψ + iϕ)⟩),

we have

| ⟨ψ,Aϕ⟩ | ≤ C

4
(∥ψ + ϕ∥2 + ∥ψ − ϕ∥2 + ∥ψ − iϕ∥2 + ∥ψ + iϕ∥2) = C(∥ψ∥2 + ∥ϕ∥2).

12



Replacing ψ ̸= 0 by ∥ϕ∥ψ/∥ψ∥ we have

| ⟨ψ,Aϕ⟩ | ≤ 2C∥ψ∥∥ϕ∥.

For ψ = 0, this inequality trivially holds. Since D is dense, it follows from the Riesz
representation theorem that ∥Aϕ∥ ≤ 2C∥ϕ∥, ϕ ∈ D. Thus the first half of the lemma
follows.

Let A be symmetric. Then, ⟨ψ,Aψ⟩ ∈ R for all ψ ∈ D(A). Hecne

|ℜ ⟨ψ,Aϕ⟩ | =
1

4
|⟨ψ + ϕ,A(ψ + ϕ)⟩ − ⟨ψ − ϕ,A(ψ − ϕ)⟩| ≤ C

2
(∥ψ∥2 + ∥ϕ∥2), ψ ∈ D.

We write ⟨ψ,Aϕ⟩ = | ⟨ψ,Aϕ⟩ |eiθ with θ ∈ R. Then | ⟨ψ,Aϕ⟩ | =
⟨
eiθψ,Aϕ

⟩
. Hence

| ⟨ψ,Aϕ⟩ | = ℜ
⟨
eiθψ,Aϕ

⟩
≤ C

2
(∥eiθψ∥2 + ∥ϕ∥2)

=
C

2
(∥ψ∥2 + ∥ϕ∥2).

Thus, in the same manner as above, we can obtain | ⟨ψ,Aϕ⟩ | ≤ C∥ψ∥∥ϕ∥, ψ, ϕ ∈ D. �
The next lemma is easily proven by elementary calculus. Therefore we omit proof of

it.

Lemma 4.3 For all s > 1 and n ≥ 2,

n−1∑
m=1

1

ns −ms
≤ log n

ns−1
+

1

s(n− 1)s−1
. (4.4)

Lemma 4.4 Let s > 1. Then

sup
n≥2

(
n−1∑
m=1

1

ns −ms

)
<∞ (4.5)

and

sup
m≥1

(
∞∑

n=m+1

1

ns −ms

)
<∞. (4.6)

Proof. Property (4.5) follows from Lemma 4.3.
To prove (4.6), we write

∞∑
n=m+1

1

ns −ms
≤
∫ ∞

m+1

1

xs −ms
dx+

1

(m+ 1)s −ms
.

We fix a constant R > 2(≥ (m+ 1)/m). By the change of variable x = my, we have∫ ∞

m+1

1

xs −ms
dx =

1

ms−1

(∫ R

(m+1)/m

1

ys − 1
ds+ CR

)
,

13



where

CR :=

∫ ∞

R

1

ys − 1
ds <∞.

Using the well known inequality

xs − 1 ≥ s(x− 1), x > 0, s ≥ 1, (4.7)

we have ∫ R

(m+1)/m

1

ys − 1
dy ≤

∫ R

(m+1)/m

1

s(y − 1)
dy

=
1

s
(log(R− 1) + logm) .

Hence ∫ ∞

m+1

1

xs −ms
dx ≤ logm

sms−1
+

log(R− 1)

sms−1
+

1

ms−1
CR.

Thus (4.6) follows. �
Let

cH(n) :=
n−1∑
m=1

En
(En − Em)Em

, n ≥ 2, (4.8)

dH(m) :=
∞∑

n=m+1

Em
(En − Em)En

, m ≥ 1. (4.9)

Since cH(n) and dH(m) are positive (recall that En > 0,∀n ∈ N), one can define constants

cH := sup
n≥2

cH(n), (4.10)

dH := sup
m≥1

dH(m), (4.11)

which are finite or infinite.

Theorem 4.5 Suppose that there exist constants α > 1, C > 0 and a > 0 such that

En − Em ≥ C(nα −mα), n > m > a. (4.12)

Then Tb is a bounded operator with D(Tb) = H and

∥Tb∥ ≤ 4∥b∥∞
√
cHdH . (4.13)

Moreover, if b∗nm = bmn for all m,n ∈ N, then Tb is a bounded self-adjoint operator with
D(Tb) = H and

∥Tb∥ ≤ 2∥b∥∞
√
cHdH . (4.14)

In particular, T is a bounded self-adjoint operator with D(T ) = H.
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Proof. By Lemma 4.2, it is enough to show that cH and dH are finite and

| ⟨ψ, Tbψ⟩ | ≤ 2∥b∥∞
√
cHdH∥ψ∥2, ψ ∈ D0. (4.15)

Then Tb is bounded with (4.13). Since Tb is densely defined and closed, it follows that
D(Tb) = H. As in the case of T , one can show that, if b∗nm = bmn for all m,n ∈ N, then
Tb|D0 is symmetric and hence Tb is a bouned self-adjoint operator with D(Tb) = H and
(4.14) holds. Therefore the desired result follows.

To prove (4.15), we first note that, for ψ ∈ D0,

⟨ψ, Tbψ⟩ = i
∞∑

m,n=1,m̸=n

bnm
En − Em

⟨ψ, en⟩ ⟨em, ψ⟩ .

Hence
| ⟨ψ, Tbψ⟩ | ≤ 2∥b∥∞A(ψ),

where

A(ψ) :=
∑

n>m≥1

| ⟨em, ψ⟩ || ⟨ψ, en⟩ |
En − Em

.

Inserting 1 =
√
Em/En ·

√
En/Em into the summand on the right hand side and using

the Cauchy-Schwarz inequality, we have

A(ψ)2 ≤ B(ψ)C(ψ)

with

B(ψ) =
∑

n>m≥1

| ⟨en, ψ⟩ |2

En − Em
· En
Em

,

C(ψ) =
∑

n>m≥1

| ⟨em, ψ⟩ |2

En − Em
· Em
En

.

One can rewrite and estimate B(ψ) as follows:

B(ψ) =
∞∑
n=2

| ⟨en, ψ⟩ |2cH(n)

≤ ∥ψ∥2cH .

Similarly we have
C(ψ) ≤ ∥ψ∥2dH . (4.16)

Hence
| ⟨ψ, Tbψ⟩ | ≤ 2∥b∥∞

√
cHdH∥ψ∥2. (4.17)

Therefore we need only to prove that cH and dH are finite.
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We can write

cH(n) =
n−1∑
m=1

1

En − Em
+

n−1∑
m=1

1

Em
.

By assumption (4.12), we have

1

En − Em
≤ 1

C(nα −mα)
, n > m > a. (4.18)

Since we have
∞∑
n=1

1

nα
<∞,

it follows that

ε1 :=
∞∑
m=1

1

Em
<∞.

Thus

cH(n) ≤
n−1∑
m=1

1

En − Em
+ ε1.

Let n0 ≥ 2 be a natural number such that n0 > a. Then, for all n > n0

n−1∑
m=1

1

En − Em
≤

n0−1∑
m=1

1

En − Em
+

1

C

n−1∑
m=n0

1

nα −mα
.

By (4.4), the right hand side is uniformly bounded in n. Thus we have cH <∞.
To prove dH <∞, we write for m > a

dH(m) =
∞∑

n=m+1

1

(En − Em)
−

∞∑
n=m+1

1

En

≤
∞∑

n=m+1

1

(En − Em)

≤ 1

C

∞∑
n=m+1

1

nα −mα
.

Hence, by (4.6) in Lemma 4.4, we have

sup
m>a

dH(m) <∞.

Thus it follows that dH <∞. �

Example 4.1 Let λ > 0, α > 1 and P (x) be a real polynomial of x ∈ R with degree
p < α. Then it is easy to see that the sequense {En}∞n=1 defined by

En := λnα + P (n)

satisfies the assumptions (H.1), (H.2) and (4.12). Thus, by Theorem 4.5, in the present
example, Tb is bounded.
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We remark that Theorem 4.5 does not cover the case En = λn + µ with constants
λ > 0 and µ ∈ R. For this case, we have the following theorem:

Theorem 4.6 Suppose that there exist constants λ > 0, µ ∈ R and a > 0 such that

En = λn+ µ, n > a. (4.19)

Then T is a bounded self-adjoint operator with D(T ) = H.

Proof. Let k0 be the greatest integer such that k0 ≤ a. Let an := ⟨en, ψ⟩ (ψ ∈ H).
Then, by the Parseval equality, we have

∑∞
n=1 |an|2 = ∥ψ∥2. Let ψ ∈ D0. Then we can

write:
⟨ψ, Tψ⟩ = SI + S2 + S3 + S4,

where

S1 := i

k0∑
n=1

k0∑
m ̸=n

a∗nam
En − Em

,

S2 := i

k0∑
n=1

∞∑
m≥k0+1

a∗nam
En − Em

,

S3 := i
∞∑

n≥k0+1

k0∑
m=1

a∗nam
En − Em

,

S4 := i
1

λ

∞∑
n=k0+1

∞∑
m̸=n,m≥k0+1

a∗nam
n−m

.

By the Schwarz inequality, we have

|Sj| ≤ Cj∥ψ∥2, j = 1, 2, 3,

where Cj > 0 is a constant. To estimate |S4|, we use the following well known inequality
[11, Theorem 294]: ∣∣∣∣∣

∞∑
n,m=1,n̸=m

xnym
n−m

∣∣∣∣∣ ≤ π

√√√√ ∞∑
n=1

x2
n

√√√√ ∞∑
m=1

y2
m

for all real sequences {xn}∞n=1 and {yn}∞n=1. Hence

|S4| ≤ π∥ψ∥2.

Therefore it follows that | ⟨ψ, Tψ⟩ | ≤ const.∥ψ∥2. Thus T is bounded. �

Example 4.2 A physically interesting case is the case where En = ω(n+ 1
2
), n ∈ {0}∪N

with a constant ω > 0. In this case, by Theorem 4.6, T is a bounded self-adjoint operator
with D(T ) = H and takes the form

Tψ =
i

ω

∞∑
n=1

(
∞∑
m̸=n

⟨em, ψ⟩
n−m

)
en, ψ ∈ H.
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Moreover, one can prove that
σ(T ) = [−π/ω, π/ω]

([4, Theorem 2.1]).
Let N̂ := ω−1H − 1/2 and θ̂ := ωT . Then it follows that

σ(N̂) = {0} ∪ N, σ(θ̂) = [−π, π], (4.20)

[θ̂, N̂ ]ψ = iψ, ψ ∈ Dc. (4.21)

As is well known, in the context of quantum mechanics, the sequence {ω(n + 1
2
)}∞n=1

appears as the spectrum of the one-dimensional quantum harmonic oscillator Hamiltonian
with mass m > 0

Hos :=
p2

2m
+

1

2
mω2q2

in the Schrödinger representation (q, p) of the CCR, where p := −iD with D being the
generalized partial differential operator on L2(R) and q is the multiplication operator by
the variable x ∈ R. In this context, the operator N̂ is called the number operator and, in
view of (4.20) and (4.21), the operator θ̂ is interpreted as a phase operator [7].

5 Unboundedness of T

As for the unboundedness of T , we have the following fact:

Theorem 5.1 If {En}∞n=1 satisfies

inf
n∈N

(En+1 − En) = 0, (5.1)

then T is unbounded.

Proof. By (5.1), there exists a subsequence {Epk
}∞k=1 of {Ep}∞p=1 such that

lim
k→∞

(Epk+1 − Epk
) = 0. (5.2)

Hence we have

∥Tepk
∥2 =

∞∑
n=1

∣∣∣∣∣
∞∑
m̸=n

⟨em, epk
⟩

En − Em

∣∣∣∣∣
2

=
∞∑

n̸=pk

∣∣∣∣ 1

En − Epk

∣∣∣∣2
≥

∣∣∣∣ 1

Epk+1 − Epk

∣∣∣∣2 → ∞ (k → ∞).

Thus T is unbounded. �

Example 5.1 Let
En = λnα + µ

with constants λ > 0, α > 1/2 and µ ∈ R. Then {En}∞n=1 satisfies the assumptions (H.1)
and (H.2). As we have already seen, T is bounded if α ≥ 1
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Let 1/2 < α < 1. Then one easily sees that

lim
n→∞

(En+1 − En) = 0.

Hence infn∈N(En+1−En) = 0. Therefore, in this case, T is unbounded. Thus T is bounded
if and only if α ≥ 1.

6 Hilbert-Schmidtness of T

In this section we investigate Hilbert-Schmidtness of the operator T .

Proposition 6.1 The operator T is Hilbert-Schmidt if and only if

∞∑
n=1

∞∑
m̸=n

1

(En − Em)2
<∞. (6.1)

In that case, T is self-adjoint with

∥T∥2
2 =

∞∑
n=1

∞∑
m̸=n

1

(En − Em)2
, (6.2)

where ∥ · ∥2 denotes Hilbert-Schmidt norm. In particular, there exist a C.O.N.S. {fn}∞n=1

of H and real numbers tn, n ∈ N such that Tfn = tnfn and tn → 0 (n→ ∞).

Proof. Suppose that T is Hilbert-Schmidt. Then
∑∞

n=1 ∥Ten∥2 < ∞. On the other
hand, we have

∞∑
n=1

∥Ten∥2 =
∞∑
n=1

∞∑
m̸=n

1

(En − Em)2
(6.3)

Hence (6.1) follows with (6.2).
Conversely, (6.1) holds. Hence, by (6.3),

∑∞
n=1 ∥Ten∥2 < ∞. Therefore T is Hilbert-

Schmidt. The last statement follows from the Hilbert-Schmidt theorem (e.g., [14, Theorem
VI.16]). �

Remark 6.1 In Proposition 6.1, the number tn ̸= 0 is an eigenvalue of T with a finite
multiplicity. Since T is self-adjoint in the present case, it may be an observable in the
context of quantum mechanics. If this is the case, then Proposition 6.1 shows that the ob-
servable described by T (“time” in any sense ?) is quantized (discretized) in the quantum
system whose Hamiltonian is H with eigenvalues {En}∞n=1 satisfying (6.1).

The next theorem gives a class of H such that T is Hilbert-Schmidt:

Theorem 6.2 Suppose that (4.12) in Theorem 4.5 holds with α > 3/2. Then T is Hilbert-
Schmidt and self-adjoint.
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Proof. Since 1/(En − Em)2 is symmetric in n and m, it is sufficient to show that∑
n>m≥1 1/(En − Em)2 <∞. By the present assumption, we need only to show that

Σ :=
∑

n>m≥1

1

(nα −mα)2
<∞

for all α > 3/2. We have

Σ =
∞∑
n=2

n−1∑
m=1

1

(nα −mα)2

≤
∞∑
n=2

1

nα − (n− 1)α
·
n−1∑
m=1

1

(nα −mα)
.

Using (4.4) and the elementary inequality

1

nα − (n− 1)αs
≤ 1

α(n− 1)α−1
,

we obtain

Σ ≤
∞∑
n=2

1

α(n− 1)α−1

log n

nα−1
+

∞∑
n=2

1

α2(n− 1)2(α−1)
.

Each infinite series on the right hand side converges for all α > 3/2. Thus the desired
result follows. �

7 The Galapon Time Operator as a Generalized Time

Operator

It is shown that every self-adjoint operator which has a strong time operator is absolutely
continuous [12, 17]. Hence the Galapon time operator T1 is not a strong time operator of
H. But it may be a generalized time operator of H. In this section we investigate this
aspect.

7.1 An operator-valued function on R
In the same way as in Lemma 2.1-(ii), one can show that, for all ψ ∈ H, n ∈ N and all
t ∈ R, the infinite series

∞∑
m̸=n

eit(En−Em) − 1

En − Em
⟨em, ψ⟩
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absolutely converges. Hence, for each t ∈ R, one can define a linear operator K(t) as
follows:

D(K(t)) :=

ψ ∈ H|
∞∑
n=1

∣∣∣∣∣
∞∑
m̸=n

eit(En−Em) − 1

En − Em
⟨em, ψ⟩

∣∣∣∣∣
2

<∞

 , (7.1)

K(t)ψ := i
∞∑
n=1

(
∞∑
m̸=n

eit(En−Em) − 1

En − Em
⟨em, ψ⟩

)
en, ψ ∈ D(K(t)). (7.2)

It is easy to see that, for all t ∈ R,

D0 ⊂ D(K(t)) (7.3)

and

K(t)ek = i
∑
n̸=k

eit(En−Ek) − 1

En − Ek
en, k ∈ N. (7.4)

The correspondence K : R ∋ t 7→ K(t) gives an operator-valued function on R. In the
notation in Section 4, K(t) is the operator Tb with bnm = eit(En−Em) − 1, n,m ∈ N.

Remark 7.1 Equation (7.4) shows that K(t) ̸= tI|D0. Hence T cannot be a strong time
operator of H, as already remarked based on the general theory of strong time operators.

Proposition 7.1 For all t ∈ R, K(t) is a densely defined closed operator.

Proof. Similar to the proof of Proposition 3.2. �

Proposition 7.2 For all t ∈ R, K(t)|D0 is symmetric.

Proof. Similar to the proof of Lemma 2.3. �

Theorem 7.3 For all ψ ∈ D(T1)(= D0) and t ∈ R, e−itHψ ∈ D(T1) and

T1e
−itHψ = e−itH(T1 +K(t))ψ. (7.5)

Proof. We need only to prove the statement in the case ψ = ek (∀k ∈ N). Since
e−itHek = e−itEkek, it follows that e−itHek ∈ D(T1) with

T1e
−itHek = e−itEk

∞∑
n̸=k

i

En − Ek
en.

We have

e−itHT1ek = i

∞∑
n̸=k

e−itEn

En − Ek
en.

It follows from these equations that

T1e
−itHek − e−itHT1ek = e−itHK(t)ek.

Thus the desired result follows. �
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Corollary 7.4 Suppose that, for all t ∈ R, K(t) is bounded. Then T1 is a generalized
time operator of H with commutation factor K.

Proof. This follows from Theorem 7.3, Proposition 7.1 and Proposition 7.2. �
In view of Corollary 7.4, we need to investigate conditions for K(t) to be bounded.

Proposition 7.5 Suppose that (4.12) holds with α > 1. Then, for all t ∈ R, K(t) is a
bounded self-adjoint operator with D(K(t)) = H.

Proof. This follows from an application of Theorem 4.5 to the case where bnm =
eit(En−Em) − 1, n,m ∈ N. �

Proposition 7.6 Suppose that (6.1) holds. Then, for all t ∈ R, K(t) is Hilbert-Schmidt
and self-adjoint with

∥K(t)∥2
2 =

∞∑
k=1

∞∑
n̸=k

∣∣∣∣eit(En−Ek) − 1

En − Ek

∣∣∣∣2 . (7.6)

Proof. Similar to the proof of Proposition 6.1. �

7.2 Non-differentiability of K

From the view-point of the theory of generalized time operators [2], it is interesting to
examine differentiability of the operator-valued function K.

Proposition 7.7 For all k ∈ N, the H-valued function : R ∋ t 7→ K(t)ek is not strongly
differentiable on R.

Proof. We first show thatK(t)ek is not strongly differentiable at t = 0. SinceK(0)ek =
0, we have for all t ∈ R \ {0} and N > k∥∥∥∥K(t)ek −K(0)ek

t

∥∥∥∥2

=
∞∑
n̸=k

|eit(En−Ek) − 1|2

t2|En − Ek|2

≥
N+1∑
n̸=k

|eit(En−Ek) − 1|2

t2|En − Ek|2
.

Hence

lim inf
t→0

∥∥∥∥K(t)ek −K(0)ek
t

∥∥∥∥2

≥
N+1∑
n̸=k

1 = N.

Since N > k is arbitrary, it follows that

lim
t→0

∥∥∥∥K(t)ek −K(0)ek
t

∥∥∥∥2

= +∞.
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This implies that K(t)ek is not strongly differentiable at t = 0.
We next show that K(t)ek is not strongly differentiable at each t ̸= 0. By (7.5), we

have for all s ∈ R \ {0}

K(t+ s)ek −K(t)ek
s

= eit(H−Ek)K(s)ek
s

.

Hence ∥∥∥∥K(t+ s)ek −K(t)ek
s

∥∥∥∥ =

∥∥∥∥K(s)ek
s

∥∥∥∥ .
By the preceding result, the right hand side diverges to +∞ as s→ 0. Therefore K(t)ek
is not strongly differentiable at t. �

Remark 7.2 We have

⟨eℓ, K(t)ek⟩ =

{
i e

it(Eℓ−Ek)−1
Eℓ−Ek

; ℓ ̸= k

0 ; ℓ = k
(7.7)

Hence, for all k, ℓ ∈ N, ⟨eℓ, K(t)ek⟩ is differentiable in t ∈ R and

d

dt
⟨eℓ, K(t)ek⟩ = (δℓk − 1)eit(Eℓ−Ek). (7.8)

Proposition 7.7 tells us some singularity of K(t) acting on D0. But, as shown in the
next proposition, K(t) restricted to Dc is strongly differentiable at t = 0.

Proposition 7.8 For all ψ ∈ Dc, the H-valued function K(t)ψ is strongly differentiable
at t = 0 with

d

dt
K(t)ψ

∣∣∣∣
t=0

= ψ. (7.9)

Proof. We need only to prove the statement for ψ of the form ψ = ek − eℓ (k, ℓ ∈
N, k ̸= ℓ). For all t ∈ R \ {0}, we have

K(t)(ek − eℓ)

t
= A(t) +B(t),

where

A(t) := i
eit(Eℓ−Ek) − 1

t(Eℓ − Ek)
eℓ − i

eit(Ek−Eℓ) − 1

t(Ek − Eℓ)
ek,

B(t) := i

∞∑
n̸=k,ℓ

(
eit(En−Ek) − 1

t(En − Ek)
− eit(En−Eℓ) − 1

t(En − Eℓ)

)
en.

It is easy to see that
lim
t→0

A(t) = ek − eℓ.
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As for B(t), we have

∥B(t)∥2 =
∞∑

n̸=k,ℓ

|Fn(t)|2,

where

Fn(t) :=
eit(En−Ek) − 1

t(En − Ek)
− eit(En−Eℓ) − 1

t(En − Eℓ)
.

It is easy to see that
lim
t→0

Fn(t) = 0.

Moreover, one can show that

|Fn(t)| ≤
C

|En − Ek|
, n ̸= k, ℓ,

where C > 0 is a constant independent of n and t. Since
∑∞

n̸=k 1/|En − Ek|2 < ∞, one

can apply the dominated convergence theorem to conclude that limt→0 ∥B(t)∥2 = 0. Thus
K(t)(ek − eℓ) is strongly differentiable at t = 0 and (7.9) with ψ = ek − eℓ holds. �

Proposition 7.9 For all k, ℓ ∈ N with k ̸= ℓ, the H-valued function K(t)(ek − eℓ) is not
strongly differentiable at t ̸∈ {2πn/(Ek − Eℓ)|n ∈ Z}.

Proof. Let t ̸= 2πn/(Ek − Eℓ) (n ∈ Z) and s ∈ R \ {0}. Then, by (7.5), we have

(K(t+ s) −K(t))(ek − eℓ)

s
= eitH

K(s)

s
e−itH(ek − eℓ).

Hence ∥∥∥∥(K(t+ s) −K(t))(ek − eℓ)

s

∥∥∥∥ = ∥u(s)∥

with

u(s) :=
K(s)

s
(e−itEkek − e−itEℓeℓ).

We write
u(s) = u1(s) + u2(s)

with

u1(s) := e−itEk
K(s)

s
(ek − eℓ), u2(s) := (e−itEk − e−itEℓ)

K(s)

s
eℓ.

By Proposition 7.8, we have lims→0 u1(s) = e−itEk(ek − eℓ). On the other hand, we have
from the proof of Proposition 7.7 and the assumed condition for t

lim
s→0

∥u2(s)∥ = +∞.

Hence lims→0 ∥u(s)∥ = +∞. Thus the desired result follows. �
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8 Possible Connections with Regular Perturbation

Theory

We consider a perturbation of H by a symmetric operator HI on H:

H(λ) := H + λHI , (8.1)

where λ ∈ R is a perturbation parameter. For simplicity, we assume that HI is H-
bounded: D(H) ⊂ D(HI) and there exist constants a, b ≥ 0 such that

∥HIψ∥ ≤ a∥Hψ∥ + b∥ψ∥, ψ ∈ D(H).

Then, by the Kato-Rellich theorem (e.g., [15, Theorem X.12]), for all λ ∈ R satisfying

a|λ| < 1, (8.2)

H(λ) is self-adjoint and bounded below. In what follows, we assume (8.2).

8.1 Eigenvalues of H(λ)

We fix n ∈ N arbitrarily. By a general theorem in regular perturbation theory (e.g., [16,
Theorem XII.9]), there exists a constant cn > 0 such that, for all |λ| < cn, H has a unique,
isolated non-degenerate eigenvalue En(λ) near En. Moreover, En(λ) is analytic in λ with
Taylor expansion

En(λ) = En + E(1)
n λ+ E(2)

n λ2 + · · · , (8.3)

where

E(1)
n := ⟨en, HIen⟩ , E(2)

n :=
∞∑
m̸=n

| ⟨en, HIem⟩ |2

En − Em
. (8.4)

As an eigenvector of H(λ) with eigenvalue En(λ), one can take a vector ψn(λ) analytic
in λ with Taylor expansion

ψn(λ) = en + e(1)
n λ+ · · · , (8.5)

where

e(1)
n :=

∞∑
m̸=n

⟨em, HIen⟩
En − Em

em. (8.6)

By Lemma 2.2, we have

⟨en, T em⟩ =


i

En − Em
;n ̸= m

0 ;n = m

Hence E
(2)
n can be written

E(2)
n = (−i)

∞∑
m=1

| ⟨en, HIem⟩ |2 ⟨en, T em⟩ . (8.7)
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To rewrite the right hand side only in terms of en and linear operators on H, we note that

∞∑
m=1

| ⟨en, HIem⟩ |2 = ∥HIen∥2 <∞

by the Parseval equality. Hence

∞∑
m=1

| ⟨en, HIem⟩ |4 <∞.

Therefore the infinite series

fn :=
∞∑
m=1

| ⟨en, HIem⟩ |2em (8.8)

strongly converges and defines a vector in H. Thus we can define a linear operator V on
H as follows:

D(V ) := D0, (8.9)

V ψ := −i
∞∑
n=1

⟨en, ψ⟩ fn, ψ ∈ D0 (8.10)

where the right hand side of (8.10) is a sum over a finite term. It is easy to see that V is
a symmetric operator.

Proposition 8.1 For all n ∈ N,

E(2)
n = ⟨Ten, V en⟩ . (8.11)

Proof. We have V en = −ifn. Hence ⟨Ten, V en⟩ = −i ⟨Ten, fn⟩, which is equal to the
right hand side of (8.7). �

This proposition suggests some role of the time operator T1 = T |D0 in the perturbation
expansions of the eigenvalues of H.

As for the first order term e
(1)
n λ of the eigenvector ψn(λ), we have

e(1)
n = (−i)

∞∑
m=1

⟨em, HIen⟩ ⟨en, T em⟩ em. (8.12)

8.2 Transition probability amplitudes

In the context of quantum mechanics whereH(λ) is the Hamiltonian of a quantum system,
the complex number

⟨
ϕ, e−itH(λ)ψ

⟩
with unit vectors ϕ, ψ ∈ H is called the transition

probability amplitude for the probability such that the state of the quantum system at
time t is found in the state ϕ under the condition that the state of the quantum system
at time zero is ψ.

26



Lemma 8.2 Let ϕ, ψ ∈ D(H). Then, for all t ∈ R,

⟨
ϕ, e−itH(λ)ψ

⟩
=
⟨
ϕ, e−itHψ

⟩
− iλ

∫ t

0

⟨
ei(t−s)Hϕ,HIe

−isHψ
⟩
ds+O(λ2). (8.13)

Proof. By a simple application of a general formula for the unitary group generated
by a self-adjoint operator ([5, Lemma 5.9]), we have

e−itH(λ)ψ = e−itHψ − iλ

∫ t

0

e−i(t−s)H(λ)HIe
−isHψds, (8.14)

where the integral is taken in the strong sense. Hence

⟨
ϕ, e−itH(λ)ψ

⟩
=

⟨
ϕ, e−itHψ

⟩
− iλ

∫ t

0

⟨
ei(t−s)H(λ)ϕ,HIe

−isHψ
⟩
ds

=
⟨
ϕ, e−itHψ

⟩
− iλ

∫ t

0

⟨
ei(t−s)Hϕ,HIe

−isHψ
⟩
ds+R(λ),

where

R(λ) := −iλ
∫ t

0

⟨(
ei(t−s)H(λ) − ei(t−s)H

)
ϕ,HIe

−isHψ
⟩
ds.

Using (8.14) again, we have

R(λ) = −λ2

∫ t

0

ds

∫ −(t−s)

0

ds′
⟨
ei(t−s+s

′)H(λ)HIe
−is′Hϕ,HIe

−isHψ
⟩
.

Hence

|R(λ)| ≤ λ2

∫ |t|

0

ds

∫ |t−s|

0

ds′∥HIe
−is′Hϕ∥∥HIe

−isHψ∥

Therefore R(λ) = O(λ2). Thus (8.13) holds. �
Applying (8.13) with ϕ = em and ψ = en (n ̸= m), we have

⟨
em, e

−itH(λ)en
⟩

= −λe
−itEn − e−itEm

Em − En
⟨em, HIen⟩ +O(λ2), (8.15)

which, combined with (7.7), gives⟨
em, e

−itH(λ)en
⟩

= iλ
⟨
en, e

−itHK(t)em
⟩
⟨em, HIen⟩ +O(λ2). m ̸= n. (8.16)

This suggests a physical meaning of the commutation factor K.
By Theorem 7.3, one can rewrite the first term on the right hand side in terms of T1

and e−itH , obtaining⟨
em, e

−itH(λ)en
⟩

= iλ
⟨
en, [T1, e

−itH ]em
⟩
⟨em, HIen⟩ +O(λ2), m ̸= n. (8.17)

This also is suggestive on physical meaning of the time operator T1.
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