<table>
<thead>
<tr>
<th>Title</th>
<th>Regularities of ground states of quantum field models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Arai, Asao; Hirokawa, Masao; Hiroshima, Fumio</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyushu journal of mathematics, 61(2), 321-372</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-09</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/38234</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>KJM.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Regularities of ground states of quantum field models

Asao Arai, Masao Hirokawa and Fumio Hiroshima

Abstract

Regularities and higher order regularities of ground states of quantum field models are investigated through the fact that asymptotic annihilation operators vanish ground states. Moreover a sufficient condition for the absence of a ground state is given.

Keywords: Ground states, number operators, boson Fock space, scattering theory, infrared divergence, generalized spin boson models.

1 Introduction

A basic object in a quantum field model is a ground state of it which is defined to be an eigenvector of the Hamiltonian H (a self-adjoint operator on a Hilbert space) of the model with eigenvalue equal to the infimum $E(H)$ of the spectrum of H, provided that $E(H)$ is an eigenvalue of H. In this paper we investigate regularities of ground states of quantum field models. Here we mean by regularities properties of what class of subspaces ground states belong to, including absence of ground states in certain subspaces.

As is well known, the existence of a ground state of a quantum field model may depend on properties of objects contained in its Hamiltonian such as a one-particle energy function and cutoff functions. In particular, it is subtle in the case where the quantum field is massless ([5, 2, 10, 11, 12, 13, 19] and references therein), being related to the so-called infrared divergence [21]. From this point of view, it is important to characterize regularities of ground states, in particular, absence of them, in terms of objects contained in the Hamiltonian of the model under consideration, as generally as possible. This is the main motivation of this work. Preliminary work concerning this theme was done in a previous paper [5], where the absence of ground states of
an abstract and general model, called the \textit{generalized spin boson} (GSB) model, was discussed. In the present work we extend results obtained in [5] to a more general class of quantum field models, establishing new criteria for regularities of ground states. In particular we consider higher order regularities of ground states, where higher order regularities means properties that ground states belong to smaller subspaces indexed by powers of a nonnegative self-adjoint operator. In [8, 16] the higher order regularities of ground states of the Nelson model and the Pauli-Fierz model are investigated. In [8], the functional integral representation of a semigroup generated by the Nelson Hamiltonian is applied. Our method is based on the functional analysis and different from [8, 16].

This paper is organized as follows. In Section 2 we define the quantum field model to be considered. We prove general results on regularities of ground states. Section 3 is concerned with absence of ground states of the model and discuss the Nelson model with and without infrared cutoffs, and the Pauli-Fierz model. In Section 4 we consider higher order regularities of ground states for general models. In Section 5 we apply the general results established in the previous sections to the GSB model, where we study the absence of ground states, and higher order regularities of ground states are shown. In the last section we give an appendix.

\section{Regularities of ground states: general aspects}

\subsection{Fock spaces and second quantizations}

Let \mathcal{K} be a separable Hilbert space over complex field \mathbb{C}, and $\otimes^n_s \mathcal{K}$ denote the n-fold symmetric tensor product of \mathcal{K} with $\otimes^0_s \mathcal{K} := \mathbb{C}$. The norm and the scalar product on Hilbert space \mathcal{X} are denoted by $\|f\|_\mathcal{X}$ and $(f, g)_\mathcal{X}$, $f, g \in \mathcal{X}$, respectively, where $(f, g)_\mathcal{X}$ is anti-linear in f and linear in g. The norm of bounded operator from \mathcal{X} to a Hilbert space \mathcal{Y} is denoted by $\|X\|_{\mathcal{X} \to \mathcal{Y}}$ and the domain of unbounded operator Y is by $D(Y)$. The Boson Fock space over \mathcal{K} is defined by

\[F_b(\mathcal{K}) := \bigoplus_{n=0}^{\infty} [\otimes^n_s \mathcal{K}] = \{ \Psi = \{ \Psi^{(n)} \}_{n=0}^{\infty} | \| \Psi \|^2_{F_b(\mathcal{K})} := \sum_{n=0}^{\infty} \| \Psi^{(n)} \|^2_{\otimes^n_s \mathcal{K}} < \infty \} . \]

The Fock vacuum is defined by $\Omega := \{ 1, 0, 0, \ldots \} \in F_b(\mathcal{K})$ and the finite particle subspace of $F_b(\mathcal{K})$ by

\[F_{b,0}(\mathcal{K}) := \{ \{ \Psi^{(n)} \}_{n=0}^{\infty} \in F_b(\mathcal{K}) | \Psi^{(n)} = 0 \text{ for all } n \geq n_0 \text{ with some } n_0 \} . \]

It is known that $F_{b,0}(\mathcal{K})$ is dense in $F_b(\mathcal{K})$. The annihilation operator $a(f)$ with $f \in \mathcal{K}$ is defined to be a densely defined closed operator on $F_b(\mathcal{K})$ whose adjoint is given by

\[(a(f)^* \Psi)^{(n)} := \sqrt{n} S_n(f \otimes \Psi^{(n-1)}), \quad \Psi \in D(a(f)^*) , \]
where S_n denotes the symmetrization operator on $\otimes^n\mathcal{K}$, i.e., $S_n(\otimes^n\mathcal{K}) = \otimes^n\mathcal{K}$. We note that $a(f)$ is anti-linear in f and $a^*(g)$ linear in g. The operators $a(f)$ and $a^*(f)$ leave $\mathcal{F}_{b,0}(\mathcal{K})$ invariant and satisfy the canonical commutation relations on $\mathcal{F}_{b,0}(\mathcal{K})$:

\begin{align}
[a(f), a^*(g)] &= (f, g)_{\mathcal{K}}, \\
[a(f), a(g)] &= 0, \\
[a^*(f), a^*(g)] &= 0.
\end{align}

Since $a(f)$ and $a^*(f)$ are closable operators, their closed extensions are denoted by the same symbols, respectively. Define $\mathcal{F}^D_{b,0}(\mathcal{K})$ with subspace $D \subset \mathcal{K}$ by the finite linear hull of

$$\{\Omega\} \cup \{a^*(f_1) \cdots a^*(f_n)\Omega \; | \; f_j \in D, j = 1, \ldots, n, n \geq 1\}.$$

It is known that $\mathcal{F}^D_{b,0}(\mathcal{K})$ is dense in $\mathcal{F}_{b}(\mathcal{K})$ if D is dense in \mathcal{K}. Let C be a closed operator on \mathcal{K}. Define $d\Gamma_n(C) : \otimes^n\mathcal{K} \to \otimes^n\mathcal{K}$ by

$$d\Gamma_n(C) := \sum_{j=1}^{\infty} \frac{1}{j} \otimes \cdots \otimes \frac{1}{n} \otimes 1 \otimes \cdots \otimes 1,$$

and $d\Gamma_0(C) : \mathbb{C} \to \mathbb{C}$ by

$$d\Gamma_0(C)z = 0, \quad z \in \mathbb{C}.$$

The second quantization of C is the operator defined by

$$d\Gamma(C) := \bigoplus_{n=0}^{\infty} d\Gamma_n(C)$$

with $D(d\Gamma(C)) := \mathcal{F}^{D(C)}_{b,0}(\mathcal{K})$. Note that

$$d\Gamma(C)\Omega = 0$$

$$d\Gamma(C)a^*(f_1) \cdots a^*(f_n)\Omega = \sum_{j=1}^{n} a^*(f_1) \cdots a^*(Cf_j) \cdots a^*(f_n)\Omega,$$

$$f_j \in D(C), \quad j = 1, \ldots, n.$$

For a nonnegative self-adjoint operator K, $d\Gamma(K)$ is a nonnegative essentially self-adjoint operator. We denote its self-adjoint extension by the same symbol, $d\Gamma(K)$. $d\Gamma(1)$ is referred to as the number operator, which is denoted by

$$N := d\Gamma(1).$$

It is known that, for all $\Psi \in D(d\Gamma(K)^{1/2})$ and $f \in D(K^{-1/2})$,

\begin{align}
\|a(f)\Psi\|^2_{\mathcal{F}_{b,0}(\mathcal{K})} &\leq \|K^{-1/2}f\|^2_{\mathcal{K}} \|d\Gamma(K)^{1/2}\Psi\|^2_{\mathcal{F}_{b,0}(\mathcal{K})}, \\
\|a^*(f)\Psi\|^2_{\mathcal{F}_{b,0}(\mathcal{K})} &\leq \|K^{-1/2}f\|^2_{\mathcal{K}} \|d\Gamma(K)^{1/2}\Psi\|^2_{\mathcal{F}_{b,0}(\mathcal{K})} + \|f\|^2_{\mathcal{K}} \|\Psi\|^2_{\mathcal{F}_{b,0}(\mathcal{K})}.
\end{align}
Lemma 2.1 Let $0 \leq \epsilon < 1$ and n be a non-negative integer. Let $f \in \mathbb{D}(K^{-1/2}) \cap \mathbb{D}(K^{n+1})$. Then $a^\epsilon(f)$ maps $\mathbb{D}(d\Gamma(K)^{(n+1)/2})$ into $\mathbb{D}(d\Gamma(K)^{n+1})$. In particular, it follows that $\Psi \in \mathbb{D}(a^\epsilon(f_1) \cdots a^\epsilon(f_n))$ for $\Psi \in \mathbb{D}(d\Gamma(K)^{n/2})$ and $f_j \in \mathbb{D}(K^{-1/2}) \cap \mathbb{D}(K^{[n/2]})$, $j = 1, \ldots, n$, where a^ϵ denotes a or a^*, and $[n/2]$ the integer part of $n/2$.

Moreover it follows that

$$[d\Gamma(K), a(f)]\Psi = -a(Kf), \quad \Psi \in \mathbb{D}(d\Gamma(K)^{3/2}), \quad f \in D(K),$$

$$[d\Gamma(K), a^*(f)]\Psi = a^*(Kf), \quad \Psi \in \mathbb{D}(d\Gamma(K)^{3/2}), \quad f \in D(K).$$

Proof: See [1, Lemmas 2.3 and 2.5].

2.2 Total Hamiltonians

Let \mathcal{H} be a Hilbert space over \mathbb{C}. Then one can make the Hilbert space

$$\mathcal{F} := \mathcal{H} \otimes \mathcal{F}_b(\mathcal{K}).$$

Let A be a self-adjoint operator bounded from below on \mathcal{H} and S a nonnegative self-adjoint operator on \mathcal{H}. The decoupled Hamiltonian

$$H_0 := A \otimes 1 + 1 \otimes d\Gamma(S)$$

is self-adjoint on

$$D(H_0) := D(A \otimes 1) \cap D(1 \otimes d\Gamma(S))$$

and bounded from below. Let H_1 be a symmetric operator on \mathcal{F} such that $D(H_0) \subset D(H_1)$. The total Hamiltonian under consideration is the symmetric operator

$$H := H_0 + g H_1$$

on \mathcal{F}, where $g \in \mathbb{R}$ is a coupling constant. Assumption (A.1) is as follows.

(A.1) There exist constants $a \geq 0$ and $b \geq 0$ such that

$$\|H_1 \Psi\| \leq a\|H_0 \Psi\| + b\|\Psi\|, \quad \Psi \in D(H_0).$$

Proposition 2.2 Suppose (A.1). Then for g with $|g| < 1/a$, H is self-adjoint on $D(H_0)$ and bounded from below. Moreover it is essentially self-adjoint on any core of H_0.

Proof: It follows from the Kato-Rellich theorem [23].
(1) \(\Psi \in D(S) \) if and only if \(F_S(\cdot)(U\Psi)(\cdot) \in L^2(M) \),

(2) \((USU^{-1})\Psi(k) = F_S(k)\Psi(k) \) for \(\Psi \in UD(S) \) for almost every \(k \in M \).

Hence, without loss of generality, we can take \(\mathcal{K} \) to be an \(L^2 \)-space. Thus, in what follows, we set

\[
\mathcal{K} = L^2(M, d\mu),
\]

where we do not assume that \(\mu \) is a finite measure, but \(\sigma \)-finite measure, and take \(S \) to be a multiplication operator on \(\mathcal{K} \) by a non-negative function \(F_S(k) \) such that

\[
0 < F_S(k) < \infty, \quad \mu-a.e. k.
\]

In what follows, we write \(F_S \) as \(S \) and set

\[
\mathcal{M}_m := D(S^m).
\]

2.3 Regularities of ground states

We denote \(\inf \sigma(K) \) by \(E(K) \) for a self-adjoint operator \(K \). Let us assume that a ground state \(\varphi_g \) of \(H \) exists. Then

\[
H\varphi_g = E(H)\varphi_g.
\]

We fix a normalized ground state \(\varphi_g \) of \(H \), i.e., \(\|\varphi_g\|_\mathcal{F} = 1 \). Let \(B \) and \(C \) be operators on a Hilbert space \(W \). We define a quadratic form \([B,C]_W^D \) with form domain \(D \times D \) such that

\[
D \subset D(B^*) \cap D(B) \cap D(C^*) \cap D(C),
\]

by

\[
[B,C]_W^D(\Psi, \Phi) := (B^*\Psi, C\Phi)_W - (C^*\Psi, B\Phi)_W, \quad \Psi, \Phi \in D.
\]

Assumption (A.2) is as follows.

(A.2) There exists an operator \(T(k) : \mathcal{F} \to \mathcal{F} \) a.e. \(k \in M \) such that

(1) \(D(H) \subset D(T(k)) \) for almost every \(k \in M \),

(2) \(T(k)\Phi, \Phi \in D(H), \) is weakly measurable in \(k \),

(3) \[
[1 \otimes a(f), H]_W^{D(H)}(\Psi, \Phi) = \int_M \overline{f(k)}(\Psi, T(k)\Phi)_{\mathcal{F}}d\mu(k) \text{ for } \Psi, \Phi \in D(H).
\]

Define

\[
a_t(f) := e^{-itH}e^{-itH_0}(1 \otimes a(f))e^{-itH_0}e^{itH} = e^{-itH}(1 \otimes a(e^{itS}f))e^{itH}.
\]

We want to investigate \(a_t(f) \) as \(t \to \infty \) strongly. Let \(\sigma(S), \sigma_p(S) \) and \(\sigma_{ac}(S) \) be the spectrum, the point spectrum, and the absolutely continuous spectrum of \(S \), respectively. Assumptions (A.3)-(A.5) are as follows.
(A.3) The operator S is purely absolutely continuous.

(A.4) There exists a dense subspace $C_0 \subset L^2(M)$ such that

1. $C_0 \subset M_{-1/2}$, and for any $f \in M_{-1/2} \cap M_0$, there exists a sequence $\{f_m\}_m \subset C_0$ such that $\text{s-lim}_{m \to \infty} f_m = f$ and $\text{s-lim}_{m \to \infty} f_m / \sqrt{S} = f / \sqrt{S}$.

2. For $f \in C_0$ and $\Psi \in D(H)$,
\[\int_M (\overline{f(k)}(\Psi, e^{-is(H - E(H) + S(k)))T(k)\varphi_g})_F d\mu(k) \in L^1([0, \infty), ds). \]

(A.5) $\|T(\cdot)\varphi_g\|_F \in M_{-1/2} \cap M_0$.

Lemma 2.3 Suppose (A.3). Then $\mu(\{k \in M|S(k) = a\}) = 0$ for any $a \in \mathbb{R}$.

Proof: Let $\mathcal{N} := \{k \in M|S(k) = a\}$ and suppose that $0 < \mu(\mathcal{N}) \leq \infty$. Since μ is a σ-finite measure, $M = \bigcup_{n=1}^{\infty} M_n$ with $\mu(M_n) < \infty$ for all n. Then there exists m such that $\mu(M_m \cap \mathcal{N}) > 0$. Let $1_{M_m \cap \mathcal{N}}$ be the characteristic function on $M_m \cap \mathcal{N}$. Then $1_{M_m \cap \mathcal{N}} \in L^2(M)$ and $S1_{M_m \cap \mathcal{N}} = a1_{M_m \cap \mathcal{N}}$, which implies that $a \in \sigma_p(S)$. It contradicts (A.3). Thus $\mu(\mathcal{N}) = 0$. \qed

Lemma 2.4 Assume (A.1)-(A.5). Then for $f \in M_{-1/2} \cap M_0$,
\[\int_M \|f(k) (H - E(H) + S(k))^{-1} T(k) \varphi_g \|_F d\mu(k) < \infty \]

and
\[(1 \otimes a(f)) \varphi_g = -g \int_M (\overline{f(k)}(H - E(H) + S(k))^{-1} T(k) \varphi_g d\mu(k), \]

where the integral on the right-hand side above is in the strong sense.

Remark 2.5 (1) Lemma 2.4 is a generalization of [12, 13] and [17, Lemma 2.7].

(2) By Lemma 2.3, $S(k) \neq 0$ for almost every $k \in M$. Thus $(H - E(H) + S(k))^{-1}$ is a bounded operator for almost every $k \in M$.

(3) $T(k)\Phi, \Phi \in D(H)$, is strongly measurable since $T(k)\Phi$ is weakly measurable [22, Theorem IV.22].

Proof: Note that
\[\int_M \|f(k) (H - E(H) + S(k))^{-1} T(k) \varphi_g \|_F d\mu(k) \]
\[\leq \|f / \sqrt{S}\|_{L^2(M)} \left(\int_M \|T(k) \varphi_g\|_F^2 / S(k) d\mu(k) \right)^{1/2} < \infty, \quad (2.6) \]
and \(\varphi_g \in D(1 \otimes a(f)) \) follows from the fact that \(\varphi_g \in D(1 \otimes d\Gamma(S)) \) and Lemma 2.1. We see that for \(\Psi, \Phi \in D(H) \) and for \(f \in C_0 \),

\[
\frac{d}{dt}(\Psi, a_t(f)\Phi)_\mathcal{F} = ig[1 \otimes a(e^{itS} f), H]_{L^2(M)}^{D(H)}(e^{itH} \Psi, e^{itH} \Phi) = ig \int_M \overline{f}(k) e^{-its(k)}(\Psi, e^{-itH} T(k) e^{itH} \Phi)_\mathcal{F} d\mu(k).
\]

Then

\[
(\Psi, a_t(f)\Phi)_\mathcal{F} = (\Psi, (1 \otimes a(f))\Phi)_\mathcal{F} + ig \int_0^t ds \left(\int_M \overline{f}(k) e^{-isS(k)}(\Psi, e^{-isH} T(k) e^{isH} \Phi)_\mathcal{F} d\mu(k) \right). \tag{2.7}
\]

Since \(s\lim_{s \to \infty} a_t(f)\varphi_g = 0 \) for \(f \in L^2(M) \) by [18], it follows from (2.7) and (A.4) that

\[
(\Psi, (1 \otimes a(f))\varphi_g)_\mathcal{F} = -ig \int_0^\infty ds \left(\int_M \overline{f}(k) e^{-is(H-E(H)+S(k))} T(k) \varphi_g)_\mathcal{F} d\mu(k) \right).
\]

We have

\[
(\Psi, (1 \otimes a(f))\varphi_g)_\mathcal{F} = -ig \lim_{\epsilon \to 0} \int_0^\infty ds e^{-\epsilon s} \left(\int_M \overline{f}(k) e^{-is(H-E(H)+S(k))} T(k) \varphi_g)_\mathcal{F} d\mu(k) \right) = -g \int_M (\Psi, \overline{f}(k)(H - E(H))^{-1} T(k) \varphi_g)_\mathcal{F} d\mu(k).
\]

Here on the first equality we used the Lebesgue dominated convergence theorem and (A.4)-(2), on the second equality, Fubini’s theorem and (A.5). Hence by (2.6), for \(f \in C_0 \),

\[
(\Psi, (1 \otimes a(f))\varphi_g)_\mathcal{F} = (\Psi, -g \int_M \overline{f}(k)(H - E(H) + S(k))^{-1} T(k) \varphi_g d\mu(k))_\mathcal{F}
\]

and then

\[
(1 \otimes a(f))\varphi_g = -g \int_M \overline{f}(k)(H - E(H) + S(k))^{-1} T(k) \varphi_g. \tag{2.8}
\]

We can take a sequence \(\{f_m\} \subset C_0 \) such that \(s\lim_{m \to \infty} f_m = f \) and \(s\lim_{m \to \infty} f_m/\sqrt{S} = f/\sqrt{S} \) for \(f \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0 \). We see that

\[
s\lim_{m \to \infty} (1 \otimes a(f_m))\varphi_g = (1 \otimes a(f))\varphi_g \tag{2.9}
\]

by

\[
\|a(f)\Psi\|_\mathcal{F} \leq \|S^{-1/2} f\|_{L^2(M)} \|d\Gamma(S)^{1/2} \Psi\|_\mathcal{F}, \quad \Psi \in D(d\Gamma(S)^{1/2}).
\]
Moreover from
\[\| \int_M (\overline{f_m(k)} - f(k)) (H - E(H) + S(k))^{-1} T(k) \varphi_g d\mu(k) \| \]
\[\leq \|(\overline{f_m(k)} - f(k))/\sqrt{S}\|_{L^2(M)} \left(\int_M \|T(k) \varphi_g\|_{\mathcal{F}}^2 / S(k) d\mu(k) \right)^{1/2}, \]
it follows that
\[\text{\(s\)-lim}_{m \to \infty} \int_M \overline{f_m(k)} (H - E(H) + S(k))^{-1} T(k) \varphi_g d\mu(k) \]
\[= \int_M f(k) (H - E(H) + S(k))^{-1} T(k) \varphi_g d\mu(k). \tag{2.10} \]

By (2.9) and (2.10), (2.8) can be extended for \(f \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0 \). Thus the lemma is proved. \(\square \)

We want to find a necessary and sufficient condition for \(\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2}) \) with a nonnegative multiplication operator \(G \) on \(L^2(M) \). We define \(\kappa_G(k) \in \mathcal{F} \) by
\[\kappa_G(k) := \sqrt{G(k)}(H - E(H) + S(k))^{-1} T(k) \varphi_g, \quad a.e. \ k \in M, \]
and \(T_G : L^2(M) \to \mathcal{F} \) by
\[T_G f := \int_M f(k) \kappa_G(k) d\mu(k) \]
with the domain
\[D(T_G) := \{ f \in L^2(M) \| \| \int_M f(k) \kappa_G(k) d\mu(k) \|_{L^2(M)} < \infty \}. \]

Note that \(T_G \) is unbounded. Then by Lemma 2.4
\[(1 \otimes a(\sqrt{G} f)) \varphi_g = -gT_G \bar{f}, \quad f \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0. \tag{2.11} \]

Lemma 2.6 (1) The closure of \(T_G, \overline{T_G} \), is a Hilbert-Schmidt operator if and only if
\[\int_M \| \kappa_G(k) \|^2_{\mathcal{F}} d\mu(k) < \infty. \tag{2.12} \]

(2) Suppose that \(\overline{T_G} \) is a Hilbert-Schmidt operator. Then
\[\text{Tr}(T_G^* T_G) = \int_M \| \kappa_G(k) \|^2_{\mathcal{F}} d\mu(k). \]

Proof: The adjoint of \(T_G, T_G^* : \mathcal{F} \to L^2(M) \), is referred to as a Carleman operator with kernel \(\kappa_G \), i.e., \(T_G^* \Phi(\cdot) = (\kappa_G(\cdot), \Phi)_{\mathcal{F}} \) with \(D(T_G^*) = \{ \Phi \in \mathcal{F} \| (\kappa_G(\cdot), \Phi)_{\mathcal{F}} \in L^2(M) \} \).
Regularities of ground states

Then it is established in e.g., [26, p.141] that T_G is a Hilbert-Schmidt operator if and only if (2.12) holds, and

$$\text{Tr}(T_G^{**}T_G^*) = \int_M \|\kappa_G(k)\|^2 d\mu(k).$$

Hence the lemma is proved, since $T_G^{**} = T_G$ is a Hilbert-Schmidt operator if and only if so is T_G^*.

Lemma 2.7 Let K be a bounded operator on \mathcal{K}, and $\{e_m\}_{m=1}^\infty$ a complete orthonormal system in \mathcal{K} such that $e_m \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0$. Then (1) and (2) are equivalent.

(1) $\Psi \in D(d\Gamma(K^*K)^{1/2})$.

(2) $\Psi \in \bigcap_{m=1}^\infty D(a(K^*e_m))$ and $\sum_{m=1}^\infty \|a(K^*e_m)\|_{F_{\kappa,(K)}}^2 < \infty$.

Suppose that (1) or (2) is fulfilled. Then $\|d\Gamma(K^*K)^{1/2}\Psi\|_{F_{\kappa,(K)}}^2 = \sum_{m=1}^\infty \|a(K^*e_m)\|_{F_{\kappa,(K)}}^2$.

Proof: See Appendix A.

Theorem 2.8 Assume (A.1)-(A.5). Let G be a nonnegative multiplication operator on $L^2(M)$. Then (1) and (2) are equivalent.

(1) $\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2})$.

(2) $\int_M G(k)\|(H - E(H) + S(k))^{-1}T(k)\varphi_g\|_F^2 d\mu(k) < \infty$.

Furthermore suppose that (1) or (2) holds. Then it follows that

$$\|(1 \otimes d\Gamma(G)^{1/2})\varphi_g\|_F^2 = g^2 \int_M G(k)\|(H - E(H) + S(k))^{-1}T(k)\varphi_g\|_F^2 d\mu(k).$$

(2.13)

Proof: We divide the proof into two steps.

(Step I) The case where G is bounded.

Let $\{e_m\}_{m=1}^\infty$ be an orthonormal system of \mathcal{K} such that $e_m \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0$, $m \geq 1$. By Lemma 2.7, $\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2})$ is equivalent to

$$\sum_{m=1}^\infty \|(1 \otimes a(\sqrt{G}e_m))\varphi_g\|_F^2 < \infty,$$

(2.14)

and, if (2.14) holds, the left-hand side of (2.14) is identical with $\|(1 \otimes d\Gamma(G)^{1/2})\varphi_g\|_F^2$.

By the definition of T_G and (2.11), (2.14) can be rewritten as

$$\sum_{m=1}^\infty \|(1 \otimes a(\sqrt{G}e_m))\varphi_g\|_F^2 = g^2 \sum_{m=1}^\infty \|T_Ge_m\|_F^2 < \infty,$$
since $e_m \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0$ for $m \geq 1$. Then \bar{T}_G is a Hilbert-Schmidt operator. Hence by Lemma 2.6, (1) is equivalent to

$$\int_M \|\kappa_G(k)\|^2_F d\mu(k) < \infty.$$

(2.15)

Namely (1) is equivalent to (2).

(Step II) The case where G is unbounded.

Let $\varphi_g = \{\varphi^{(n)}_g\}_{n=0}^{\infty}$ and $G_\Lambda(k) := \begin{cases} G(k), & G(k) < \Lambda, \\ \Lambda, & G(k) \geq \Lambda. \end{cases}

Proof of $(1) \Rightarrow (2)$. Note that

$$\| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n} = \int_M \left(\sum_{j=1}^{n} G_\Lambda(k_j) \right) \|\varphi^{(n)}_g(k_1, \cdots, k_n)\|^2_H \prod_{j=1}^{n} d\mu(k_j).$$

Hence we see that

$$\| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n} = \sum_{n=0}^{\infty} \| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n}$$

is monotonously increasing in Λ. Then the monotone convergence theorem yields that

$$\lim_{\Lambda \to \infty} \| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n} = \lim_{\Lambda \to \infty} \sum_{n=0}^{\infty} \| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n} = \sum_{n=0}^{\infty} \lim_{\Lambda \to \infty} \| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n} = \| (1 \otimes d\Gamma(G)^{1/2}) \varphi_g \|^2_{\mathcal{F}}.$$

Since $\varphi_g \in D(1 \otimes d\Gamma(G_\Lambda)^{1/2})$, we have by (Step I),

$$\| (1 \otimes d\Gamma(G_\Lambda)^{1/2}) \varphi_g \|^2_{\mathcal{F}} = \int_M G_\Lambda(k) \|(H - E(H) + S(k))^{-1}T(k)\varphi_g \|^2_F d\mu(k).$$

Take $\Lambda \to \infty$ on the both sides above. By the monotone convergence theorem again, we obtain that

$$\infty > \| (1 \otimes d\Gamma(G)^{1/2}) \varphi_g \|^2_{\mathcal{F}} = \int_M G_\Lambda(k) \|(H - E(H) + S(k))^{-1}T(k)\varphi_g \|^2_F d\mu(k).$$

Thus (2) follows.

Proof of $(1) \Leftarrow (2)$. From (2) it follows that

$$\infty > \int_M G_\Lambda(k) \|(H - E(H) + S(k))^{-1}T(k)\varphi_g \|^2_F d\mu(k) = \sum_{n=0}^{\infty} \| (1 \otimes d\Gamma_n (G_\Lambda)^{1/2}) \varphi^{(n)}_g \|^2_{\mathcal{F}_n}.$$
Regularities of ground states

Then by the monotone convergence theorem, as \(\Lambda \to \infty \) on the both sides above we obtain that

\[
\infty > \int_M G(k)\|(H - E(H) + S(k))^{-1}T(k)\varphi_g\|_\mathcal{F}^2\,d\mu(k)
= \sum_{n=0}^{\infty} \|(1 \otimes d\Gamma_n(G)^{1/2})\varphi_g^{(n)}\|_\mathcal{F}^2 = \|(1 \otimes d\Gamma(G)^{1/2})\varphi_g\|_\mathcal{F}^2.
\]

Thus (1) follows.

Finally (2.13) follows from the fact that

\[
\|(1 \otimes d\Gamma(G)^{1/2})\varphi_g\|_\mathcal{F}^2 = g^2 \sum_{m=1}^{\infty} \|T_G^m\varphi_g\|_\mathcal{F}^2 = g^2 \text{Tr}(T_G^*T_G)
= g^2 \int_M G(k)\|(H - E(H) + S(k))^{-1}T(k)\varphi_g\|_\mathcal{F}^2\,d\mu(k).
\]

Thus the proof is complete. \(\square \)

Corollary 2.9 Let \(G \) be a nonnegative multiplication operator on \(L^2(M) \). In addition to (A.1)-(A.5), suppose that \(\sqrt{G}||T(\cdot)\varphi_g||_\mathcal{F}/S \in L^2(M) \). Then \(\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2}) \).

In particular suppose that \(||T(\cdot)\varphi_g||_\mathcal{F}/S \in L^2(M) \). Then \(\varphi_g \in D(1 \otimes N^{1/2}) \).

Remark 2.10 (1) Theorem 2.8 is a generalization of [17, Theorem 2.9]. (2) Condition \(\sqrt{G}||T(\cdot)\varphi_g||_\mathcal{F}/S \in L^2(M) \) is a generalization of an IR regularity condition in [4].

Proof: Since

\[
\int_M G(k)\|(H - E(H) + S(k))^{-1}T(k)\varphi_g\|_\mathcal{F}^2\,d\mu(k) \leq \int_M \frac{G(k)}{S(k)^2}||T(k)\varphi_g||_\mathcal{F}^2\,d\mu(k) < \infty,
\]

Theorem 2.8 yields the corollary. \(\square \)

3 Absence of ground states

3.1 Abstract theory

Let \(P_g \) be the projection onto the one-dimensional subspace \(\{z\varphi_g|z \in \mathbb{C}\} \) of \(\mathcal{F} \).

Theorem 3.1 Assume (A.1)-(A.5). Let \(G \) be a nonnegative multiplication operator on \(L^2(M) \). Then \(H \) has no ground state \(\varphi_g \) such that \(\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2}) \) and

\[
\sqrt{G}(\varphi_g, T(\cdot)\varphi_g)_{\mathcal{F}}/S \notin L^2(M).
\]
Remark 3.2 Condition (3.1) is a generalization of an IR singularity condition in [4].

Proof: Suppose that there exists a ground state \(\varphi_{g} \) such as in (3.1). We have

\[
\int_{M} G(k) \|(H - E(H) + S(k))^{-1}T(k)\varphi_{g}\|^2_{L^2} d\mu(k) \\
\geq \int_{M} G(k) \|(H - E(H) + S(k))^{-1}P_{g}T(k)\varphi_{g}\|^2_{L^2} d\mu(k).
\]

Since

\[
\|(H - E(H) + S(k))^{-1}P_{g}T(k)\varphi_{g}\|^2_{L^2} = \frac{\|P_{g}T(k)\varphi_{g}\|^2_{L^2}}{S(k)^2} = \frac{|(\varphi_{g}, T(k)\varphi_{g})_{\mathcal{F}}|^2}{S(k)^2},
\]

it follows that

\[
\int_{M} G(k) \|(H - E(H) + S(k))^{-1}T(k)\varphi_{g}\|^2_{L^2} d\mu(k) \geq \int_{M} \left(\frac{\sqrt{G(k)}}{S(k)}|((\varphi_{g}, T(k)\varphi_{g})_{\mathcal{F}})|\right)^2 d\mu(k).
\]

Since the right-hand side above diverges by (3.1), \(\varphi_{g} \notin D(1 \otimes d\Gamma(G)^{1/2}) \) follows from Lemma 2.6. Thus the desired result is obtained.

Setting \(G = 1 \) in Theorem 3.1, we have a corollary.

Corollary 3.3 Assume (A.1)-(A.5). Then \(H \) has no ground state \(\varphi_{g} \) in \(D(1 \otimes N^{1/2}) \) such that \((\varphi_{g}, T(\cdot)\varphi_{g})_{\mathcal{F}}/S \notin L^2(M) \).

3.2 The Nelson models

In the remainder of Section 3, we assume that \(\omega \) is the multiplication operator on \(L^2(\mathbb{R}^\nu) \) by

\[
\omega(k) := |k|.
\]

The so-called Nelson model was introduced by Nelson [20], which describes an interaction between nonrelativistic particles and a scalar quantum field. Here we consider only the case where one nonrelativistic particle interacts with a scalar quantum field in \(\mathbb{R}^\nu \). Then the Hilbert space for the Nelson model is defined by

\[
\mathcal{F}_{N} := L^2(\mathbb{R}^\nu) \otimes \mathcal{F}_{b}(L^2(\mathbb{R}^\nu)) \cong \int_{\mathbb{R}^\nu} \mathcal{F}_{b}(L^2(\mathbb{R}^\nu)) dx,
\]

where \(\int_{\mathbb{R}^\nu} \cdots dx \) denotes a constant fiber direct integral [24]. The Nelson Hamiltonian, \(H_{N} \), is defined by

\[
H_{N} := H_{N,0} + gH_{N,1},
\]
where \(g \in \mathbb{R} \) is a coupling constant,
\[
H_{N,0} := \left(-\frac{1}{2} \Delta + V \right) \otimes 1 + 1 \otimes d\Gamma(\omega)
\]
with \(V : \mathbb{R}^{\nu} \to \mathbb{R} \) an external potential, and
\[
H_{N,1} := \int_{\mathbb{R}^{\nu}} \phi(x) dx
\]
with
\[
\phi(x) := \frac{1}{\sqrt{2}} \{ a(f_{\omega,\lambda}) + a^*(f_{\omega,\lambda}) \}.
\]
Here for each \(x \in \mathbb{R}^\nu \) we define \(f_{\omega,\lambda} \in L^2(\mathbb{R}^\nu) \) by
\[
f_{\omega,\lambda}(k) := \lambda(k)e^{-ikx}/\sqrt{\omega(k)}.
\]

Proposition 3.4 Assume that \(\lambda/\sqrt{\omega}, \lambda/\omega \in L^2(\mathbb{R}^\nu) \) and that \(V \) is relatively bounded with respect to \(-\frac{1}{2} \Delta \) with a relative bound strictly less than one. Then for all \(g \in \mathbb{R} \), \(H_N \) is self-adjoint on \(D(H_{N,0}) \) and bounded from below. Moreover it is essentially self-adjoint on any core of \(H_{N,0} \).

Proof: See [20]. \(\square \)

We see that
\[
[1 \otimes a(f), H_{N,1}]_W^{D(H_N)}(\Psi, \Phi) = \int_{\mathbb{R}^{\nu}} \tilde{f}(k)(\Psi, T_N(k)\Phi)_{xy} dk;
\]
where
\[
T_N(k) := \frac{\lambda(k)}{\sqrt{2\omega(k)}} \int_{\mathbb{R}^{\nu}} e^{-ikx} dx.
\]
Under the following identifications
\[
H = H_N, \quad H_1 = H_{N,1}, \quad S(k) = \omega(k), \quad T(k) = T_N(k), \quad C_0 = C_0^2(\mathbb{R}^\nu \setminus Y),
\]
we can check that \(H_N \) satisfies assumptions (A.1)-(A.5), where
\[
Y := \bigcup_{n=1}^{\nu} \{(k_1, \ldots, k_\nu) \in \mathbb{R}^{\nu}|k_n = 0\}. \tag{3.3}
\]
Note that \(|f_{\nu} e^{i\omega(k)} f(k) dk| \leq c/s^2 \) holds for \(f \in C_0^2(\mathbb{R}^\nu \setminus Y) \). See (5.4). We introduce an assumption.

IR On a neighborhood of \(\{0\} \), \(\lambda \) is continuous and \(\lambda(k) \sim |k|^p \), where \(2p \leq 3 - \nu \).
Suppose (IR). Then $\lambda/\omega^{3/2} \notin L^2(\mathbb{R}^\nu)$, and if a ground state φ_g of H_N exists, then
\[
\frac{1}{\omega}(\varphi_g, T_N(\cdot)\varphi_g)_{\mathcal{F}_N} = (\varphi_g, e^{-i(\cdot,x)}\varphi_g)_{\mathcal{F}_N} \frac{\lambda}{\sqrt{2}\omega^{3/2}} \notin L^2(\mathbb{R}^3).
\] (3.4)
Thus it follows from Theorem 3.1 that, if $\lambda/\omega^{3/2} \notin L^2(\mathbb{R}^\nu)$ holds, then H_N has no ground state φ_g in $D(1 \otimes N^{1/2})$. Actually the absence of ground states of H_N under condition $\lambda/\omega^{3/2} \notin L^2(\mathbb{R}^\nu)$ has been established. See [11, 19].

3.3 Infrared regular representation of the Nelson models

The Nelson model in a non-Fock representation is introduced and investigated in [2]. The Nelson Hamiltonian in a non-Fock representation is given as a self-adjoint operator on \mathcal{F}_N by
\[
H_N^{\text{reg}} := H_{N,0} + gH_{N,1}^{\text{reg}}
\]
where $H_{N,1}^{\text{reg}} := \hat{H}_{N,1}^{\text{reg}} - gW \otimes 1 + gc$, and
\[
W(x) := \int_{\mathbb{R}^\nu} \frac{\lambda(k)^2}{\omega(k)^2} e^{-ikx} dk, \quad c := \frac{1}{2} \lambda/\omega^2_{L^2(\mathbb{R}^\nu)}, \quad \hat{H}_{N,1}^{\text{reg}} := \int_{\mathbb{R}^\nu} \phi_{\text{reg}}(x) dx.
\]
Here
\[
\phi_{\text{reg}}(x) := \frac{1}{\sqrt{2}} \left\{ a^*(f^x_{\lambda} - f^0_{\omega}) + a(f^x_{\lambda} - f^0_{\omega}) \right\}.
\]
It is known [2] that in the case of $\lambda/\omega^{3/2} \in L^2(\mathbb{R}^\nu)$, there exists a unitary operator U on \mathcal{F}_N such that $UH_NU^{-1} = H_N^{\text{reg}}$. However, in the case of $\lambda/\omega^{3/2} \notin L^2(\mathbb{R}^\nu)$, H_N and H_N^{reg} are not unitarily equivalent. We see that
\[
[1 \otimes a(f), H_N^{\text{reg}}]_{\mathcal{F}_N}^{D(H_N^{\text{reg}})}(\Psi, \Phi) = \int_{\mathbb{R}^\nu} \mathcal{J}(k)(\Psi, T_N^{\text{reg}}(k)\Phi)_{\mathcal{F}_N} dk,
\]
where
\[
T_N^{\text{reg}}(k) := \frac{\lambda(k)}{\sqrt{2}\omega(k)} \int_{\mathbb{R}^\nu} (e^{-ikx} - 1) dx.
\]
Suppose that a ground state φ_g of H_N^{reg} exists and $\|(|x| \otimes 1)\varphi_g\|_{\mathcal{F}_N} < \infty$. Actually for some V, e.g., $V(x) = -1/|x|, |x|^2$, $\|(|x| \otimes 1)\varphi_g\|_{\mathcal{F}_N} < \infty$ has been established. See, e.g., [7, 9, 17]. Then
\[
\frac{1}{\omega(k)} |(\varphi_g, T_N^{\text{reg}}(k)\varphi_g)_{\mathcal{F}_N}| \leq \frac{\lambda(k)|k|}{\sqrt{2}\omega(k)^{3/2}} \|\varphi_g\|_{\mathcal{F}_N} \|(|x| \otimes 1)\varphi_g\|_{\mathcal{F}_N} = \frac{\lambda(k)}{\sqrt{2}\omega(k)} \|\varphi_g\|_{\mathcal{F}_N} \|(|x| \otimes 1)\varphi_g\|_{\mathcal{F}_N}.
\]
Hence
\[
\frac{1}{\omega}(\varphi_g, T_N^{\text{reg}}(\cdot)\varphi_g)_{\mathcal{F}_N} \in L^2(\mathbb{R}^\nu).
\] (3.5)
Remark 3.5 We do not assume $\lambda/\omega^{3/2} \in L^2(\mathbb{R}^\nu)$ in (3.5).

In [2], the existence of a ground state φ_g of H_N^{reg} such that $\varphi_g \in D(1 \otimes N^{1/2})$ is established without assuming $\lambda/\omega^{3/2} \in L^2(\mathbb{R}^\nu)$.

3.4 The Pauli-Fierz models

The Pauli-Fierz model [21] describes an interaction between nonrelativistic particles and a quantum radiation field. The Hilbert space of the Pauli-Fierz model is given by

$$\mathcal{F}_{PF} := L^2(\mathbb{R}^\nu) \otimes \mathcal{F}_b(\oplus^{\nu-1} L^2(\mathbb{R}^\nu)) \cong \int_{\mathbb{R}^\nu} \mathcal{F}_b(\oplus^{\nu-1} L^2(\mathbb{R}^\nu)) dx.$$

The creation operator and the annihilation operator are denoted by $a^*(f_1 \oplus \cdots \oplus f_{\nu-1})$ and $a(f_1 \oplus \cdots \oplus f_{\nu-1})$, respectively. The Pauli-Fierz Hamiltonian is defined by

$$H_{PF} := H_{PF,0} + eH_{PF,1},$$

where

$$H_{PF,0} := \left(-\frac{1}{2}\Delta + V\right) \otimes 1 + 1 \otimes d\Gamma(\oplus^{\nu-1} \omega),$$

$$H_{PF,1} := -(p \otimes 1) \cdot A + \frac{e}{2} A \cdot A.$$

Here $p = (-i\partial/\partial x_1, ..., -i\partial/\partial x_{\nu})$ denotes the set of generalized partial differential operators, $e \in \mathbb{R}$ a coupling constant, V an external potential and $A = (A_1, ..., A_\nu)$ denotes a quantum radiation field defined by

$$A_\mu := \int_{\mathbb{R}^\nu} A_\mu(x) dx, \quad \mu = 1, ..., \nu,$$

where

$$A_\mu(x) := \frac{1}{\sqrt{2}} \left\{ a^*(\oplus_{j=1}^{\nu-1} e^{j}_{\mu} f_{\omega \lambda}) + a(\oplus_{j=1}^{\nu-1} e^{j}_{\mu} f_{\omega \lambda}) \right\}$$

and $e^j(k) = (e^j_1(k), ..., e^j_{\nu}(k))$, $j = 1, ..., \nu - 1$, denote ν-dimensional polarization vectors such that $e^j(k) \cdot e^{j'}(k) = \delta_{jj'} 1$ and $k \cdot e^j(k) = 0$, $j, j' = 1, ..., \nu - 1$. We can take $e^1, e^2, ..., e^{\nu-1}$ such that e^μ_j ($\mu = 1, ..., \nu, j = 1, ..., \nu - 1$) is continuous on $\mathbb{R}^\nu \setminus Z$ for some $Z \subset \mathbb{R}^\nu$ with Lebesgue measure $|Z| = 0$.

Proposition 3.6 Suppose that $\sqrt{\omega \lambda}, \lambda, \lambda/\sqrt{\omega}, \lambda/\omega \in L^2(\mathbb{R}^\nu)$ and that the external potential V is relatively bounded with respect to $-\frac{1}{2}\Delta$ with a relative bound strictly less than one. Then H_{PF} is self-adjoint on $D(H_{PF,0})$ for all $e \in \mathbb{R}$.
Regularities of ground states

Proof: See [14, 15].

We see that

\[[1 \otimes a(f_1 \otimes \cdots \otimes f_{\nu-1}), H_{PF,1}]_{W}^{D(H_{PF})}(\Psi, \Phi) = \sum_{j=1}^{\nu-1} \int_{\mathbb{R}^\nu} f_j(k)(\Psi, T_{PF,j}(k)\Phi)_{PF}dk, \]

where

\[T_{PF,j}(k) := -\frac{\lambda(k)}{\sqrt{2\omega(k)}} u_k e^j(k) \cdot (p \otimes 1 - eA) \]

and \(u_k : \mathcal{F}_{PF} \to \mathcal{F}_{PF} \) is the unitary operator defined by \(u_k = \int_{\mathbb{R}^\nu} e^{-ikx} dx \). Under the following identifications

\[H = H_{PF}, \quad H_1 = H_{PF,1}, \quad S(k) = \oplus_{j=1}^{\nu-1} \omega(k), \]

\[T(k) = \oplus_{j=1}^{\nu-1} T_{PF,j}(k), \quad C_0 = C_0^2(\mathbb{R}^\nu \setminus (Z \cup Y)), \]

we can check that \(H_{PF} \) satisfies assumptions (A.1)-(A.5). Suppose that there exists a ground state \(\varphi_g \) of \(H_{PF} \) such that \(\|(|x| \otimes 1)\varphi_g\|_{\mathcal{F}_{PF}} < \infty \). Then we obtain that

\[T_{PF,j}(k)\varphi_g = \frac{-\lambda(k)}{\sqrt{2\omega(k)}} u_k e^j(k) \cdot (-i)|x \otimes 1, H_{PF}|\varphi_g \]

\[= \frac{-\lambda(k)}{\sqrt{2\omega(k)}} u_k (H_{PF} - E(H_{PF})) e^j(k) \cdot (x \otimes 1)\varphi_g \]

\[= i \frac{\lambda(k)}{\sqrt{2\omega(k)}} \left\{ (H_{PF} - E(H_{PF})) + (p \otimes 1 - eA) \cdot k + \frac{1}{2} |k|^2 \right\} u_k e^j(k) \cdot (x \otimes 1)\varphi_g. \]

Then

\[\sum_{j=1}^{\nu-1} (\varphi_g, T_{PF,j}(k)\varphi_g)_{\mathcal{F}_{PF}} \]

\[= \sum_{j=1}^{\nu-1} i \frac{\lambda(k)}{\sqrt{2\omega(k)}} (\varphi_g, \left\{ (p \otimes 1 - eA) \cdot k + \frac{1}{2} |k|^2 \right\} u_k e^j(k) \cdot (x \otimes 1)\varphi_g)_{\mathcal{F}_{PF}}. \] (3.6)

By (3.6) we can obtain that

\[|\sum_{j=1}^{\nu-1} (\varphi_g, T_{PF,j}(k)\varphi_g)_{\mathcal{F}_{PF}}| \leq (c_1 |k| + c_2 |k|^2)\|\varphi_g\|_{\mathcal{F}_{PF}}\|(|x| \otimes 1)\varphi_g\|_{\mathcal{F}_{PF}} \] (3.7)

with some constants \(c_1 \) and \(c_2 \). See [17] for details. From this we can conclude that

\[\frac{1}{\omega} \sum_{j=1}^{\nu-1} (\varphi_g, T_{PF,j}(k)\varphi_g)_{\mathcal{F}_{PF}} \in L^2(\mathbb{R}^\nu). \] (3.8)
Remark 3.7 We do not assume $\lambda/\omega^{3/2} \in L^2(\mathbb{R}^\nu)$ in (3.8).

In [6] the existence of a ground state φ_g of H_{PF} such that $\varphi_g \in D(1 \otimes N^{1/2})$ is actually established without assuming $\lambda/\omega^{3/2} \in L^2(\mathbb{R}^\nu)$.

Remark 3.8 (3.8) holds for the dipole approximation of H_{PF}, too. We omit the details. See [10].

4 Higher order regularities of ground states: general aspects

Through this section we fix a natural number n and assume (A.1)-(A.5). Higher order estimate similar to ours can be seen in [25, Section 4], where a massive quantum field model (Φ^{2n} quantum field model) has been studied and a sufficient condition for an integral to be finite is given. We shall prove, however, that the integral (1) of Theorem 4.5 is finite if and only if a ground state φ_g of massless Hamiltonian H belongs to $D(1 \otimes \prod_{j=1}^{n}(N-j+1)^{1/2})$. Note that $\varphi_g \in D(H) \subset D(N)$ trivially follows for a massive case, but not for a massless case. Here notice that $\prod_{j=1}^{n}(N-j+1) \geq 0$, since $\prod_{j=1}^{n}(N-j+1) = \prod_{j=1}^{n}(N-j+1) \geq 0$, since $\prod_{j=1}^{n}(N-j+1) \geq 0$, since $\prod_{j=1}^{n}(N-j+1) \geq 0$.

To study higher order regularities, instead of a generalized pull through formula in [25, Proposition 4.3], we shall consider an asymptotic field

$$s \lim_{t \to \infty} e^{-itH}(1 \otimes a(e^{itS}f_1) \cdots a(e^{itS}f_n))e^{itH}.$$

Although estimates presented below are parallel to the case of $n = 1$ in Sections 2 and 3, domain arguments are delicate.

4.1 Assumptions

We introduce assumptions.

(H.1) $T(k)$ satisfies that $D(H) \subset D(T(k)(1 \otimes a(f))) \cap D((1 \otimes a(f))T(k))$ for a.e. $k \in M$, and

$$[T(k), 1 \otimes a(f)]\Psi = 0, \quad \Psi \in D(H), \quad a.e. \ k \in M. \quad (4.1)$$

(H.2) The operator $(1 \otimes d\Gamma(S)^{(n+1)/2})(H + z)^{-m}$ is a bounded operator for some m and $z \in \rho(H) \cap \mathbb{R}$, where $\rho(H)$ denotes the resolvent of H.

\(\mathcal{P}_n \) denotes the set of all the permutations of degree \(n \) and we set for \(\sigma \in \mathcal{P}_n, \)
\[
\mathcal{R}_i^\sigma := (\hat{H} + \sum_{j=1}^{n} S(k_{(j)}))^{-1}, \quad \mathcal{R}_i^\sigma := (\hat{H} + S(k_{(i)}))^{-1},
\]
where \(\hat{H} := H - E(H) \). Assumptions (H.3), (H.4) and (H.5) are as follows.

H.3 There exist dense subspaces \(\mathcal{C}_n \subset L^2(M) \) and \(\mathcal{E} \subset \mathcal{F} \) such that

1. \(\mathcal{C}_n \subset \mathcal{M}_{-1/2} \cap \mathcal{M}_{[n/2]} \), and for \(f \in \mathcal{M}_{-1/2} \cap \mathcal{M}_{[n/2]} \), there exists a sequence \(\{f_m\}_m \subset \mathcal{C}_n \) such that \(\text{slim}_{m \to \infty} f_m/\sqrt{S^k} = f/\sqrt{S^k} \) for \(0 \leq k \leq n \),
2. \(\Psi \in \mathcal{E} \) implies that \(\Psi \in \bigcap_{m=1}^{n} D(T(k_m)^* e^{it_m \hat{H}} \cdots T(k_1)^* e^{it_1 \hat{H}}) \) for almost every \((k_1, \ldots, k_n) \in M^n \),
3. for arbitrary \(f_j \in \mathcal{C}_n, j = 1, \ldots, n \), and \(\Psi \in \mathcal{E} \),
\[
\int_M d\mu(k_m) e^{-iT_m S(k_m)} f_m(k_m) (T(k_m)^* e^{it_m \hat{H}} \cdots T(k_1)^* e^{it_1 \hat{H}}) \Psi, (1 \otimes a(e^{iT_m S}) f_{m+1}) \cdots (a(e^{T_m S} f_n)) \varphi_k \mathcal{F}
\]
is in \(L^1([0, \infty); dt_m) \) for \(m = 1, 2, \ldots, n - 1 \), where \(T_m := t_1 + \cdots + t_m \),
4. for arbitrary \(f_j \in \mathcal{C}_n, j = 1, \ldots, n \), and \(\Psi \in \mathcal{E} \),
\[
\int_M d\mu(k_{\sigma(m)}) \cdots \int_M d\mu(k_{\sigma(n)}) \prod_{j=m}^{n} f_{\sigma(k)}(k_{\sigma(j)}) (T(k_{\sigma(m)})^* e^{it_m (\hat{H} + \sum_{j=m}^{n} S(k_{\sigma(j)}))} \cdots T(k_{\sigma(1)})^* e^{it_1 (\hat{H} + \sum_{j=1}^{n} S(k_{\sigma(j)}))} \Psi,
\]
\[
\mathcal{R}_m^\sigma T(k_{\sigma(m+1)}) \cdots \mathcal{R}_n^\sigma T(k_{\sigma(n)}) \varphi_k \mathcal{F}
\]
is in \(L^1([0, \infty); dt_m) \) for \(m = 1, 2, \ldots, n - 1 \).

H.4 The closure of \((\hat{H} + S(k))^{-1} T(k) \), \([(\hat{H} + S(k))^{-1} T(k)] \), is bounded for almost every \(k \in M \), and \(\|[H + S(\cdot)]^{-1} T(\cdot)\|_{\mathcal{F} \to \mathcal{F}} \in \mathcal{M}_{1/2} \).

H.5 \(\|[H + S(\cdot)]^{-1} T(\cdot)\|_{\mathcal{F} \to \mathcal{F}} \in \mathcal{M}_0 \).

Remark 4.1 We give remarks on assumptions (H.1)-(H.5).

1. (4.1) of (H.1) is introduced to simplify computations. The Nelson Hamiltonian \(H_N \) and GSB Hamiltonian \(H_{GSB} \) discussed later satisfy this. The Pauli-Fierz Hamiltonian \(H_{PF} \) does not satisfy (4.1); \([T_{PF,j}(k), 1 \otimes a(f_1 \oplus \cdots \oplus f_{m-1})] \Psi \neq 0 \). Nevertheless arguments in the next subsection can be extended to \(H_{PF} \) with modifications.
Lemma 4.3

Then the lemma is proved. By Lemma 2.1, it follows that (1⊗a(e^{iS}f_1)⋯a(e^{iS}f_n))e^{iH}\varphi_\circ in (H.3)-(3) is well defined.

(H.3) is a multi-fold version of (A.4). Let \(\otimes^m \mu \) denote the product measure on \(M^m \). Then \(\otimes^m \mu \left(\{(k_1, \ldots, k_m) \in M^m | S(k_1) + \cdots + S(k_m) = 0 \} \right) = 0 \). This implies that \(R^n_1 \) and \(R^n_2 \) are bounded on \(F \) for a.e. \((k_{\sigma(i)}, \ldots, k_{\sigma(n)}) \in M^{n-i+1} \).

Lemma 4.2

(H.4) is used to show that \(\prod_{j=1}^n |f_j(k_j)| \left(\left\| R^n_1 T(k_{\sigma(1)}) \cdots R^n_2 T(k_{\sigma(m)}) \varphi_\circ \right\|_F \right) \) is integrable for some functions \(f_j \). Then \((1\otimes a(f_1)\cdots a(f_n))\varphi_\circ \) can be realized as \((-g)^n T(\otimes_1 \cdots \otimes_n)\) with some operators \(T \). See Lemma 4.3 and (4.10). It can be seen, furthermore, that by (H.5), \(\left\| R^n_1 T(k_{\sigma(1)}) \cdots R^n_2 T(k_{\sigma(m)}) \varphi_\circ \right\|_F \) is square integrable, which, roughly speaking, implies that \(\varphi_\circ \in D(1 \otimes N^{n/2}) \). See Theorem 4.6.

4.2 Higher order regularities of ground states

Lemma 4.2

Suppose (H.2) and let \(f_j \in M_{-1/2} \cap M_{[n/2]}, \; j = 1, \ldots, n \). Then \(\varphi_\circ \in D(1 \otimes a(f_1)\cdots a(f_m)) \) and \((1 \otimes a(f_1)\cdots a(f_m))\varphi_\circ \in D(H), \; m = 1, \ldots, n-1 \).

Proof: From (H.2) it follows that

\[
\left\| (1 \otimes dG(S))^{(n+1)/2} \varphi_\circ \right\|_F \leq \left\| (1 \otimes dG(S))^{(n+1)/2} (H + z)^{-m} \right\|_{F \rightarrow F} \left\| E(H) + z \right\|^m \left\| \varphi_\circ \right\|_F.
\]

Hence \(\varphi_\circ \in D(1 \otimes dG(S)^{(n+1)/2}) \) follows, from which we can see \(\varphi_\circ \in D(1\otimes a(f_1)\cdots a(f_m)) \) by Lemma 2.1. From Lemma 2.1 it follows that \((1 \otimes a(f_1)\cdots a(f_m))\varphi_\circ \in D(1\otimes dG(S)) \). Together with \((1 \otimes a(f_1)\cdots a(f_m))\varphi_\circ \in D(A \otimes 1) \), we obtain that

\[
(1 \otimes a(f_1)\cdots a(f_m))\varphi_\circ \in D(A \otimes 1) \cap D(1 \otimes dG(S)) = D(H).
\]

Then the lemma is proved. \(\square \)

Lemma 4.3

Assume (H.1)-(H.4). Then for \(f_\ell \in M_{-1/2} \cap M_{[n/2]}, \; \ell = 1, \ldots, n, \)

\[
\int_{M^n} \prod_{j=1}^n d\mu(k_j) \left(\prod_{j=1}^n |f_j(k_j)| \right) \left\| R^n_1 T(k_{\sigma(1)}) \cdots R^n_2 T(k_{\sigma(m)}) \varphi_\circ \right\|_F < \infty \quad \text{(4.2)}
\]

and

\[
(1 \otimes a(f_1)\cdots a(f_n))\varphi_\circ \quad = \quad (-g)^n \sum_{\sigma \in \mathcal{P}_n} \int_{M^n} \prod_{j=1}^n d\mu(k_j) \left(\prod_{j=1}^n f_j(k_j) \right) R^n_1 T(k_{\sigma(1)}) \cdots R^n_2 T(k_{\sigma(m)}) \varphi_\circ. \quad \text{(4.3)}
\]
We can inductively obtain that $\|R^*_j\|_{\mathcal{F}} \leq \|\tilde{R}^*_j\|_{\mathcal{F}}$ for $j = 1, \ldots, n$. From (H.4) it follows that $f(k_{\sigma(j)})[\|\tilde{R}^*_j T(k_{\sigma(j)})\|_{\mathcal{F}}]$ is defined. Let φ_k. Proof: Note that $\|\varphi_k\|_{\mathcal{F}} \leq \|\tilde{R}^*_j T(k_{\sigma(j)})\|_{\mathcal{F}}$. Then by the fact that $s\text{-}\lim f(k_{\sigma(j)})[\|\tilde{R}^*_j T(k_{\sigma(j)})\|_{\mathcal{F}}] \in L^1(M)$ for $f \in \mathcal{M}_{-1/2} \cap \mathcal{M}_0$ and $\sigma \in \mathcal{P}_n$. We have

$$
\int_{M^n} \prod_{j=1}^n d\mu(k_j) \left(\prod_{j=1}^n |f_j(k_j)| \right) \|R^*_j T(k_{\sigma(1)}) \cdots R^*_j T(k_{\sigma(n)}) \varphi_k\|_{\mathcal{F}}
$$

$$
\leq \|\varphi_k\|_{\mathcal{F}} \prod_{j=1}^n \int_M |f_{\sigma(j)}(k_{\sigma(j)})| \|\tilde{R}^*_j T(k_{\sigma(j)})\|_{\mathcal{F}} \, d\mu(k_{\sigma(j)}) < \infty. \quad (4.4)
$$

Then (4.2) follows. Lemma 2.1 concludes that the left-hand side of (4.3) is well-defined. Let $f_j \in \mathcal{C}_n$, $j = 1, \ldots, n$. Note that by Lemma 4.2, $(1 \otimes a(f_1) \cdots a(f_m)) \varphi_k \in D(H)$ for $m = 1, \ldots, n - 1$. From this and (H.1) it follows that $[T(k), 1 \otimes a(g)](1 \otimes a(f_1) \cdots a(f_m)) \varphi_k = 0$. By this we see that for $\Psi \in \mathcal{E}$ and $f_j \in \mathcal{C}_n$, $j = 1, \ldots, n$,

$$
d/dt (\Psi, e^{-itH}(1 \otimes a(e^{itS} f_1) \cdots a(e^{itS} f_n)) e^{itH} \varphi_k)_{\mathcal{F}}
$$

$$
= ig \sum_{j=1}^n \int_M d\mu(k_j) e^{-itS(k_j)} f_j(k_j)
$$

$$
(e^{it\hat{H}} \Psi, (1 \otimes a(e^{itS} f_1) \cdots a(e^{itS} f_{j-1}))(T(k_j)(1 \otimes a(e^{itS} f_{j+1}) \cdots a(e^{itS} f_n)) \varphi_k)_{\mathcal{F}}
$$

$$
= ig \sum_{j=1}^n \int_M d\mu(k_j) e^{-itS(k_j)} f_j(k_j)
$$

$$
(e^{it\hat{H}} \Psi, T(k_j)(1 \otimes a(e^{itS} f_1) \cdots \hat{a}(e^{itS} f_j) \cdots a(e^{itS} f_n)) \varphi_k)_{\mathcal{F}}.
$$

Then by the fact that $s\text{-}\lim_{t \to -\infty} (\Psi, e^{-itH}(1 \otimes a(e^{itS} f_1) \cdots a(e^{itS} f_n)) e^{itE(H)} \varphi_k) = 0$ and (H.3)-(3), we have

$$
(\Psi, (1 \otimes a(f_1) \cdots a(f_n)) \varphi_k)_{\mathcal{F}}
$$

$$
= -ig \sum_{j=1}^n \int_0^\infty dt \int_M d\mu(k_j) e^{-itS(k_j)} f_j(k_j)
$$

$$
(T(k_j)^* e^{it\hat{H}} \Psi, (1 \otimes a(e^{itS} f_1) \cdots \hat{a}(e^{itS} f_j) \cdots a(e^{itS} f_n)) \varphi_k)_{\mathcal{F}}. \quad (4.5)
$$

Using (4.5) again, we have by (H.3)-(3),

$$
(T(k_j)^* e^{it\hat{H}} \Psi, (1 \otimes a(e^{itS} f_1) \cdots \hat{a}(e^{itS} f_j) \cdots a(e^{itS} f_n)) \varphi_k)_{\mathcal{F}}
$$

$$
= -ig \sum_{j'=1, j' \neq j}^n \int_0^\infty dt' \int_M d\mu(k_{j'}) e^{-i(t+t')S(k_{j'})} f_j(k_{j'}) (T(k_j)^* e^{it\hat{H}} T(k_{j'})) e^{i(t+t')S(k_j)} e^{i\hat{H}} \Psi,
$$

$$
(1 \otimes a(e^{i(t+t')S} f_1) \cdots \hat{a}(e^{i(t+t')S} f_j) \cdots \hat{a}(e^{i(t+t')S} f_{j'}) \cdots a(e^{i(t+t')S} f_n)) \varphi_k)_{\mathcal{F}}.
$$

We can inductively obtain that

$$
(\Psi, (1 \otimes a(f_1) \cdots a(f_n)) \varphi_k)_{\mathcal{F}}
$$
Similarly using (H.3)-(4) we can obtain that

\[
\int_0^\infty dt_2 \int_M d\mu(k_{(1)}) \cdots \int_0^\infty dt_n \int_M d\mu(k_{(n)}) \left(\prod_{j=1}^n f_{\sigma(j)}(k_{(j)}) \right) e^{-it_1 \sum_{j=1}^n S(k_{(j)})} e^{-it_2 \sum_{j=2}^n S(k_{(j)})} \cdots e^{-it_n S(k_{(n)})} T(k_{(n)}) e^{it_n \hat{H}} \cdots T(k_{(1)}) e^{it_1 \hat{H}} \Psi, \varphi_{\varphi_\varphi}^F
\]

is in \(L^1([0, \infty), dt_n)\), we have

\[
\int_0^\infty dt_n \int_M d\mu(k_{(n)}) \left(\prod_{j=1}^n f_{\sigma(j)}(k_{(j)}) \right) (T(k_{(n-1)}) e^{it_{n-1} \hat{H} + \sum_{j=n-1}^n S(k_{(j)})}) \cdots (T(k_{(1)}) e^{it_1 \hat{H} + \sum_{j=1}^n S(k_{(j)})}) \Psi, e^{-it_n \hat{H} + S(k_{(n)})} T(k_{(n)}) \varphi_{\varphi_\varphi}^F
\]

\[
\lim_{\epsilon \to 0} \int_0^\infty dt_n e^{-\epsilon t_n} \int_M d\mu(k_{(n)}) \left(\prod_{j=1}^n f_{\sigma(j)}(k_{(j)}) \right) (T(k_{(n-1)}) e^{it_{n-1} \hat{H} + \sum_{j=n-1}^n S(k_{(j)})}) \cdots (T(k_{(1)}) e^{it_1 \hat{H} + \sum_{j=1}^n S(k_{(j)})}) \Psi, e^{-it_n \hat{H} + S(k_{(n)})} T(k_{(n)}) \varphi_{\varphi_\varphi}^F
\]

\[
= (-i) \int_M d\mu(k_{(n-1)}) \left(\prod_{j=1}^n f_{\sigma(j)}(k_{(j)}) \right) (T(k_{(n-1)}) e^{it_{n-1} \hat{H} + \sum_{j=n-1}^n S(k_{(j)})}) \cdots (T(k_{(1)}) e^{it_1 \hat{H} + \sum_{j=1}^n S(k_{(j)})}) \Psi, R_{\varphi_\varphi}^n T(k_{(n)}) \varphi_{\varphi_\varphi}^F
\]

Here we used the Lebesgue dominated convergence theorem and Fubini’s lemma. Similarly using (H.3)-(4) we can obtain that

\[
\int_0^\infty dt_{n-1} \int_M d\mu(k_{(n-1)}) \int_0^\infty dt_n \int_M d\mu(k_{(n)}) \left(\prod_{j=1}^n f_{\sigma(j)}(k_{(j)}) \right) (T(k_{(n-1)}) e^{it_{n-1} \hat{H} + \sum_{j=n-1}^n S(k_{(j)})}) \cdots (T(k_{(1)}) e^{it_1 \hat{H} + \sum_{j=1}^n S(k_{(j)})}) \Psi, \varphi_{\varphi_\varphi}^F
\]
Hence (4.6) can be extended for

\[\Psi = (\prod_{j=1}^{n} f_{\sigma(j)}(k_{\sigma(j)}) \right) \]

By (4.4) and the fact that \(E \) is dense, we obtain that for \(f_j \in C_n, j = 1, \ldots, n, \)

\[(1 \otimes a(f_1) \cdots a(f_n)) \varphi_g \]

\[= (-g)^n \sum_{\sigma \in P_n} \int_{M^n} \prod_{j=1}^{n} d\mu(k_{\sigma(j)}) \left(\prod_{j=1}^{n} f_{\sigma(j)}(k_{\sigma(j)}) \right) R^\sigma_1 T(k_{\sigma(1)}) \cdots R^\sigma_n T(k_{\sigma(n)}) \varphi_g. \]

(4.6)

Let \(f_j \in \mathcal{M}_{-1/2} \cap \mathcal{M}_{[n]/2}, j = 1, \ldots, n. \) Take sequences \(\{f_{jm}\}, j = 1, \ldots, n, \) in \(C_n \) such that \(\text{s-lim}_{m \to \infty} f_{jm} / \sqrt{k} = f_j / \sqrt{k}, j = 1, \ldots, n, \) for \(0 \leq k \leq n. \) Then

\[\text{s-lim}_{m \to \infty} (1 \otimes a(f_{1m}) \cdots a(f_{nm})) \varphi_g = (1 \otimes a(f_1) \cdots a(f_n)) \varphi_g. \]

(4.7)

Moreover by (4.4) it follows that

\[\text{s-lim}_{m \to \infty} \int_{M^n} \prod_{j=1}^{n} d\mu(k_{j}) \left(\prod_{j=1}^{n} f_{jm}(k_{j}) \right) R^\sigma_1 T(k_{\sigma(1)}) \cdots R^\sigma_n T(k_{\sigma(n)}) \varphi_g \]

\[= \int_{M^n} \prod_{j=1}^{n} d\mu(k_{j}) \left(\prod_{j=1}^{n} f_{j}(k_{j}) \right) R^\sigma_1 T(k_{\sigma(1)}) \cdots R^\sigma_n T(k_{\sigma(n)}) \varphi_g. \]

(4.8)

Hence (4.6) can be extended for \(f_j \in \mathcal{M}_{-1/2} \cap \mathcal{M}_{[n]/2}, j = 1, \ldots, n, \) by (4.7) and (4.8). Then the lemma follows. \(\square \)
Lemma 4.4 Let \(\{e_j\}_{j=1}^{\infty} \) be a complete orthonormal system in \(\mathcal{K} \). Then (1) and (2) are equivalent.

\(1 \) \(\Psi \in \bigcap_{i_1, \ldots, i_n=1}^{\infty} D(a(e_{i_1}) \cdots a(e_{i_n})) \) and \(\sum_{i_1, \ldots, i_n=1}^{\infty} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi\|^2_{\mathcal{F}} < \infty. \)

\(2 \) \(\Psi \in D([\prod_{j=1}^{n}(N-j+1)]^{1/2}). \)

Suppose that (1) or (2) holds. Then

\[\sum_{i_1, \ldots, i_n=1}^{\infty} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi\|^2_{\mathcal{F}} = \|[\prod_{j=1}^{n}(N-j+1)]^{1/2}\Psi\|^2_{\mathcal{F}}. \]

Proof: See Appendix B.

Theorem 4.5 Assume (H.1)-(H.4). Then (1) and (2) are equivalent.

\(1 \) \(\int_{\mathcal{M}} \prod_{j=1}^{n} d\mu(k_j) \| \sum_{\sigma \in \mathcal{P}_n} R^\sigma_1 T(k_{\sigma(1)}) \cdots R^\sigma_n T(k_{\sigma(n)}) \varphi_\mathcal{S} \|^2_\mathcal{F} < \infty. \)

\(2 \) \(\varphi_\mathcal{S} \in D(1 \otimes \prod_{j=1}^{n}(N-j+1)]^{1/2}). \)

Furthermore suppose that (1) or (2) holds. Then

\[\| (1 \otimes [\prod_{j=1}^{n}(N-j+1)]^{1/2}) \varphi_\mathcal{S} \|^2_\mathcal{F} = g^{2n} \int_{\mathcal{M}} \prod_{j=1}^{n} d\mu(k_j) \| \sum_{\sigma \in \mathcal{P}_n} R^\sigma_1 T(k_{\sigma(1)}) \cdots R^\sigma_n T(k_{\sigma(n)}) \varphi_\mathcal{S} \|^2_\mathcal{F}. \]

(4.9)

Proof: Let us define \(\kappa(k_1 \cdots k_n) := \sum_{\sigma \in \mathcal{P}_n} R^\sigma_1 T(k_{\sigma(1)}) \cdots R^\sigma_n T(k_{\sigma(n)}) \varphi_\mathcal{S} \) for a.e. \((k_1, \ldots, k_n) \in \mathcal{M}^n \), and \(T : \otimes^n L^2(M) \rightarrow \mathcal{F} \) by

\[T(f_1 \otimes \cdots \otimes f_n) := \int_{\mathcal{M}} \prod_{j=1}^{n} d\mu(k_j) f(k_1) \cdots f(k_n) \kappa(k_1 \cdots k_n). \]

Then

\[(1 \otimes a(f_1) \cdots a(f_n)) \varphi_\mathcal{S} = (-g)^n T(f_1 \otimes \cdots \otimes f_n) \] (4.10)

sufor \(f_j \in \mathcal{M}_{-1/2} \cap \mathcal{M}_{[n/2]}, \ j = 1, \ldots, n \). The adjoint operator \(T^* : \mathcal{F} \rightarrow \otimes^n L^2(M) \cong L^2(M^n) \) is given by \((T^* \Phi)(k_1, \ldots, k_n) = (\kappa(k_1, \ldots, k_n), \Phi)_\mathcal{F} \) for almost ever (\(k_1, \ldots, k_n \)) \in \mathcal{M}^n. Then \(T^* \) is a Carleman operator [26] with the kernel \(\kappa \). Thus \(T^* \) is a Hilbert-Schmidt operator if and only if

\[\int_{\mathcal{M}} \prod_{j=1}^{n} d\mu(k_j) \| \kappa(k_1 \cdots k_n) \|^2_\mathcal{F} < \infty. \]
Namely T is a Hilbert-Schmidt operator if and only if
\[
\int_{M^n} d\mu(k) \left\| \sum_{\sigma \in \mathcal{P}_n} R_{\sigma}^n T(k_{\sigma(1)}) \cdots R_{\sigma(n)}^n T(k_{\sigma(n)}) \phi_g \right\|^2 < \infty. \tag{4.11}
\]

Let $\{e_j\}_{j=1}^\infty$ be a complete orthonormal system in $L^2(M)$ such that $e_j \in \mathcal{M}_{-1/2} \cap \mathcal{M}_{n/2}$, $j \geq 1$. If T is a Hilbert-Schmidt operator, then
\[
\int_{M^n} d\mu(k) \left\| \sum_{\sigma \in \mathcal{P}_n} R_{\sigma}^n T(k_{\sigma(1)}) \cdots R_{\sigma(n)}^n T(k_{\sigma(n)}) \phi_g \right\|^2 = g^{2n} \int_{M^n} d\mu(k) \kappa(k_1 \cdots k_n) \left\| \sum_{\sigma \in \mathcal{P}_n} R_{\sigma}^n T(k_{\sigma(1)}) \cdots R_{\sigma(n)}^n T(k_{\sigma(n)}) \phi_g \right\|^2
\]
\[
= g^{2n} \sum_{i_1, \ldots, i_n} \left\| (1 \otimes a(e_{i_1}) \cdots a(e_{i_n})) \phi_g \right\|^2 = \left\| (1 \otimes \prod_{j=1}^n (N - j + 1)^{1/2}) \phi_g \right\|^2. \tag{4.12}
\]
Thus (4.11) is equivalent to $\phi_g \in D(1 \otimes \prod_{j=1}^n (N - j + 1)^{1/2})$. Moreover (4.9) follows from (4.12). The proof is complete.

Theorem 4.6 In addition to (H.1)-(H.4), we assume (H.5). Then $\phi_g \in D(1 \otimes N^{n/2})$.

Proof: Note that $D(N^{n/2}) = \bigcap_{\ell=1}^n D([\prod_{j=1}^\ell (N - j + 1)]^{1/2})$. See e.g., [16, Lemma 3.2]. We see that for all $1 \leq \ell \leq n$,
\[
\left\| (1 \otimes \prod_{j=1}^\ell (N - j + 1)^{1/2}) \phi_g \right\|^2 = g^{2\ell} \int_{M^\ell} d\mu(k) \left\| \sum_{\sigma \in \mathcal{P}_\ell} R_{\sigma}^\ell T(k_{\sigma(1)}) \cdots R_{\sigma(\ell)}^\ell T(k_{\sigma(\ell)}) \phi_g \right\|^2
\]
\[
\leq \ell !^2 g^{2\ell} \left\| \phi_g \right\|^2 \left(\int_{M^\ell} \left\| (H - E(H) + S(k))^{-1} T(k) \right\|^2 d\mu(k) \right)^\ell < \infty.
\]
Then $\phi_g \in \bigcap_{\ell=1}^n D(1 \otimes [\prod_{j=1}^\ell (N - j + 1)]^{1/2})$ and the theorem follows. \hfill \Box

5 GSB models

In this section we study ground states of GSB models. Relationships between ultraviolet cutoff functions and regularities of ground states are given, and absence of ground states are discussed. We introduce assumptions (B.1)-(B.7) and see that these assumptions revive (A.1)-(A.5) and (H.1)-(H.5).
5.1 Definition of GSB models and assumptions

The Hilbert space for the GSB model is defined by

\[\mathcal{F}_{SB} := \mathcal{H} \otimes \mathcal{F}_b(L^2(\mathbb{R}^\nu)). \]

Let \(a(f) \) and \(a^*(f) \), \(f \in L^2(\mathbb{R}^\nu) \), be the annihilation operator and the creation operator of \(\mathcal{F}_b(L^2(\mathbb{R}^\nu)) \), respectively. Set

\[\phi(\lambda) := \frac{1}{\sqrt{2}} (a^*(\lambda) + a(\lambda)), \quad \lambda \in L^2(\mathbb{R}^\nu). \]

Hamiltonians of GSB models are defined by

\[H_{SB} := H_{SB,0} + \alpha H_{SB,I}, \]

where \(\alpha \) is a coupling constant,

\[H_{SB,0} := A \otimes 1 + 1 \otimes d\Gamma(\omega) \]

and

\[H_{SB,I} := \sum_{j=1}^{J} B_j \otimes \phi(\lambda_j). \]

Here \(\omega \) is a nonnegative multiplication operator on \(L^2(\mathbb{R}^\nu) \), \(B_j, j = 1, \ldots, J \), closed symmetric operators on \(\mathcal{H} \), and \(\sum_{j=1}^{J} B_j \otimes \phi(\lambda_j) \) denotes the closure of \(\sum_{j=1}^{J} B_j \otimes \phi(\lambda_j) \). Assumptions (B.1)-(B.7) are introduced below.

(B.1) \(A \) is self-adjoint and bounded from below.

(B.2) \(\lambda_j, \lambda_j/\sqrt{\omega} \in L^2(\mathbb{R}^\nu), \ j = 1, \ldots, J. \)

(B.3) \(D(\hat{A}^{1/2}) \subset \cap_{j=1}^{J} D(B_j) \), where \(\hat{A} := A - E(A) \), and there exist constants \(a_j \) and \(b_j \) such that

\[\|B_j f\|_\mathcal{H} \leq a_j \|\hat{A}^{1/2} f\|_\mathcal{H} + b_j \|f\|_\mathcal{H}, \quad j = 1, \ldots, J, \quad f \in D(\hat{A}^{1/2}). \]

Moreover \(|\alpha| \leq \left(\sum_{j=1}^{J} a_j \|\lambda_j/\sqrt{\omega}\|_{L^2(\mathbb{R}^\nu)}^2 \right)^{-1}. \)

(B.4) \(\lambda_j \in C^2(\mathbb{R}^\nu \setminus Y), \ j = 1, \ldots, J. \)

(B.5) (1) \(\omega \in C^3(\mathbb{R}^\nu \setminus Y) \) and \(\partial \omega(k)/\partial k_n \neq 0 \) on \(\mathbb{R}^\nu \setminus Y, \ n = 1, \ldots, \nu, \)

(2) \(\omega \) is purely absolutely continuous,

where \(Y \) is defined in (3.3).
(B.6) There exists a dense subspace \(\mathcal{D}_\infty \subset \mathcal{H} \) such that

1. \(\mathcal{D}_\infty \subset D(A) \cap \bigcap_{j=1}^J D(B_j) \),
2. \(A\mathcal{D}_\infty \subset \mathcal{D}_\infty \) and \(B_j\mathcal{D}_\infty \subset \mathcal{D}_\infty \), \(j = 1, ..., J \),
3. \(A^n|_{\mathcal{D}_\infty} \) is essentially self-adjoint,
4. there exist constants \(a_k \) and \(b_k \) such that for all \(\Psi \in \mathcal{D}_\infty \) and \(j = 1, ..., J \),
 \[
 \|\text{ad}^k_A(B_j)\Psi\|_{L^2(\mathbb{R}^\nu)} \leq a_k\|\hat{A}^{(k+1)/2}\Psi\|_{L^2(\mathbb{R}^\nu)} + b_k\|\Psi\|_{L^2(\mathbb{R}^\nu)}, \quad 0 \leq k \leq n.
 \]

(B.7) \(\omega^k\lambda_j/\sqrt{\omega} \in L^2(\mathbb{R}^\nu) \) and \(\omega^k\lambda_j \in L^2(\mathbb{R}^\nu) \) for \(0 \leq k \leq n \) and \(j = 1, ..., J \).

(B.6) is a complicated assumption. We give examples below.

Example 5.1 Let \(A \) and \(B_j \), \(j = 1, ..., J \), be bounded. Then (B.6) is satisfied with \(\mathcal{D}_\infty = \mathcal{H} \).

Example 5.2 Let \(\mathcal{S}(\mathbb{R}^\nu) \) be the Schwartz space of rapidly decreasing \(C^\infty \) functions on \(\mathbb{R}^\nu \) and \(V \in \mathcal{S}(\mathbb{R}^\nu) \) be real-valued. Let \(A = -\Delta + \beta V \) and \(B_j = -i\nabla_j \), \(j = 1, ..., \nu \). Then (B.6) is satisfied with \(\mathcal{D}_\infty = \mathcal{S}(\mathbb{R}^\nu) \) for \(\beta \) with \(|\beta| \) sufficiently small. See Appendix C for details.

We shall see that (B.1)-(B.5) revive (A.1)-(A.5) and are used to study the absence and the regularities of ground states of GSB models. In order to study higher order regularities of ground states, instead of (B.2) and (B.3), we have to introduce (B.6) and (B.7). Actually it can be seen that (B.1) and (B.4)-(B.7) revive (A.1)-(A.5) and (H.1)-(H.5).

Proposition 5.3 Assume (B.1)-(B.3). Then \(H_{\text{SB}} \) is self-adjoint and bounded from below on \(D(H_{\text{SB},0}) = D(A \otimes 1) \cap (1 \otimes d\Gamma(\omega)) \). Moreover it is essentially self-adjoint on any core of \(H_{\text{SB},0} \).

Proof: It is easily seen that for \(\Psi \in D(H_{\text{SB},0}) \),

\[
\|H_{\text{SB}}\Phi\|_{\mathcal{F}_{\text{SB}}} \leq \left(\sum_{j=1}^J a_j\|\lambda_j/\sqrt{\omega}\|^2_{L^2(\mathbb{R}^\nu)} \right)^{1/2} \|H_{\text{SB},0}\Phi\|_{\mathcal{F}_{\text{SB}}} + b\|\Phi\|_{\mathcal{F}_{\text{SB}}}
\]

(5.1)

with some constant \(b > 0 \). Then by the Kato-Rellich theorem, the proposition follows.

\(\square \)

Remark 5.4 In [3] the existence of ground states of \(H_{\text{SB}} \) is proved under some conditions on \(\omega \) for \(\alpha \) with \(|\alpha| \) sufficiently small. Moreover for massive cases the multiplicity of ground states is studied in [3]. For massless cases, an upper bound of the multiplicity of ground states is shown in [17].
5.2 The absence and the regularities of ground states of H_{SB}

Throughout this subsection we assume (B.1)-(B.5). We see that, for $\Psi, \Phi \in D(H_{SB,0})$,

$$[1 \otimes a(f), H_{SB,1}^{D(H_{SB,0})}(\Psi, \Phi) = \int_{\mathbb{R}^\nu} \overline{f(k)}(\Psi, T_{SB}(k)\Phi)_{\mathcal{F}_{SB}} dk,$$ \hspace{1cm} (5.2)

where

$$T_{SB}(k) := \left(\sum_{j=1}^{J} \lambda_j(k) B_j \right) \otimes 1.$$

Theorem 5.5 Let G be a nonnegative multiplication operator on $L^2(\mathbb{R}^\nu)$. Then $\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2})$ if and only if

$$\int_{\mathbb{R}^\nu} G(k) \|(H_{SB} - E(H_{SB}) + \omega(k))^{-1} T_{SB}(k) \varphi_g \|^2_{\mathcal{F}_{SB}} dk < \infty.$$

Furthermore suppose $\varphi_g \in D(1 \otimes d\Gamma(G)^{1/2})$. Then

$$\|(1 \otimes d\Gamma(G)^{1/2}) \varphi_g \|^2_{\mathcal{F}_{SB}} = \alpha^2 \int_{\mathbb{R}^\nu} G(k) \|(H_{SB} - E(H_{SB}) + \omega(k))^{-1} T_{SB}(k) \varphi_g \|^2_{\mathcal{F}_{SB}} dk.$$

Proof: Under the identifications:

$$H = H_{SB}, \quad H_1 = H_{SB,1}, \quad S(k) = \omega(k), \quad T(k) = T_{SB}(k), \quad C_0 = C_0^2(\mathbb{R}^\nu \setminus Y),$$

it is enough to check (A.1)-(A.5) by Theorem 2.8. (A.1), (A.2) and (A.3) follow from (5.1), (5.2) and (B.5)-(2), respectively. Since

$$\|T_{SB}(k) \varphi_g\|_{\mathcal{F}_{SB}} \leq \sum_{j=1}^{J} \lambda_j(k) \|(B_j \otimes 1) \varphi_g\|_{\mathcal{F}_{SB}},$$

it is seen that $\|T_{SB}(\cdot) \varphi_g\|_{\mathcal{F}_{SB}}, \|T_{SB}(\cdot) \varphi_g\|_{\mathcal{F}_{SB}}/\sqrt{\omega} \in L^2(\mathbb{R}^\nu)$ by (B.2). Thus (A.5) follows. We shall check (A.4). (A.4)-(1) is trivial. It is seen that for $k \in \mathbb{R}^\nu \setminus Y$,

$$e^{-is\omega(k)} = -\frac{1}{s^2} \left(\frac{\partial \omega(k)}{\partial k_\mu} \right)^{-1} \frac{\partial}{\partial k_\mu} \left(\left(\frac{\partial \omega(k)}{\partial k_\mu} \right)^{-1} \frac{\partial}{\partial k_\mu} e^{-is\omega(k)} \right), \quad \mu = 1, \ldots, \nu.$$ \hspace{1cm} (5.4)

Then by the integration by parts formula,

$$\left| \int_{\mathbb{R}^\nu} \overline{f(k)}(\Psi, e^{-is(H_{SB} - E(H_{SB}) + \omega(k))} T_{SB}(k) \varphi_g)_{\mathcal{F}_{SB}} dk \right|$$

$$\leq \frac{1}{s^2} \sum_{j=1}^{J} \int_{\mathbb{R}^\nu} dk \left| \frac{\partial}{\partial k_\mu} \left(\frac{\partial \omega(k)}{\partial k_\mu} \right)^{-1} \frac{\partial}{\partial k_\mu} \left(\frac{\partial \omega(k)}{\partial k_\mu} \right)^{-1} \frac{\partial}{\partial k_\mu} e^{-is\omega(k)} \right|$$

$$\left| \left(\Psi, e^{-is(H_{SB} - E(H_{SB}))}(B_j \otimes 1) \varphi_g \right)_{\mathcal{F}_{SB}} \right|$$

$$\leq \frac{1}{s^2} \sum_{j=1}^{J} \int_{\mathbb{R}^\nu} dk \left| \frac{\partial}{\partial k_\mu} \left(\frac{\partial \omega(k)}{\partial k_\mu} \right)^{-1} \frac{\partial}{\partial k_\mu} \left(\frac{\partial \omega(k)}{\partial k_\mu} \right)^{-1} \frac{\partial}{\partial k_\mu} e^{-is\omega(k)} \right|$$

$$\times \left| \left(\Psi, e^{-is(H_{SB} - E(H_{SB}))}(B_j \otimes 1) \varphi_g \right)_{\mathcal{F}_{SB}} \right|$$

$$\times \|\Psi\|_{\mathcal{F}_{SB}} \|(B_j \otimes 1) \varphi_g\|_{\mathcal{F}_{SB}}.$$
Regularities of ground states

Since the integrand of the right-hand side above is integrable for \(f \in C^0_0(\mathbb{R}^\nu \setminus Y) \), we obtain that

\[
\int_{\mathbb{R}^\nu} \overline{(k)}(\Psi, e^{-is(H_{SB}-E(H_{SB})+\omega(k))}T_{SB}(k)\varphi_{\lambda}^g)_{\mathcal{F}_{SB}} dk \in L^1([0, \infty), ds).
\]

Thus (A.4)-(2) follows and the proof is complete. \(\square \)

Corollary 5.6 Let \(G \) be a nonnegative multiplication operator on \(L^2(\mathbb{R}^\nu) \). Suppose that \(\sqrt{G}\lambda_j/\omega \in L^2(\mathbb{R}^\nu), j = 1, ..., J \). Then \(\varphi_{\lambda} \in D(1 \otimes d\Gamma(G)^{1/2}) \). In particular suppose that \(\lambda_j/\omega \in L^2(\mathbb{R}^\nu), j = 1, ..., J \). Then \(\varphi_{\lambda} \in D(1 \otimes N^{1/2}) \)

Proof: From \(\sqrt{G}\lambda_j/\omega \in L^2(\mathbb{R}^\nu) \) it follows that

\[
\int_{\mathbb{R}^\nu} G(k)\|H_{SB} - E(H_{SB}) + \omega(k))^{-1}T_{SB}(k)\varphi_{\lambda}^g \|^2_{\mathcal{F}_{SB}} dk < \sum_{j=1}^J \int_{\mathbb{R}^\nu} G(k)\|\lambda_j/\omega(k)\|^2 dk \| (B_j \otimes 1)\varphi_{\lambda}^g \|^2_{\mathcal{F}_{SB}} < \infty.
\]

Thus the corollary follows from Theorem 5.5. \(\square \)

Example 5.7 Typical examples of \(\lambda_j, j = 1, ..., J \), and \(\omega \) are \(\omega(k) = |k| \) and \(\lambda_j = \rho_j/\sqrt{\omega}, j = 1, ..., J \), with some nonnegative functions \(\rho_j \in C^2(\mathbb{R}^\nu) \), \(\rho_j/\sqrt{\omega} \in L^2(\mathbb{R}^\nu) \) and \(\rho_j/\omega \in L^2(\mathbb{R}^\nu) \), \(j = 1, ..., J \). Let \(\gamma \geq 0 \). In addition to (B.1) and (B.3), suppose that \(\rho_j\omega^\gamma/\omega^2 \in L^2(\mathbb{R}^\nu), j = 1, ..., J \). Then \(\varphi_{\lambda} \in D(1 \otimes d\Gamma(\omega^\gamma)^{1/2}) \).

Theorem 5.8 Let \(G \) be a nonnegative multiplication operator on \(L^2(\mathbb{R}^\nu) \). Then the GSB Hamiltonian \(H_{SB} \) has no ground state \(\varphi_{\lambda} \) such that \(\varphi_{\lambda} \in D(1 \otimes d\Gamma(G)^{1/2}) \) and \(\sqrt{G}\sum_j \varphi_{\lambda} \) is not in \(L^2(\mathbb{R}^\nu) \).

Proof: By Theorems 5.5 and 3.1 under identification (5.3), there exists no ground state \(\varphi_{\lambda} \) in \(D(1 \otimes d\Gamma(G)^{1/2}) \) such that \(\sqrt{G}(\varphi_{\lambda}, T_{SB}(\cdot)\varphi_{\lambda})_{\mathcal{F}_{SB}}/\omega \notin L^2(\mathbb{R}^\nu) \). Since

\[
(\varphi_{\lambda}, T_{SB}(k)\varphi_{\lambda})_{\mathcal{F}_{SB}} = \sum_{j=1}^J (\varphi_{\lambda}, (B_j \otimes 1)\varphi_{\lambda})_{\mathcal{F}_{SB}} \lambda_j(k),
\]

the theorem follows. \(\square \)

Corollary 5.9 Assume that \(\lambda_j/\omega \notin L^2(\mathbb{R}^\nu) \) for some \(\ell \). Then \(H_{SB} \) has no ground state \(\varphi_{\lambda} \) such that \(\varphi_{\lambda} \in D(1 \otimes N^{1/2}) \), \((\varphi_{\lambda}, (B_{\ell} \otimes 1)\varphi_{\lambda}) > 0 \) and \((\varphi_{\lambda}, (B_{j} \otimes 1)\varphi_{\lambda}) \lambda_j \geq 0 \) for all \(j \) but \(j \neq \ell \).
5.3 Higher order regularities of ground states of H_{SB}

In this subsection, we fix a natural number n and consider cores of $(H_{SB} + 1)^n$. Throughout this subsection we assume (B.1), (B.6) and (B.7).

5.3.1 Cores of $(H_{SB} + 1)^n$

We define $\text{ad}_A^k(B)$ by $\text{ad}_A^0(B) := B$ and $\text{ad}_A^k(B) := [A, \text{ad}_A^{k-1}(B)]$ for $k \geq 1$. If D is an invariant subspace of A and B, we have for all $\Psi \in D$,

$$[A^k, B] \Psi = \sum_{\ell=1}^{k} \binom{k}{\ell} \text{ad}_A^\ell(B) A^{k-\ell} \Psi, \quad \text{ad}_A^k(BC) \Psi = \sum_{\ell=0}^{k} \binom{k}{\ell} \text{ad}_A^\ell(B) \text{ad}_A^{k-\ell}(C) \Psi. \tag{5.5}$$

Let us define a Hamiltonian K by

$$K := K_0 + \alpha H_{SB,1},$$

where $K_0 := \hat{A} \otimes 1 + 1 \otimes dT(\omega)$. The self-adjoint operator $(K + 1)^n$ is defined through the spectral theorem, i.e.,

$$(K + 1)^n = \int_{E(H_{SB}, \infty)} (\lambda - E(A) + 1)^n dE(\lambda),$$

where $E(\lambda)$ is the spectral projection associated with H_{SB}. Let $F_{\infty} := D_{\infty} \otimes_{\text{alg}} F^{C_{\infty}(\omega)}_{b,0}$, where $C_{\infty}(\omega) := \cap_{n=1}^{\infty} D(\omega^n)$ and \otimes_{alg} denotes the algebraic tensor product. Since H_{SB} leaves F_{∞} invariant, it follows that $F_{\infty} \subset \cap_{n=1}^{\infty} D(H_{SB}^n)$, and the canonical commutation relations for $a(f)$ and $a^*(g)$ hold on F_{∞}.

Theorem 5.11 There exists $\alpha_* > 0$ such that for α with $|\alpha| < \alpha_*$, $(K + 1)^n$ is self-adjoint on $D((K_0 + 1)^n)$ and essentially self-adjoint on any core of $(K_0 + 1)^n$. In particular it is essentially self-adjoint on F_{∞}.
To prove Theorem 5.11 we prepare some lemmas.

Lemma 5.12 There exist constants C_ℓ, $\ell = 1, ..., m$, such that, for $\Psi \in \mathcal{F}_\infty$,

$$
\|[(K_0 + 1)^m, H_{SB,1}]\Psi\|_{\mathcal{F}_{SB}} \leq \sum_{\ell=1}^{m} \left(\frac{m}{\ell} \right) C_\ell \|(K_0 + 1)^{m+1-(\ell/2)}\Psi\|_{\mathcal{F}_{SB}}.
$$

Proof: We see that, for $\Psi \in \mathcal{F}_\infty$,

$$
[(K_0 + 1)^m, H_{SB,1}]\Psi = \sum_{\ell=1}^{m} \left(\frac{m}{\ell} \right) \text{ad}_{K_0+1}(H_{SB,1})(K_0 + 1)^{m-\ell}\Psi. \quad (5.6)
$$

Using formula (5.5) we have

$$
\text{ad}_{K_0+1}(H_{SB,1})\Psi = \sum_{j=1}^{J} \text{ad}_{K_0}((B_j \otimes 1)(1 \otimes \phi(\lambda_j)))\Psi
$$

$$
= \sum_{j=1}^{J} \sum_{k=0}^{\ell} \left(\frac{\ell}{k} \right) \text{ad}_{K_0}^k(B_j \otimes 1)\text{ad}_{K_0}^{\ell-k}(1 \otimes \phi(\lambda_j))\Psi
$$

$$
= \sum_{j=1}^{J} \sum_{k=0}^{\ell} \left(\frac{\ell}{k} \right) \text{ad}_{K_0}^k(B_j) \otimes \phi((-i)^{\ell-k} \omega^{\ell-k} \lambda_j) i^{\ell-k}\Psi.
$$

From (B.6)-(4), it follows that

$$
\|\text{ad}_{A}^k(B_j) \otimes \phi((-i)^{\ell-k} \omega^{\ell-k} \lambda_j) i^{\ell-k}\Psi\|_{\mathcal{F}_{SB}}
$$

$$
\leq a_k \|(\hat{A}^{(k+1)/2} \otimes \phi((-i)^{\ell-k} \omega^{\ell-k} \lambda_j))\Psi\|_{\mathcal{F}_{SB}} + b_k \|(1 \otimes \phi((-i)^{\ell-k} \omega^{\ell-k} \lambda_j))\Psi\|_{\mathcal{F}_{SB}}
$$

$$
\leq \xi_{\ell-k,j} \left\{ a_k \|(\hat{A}^{(k+1)/2} \otimes (d\Gamma(\omega) + 1)^{1/2})\Psi\|_{\mathcal{F}_{SB}} + b_k \|(1 \otimes (d\Gamma(\omega) + 1)^{1/2})\Psi\|_{\mathcal{F}_{SB}} \right\},
$$

where $\xi_{m,j} := \left(\|\omega^m \lambda_j /\sqrt{\omega}\|_{L^2(\mathbb{R}^\nu)} + 2\|\omega^m \lambda_j \|_{L^2(\mathbb{R}^\nu)} \right)/\sqrt{2}$. Note that

$$
\|(\hat{A}^{(k+1)/2} \otimes (d\Gamma(\omega) + 1)^{1/2})\Psi\|_{\mathcal{F}_{SB}} \leq \|(K_0 + 1)^{(k+1)/2}\Psi\|_{\mathcal{F}_{SB}}, \quad k \geq 0,
$$

$$
\|(1 \otimes (d\Gamma(\omega) + 1)^{1/2})\Psi\|_{\mathcal{F}_{SB}} \leq \|(K_0 + 1)^{1/2}\Psi\|_{\mathcal{F}_{SB}}.
$$

Hence we have

$$
\|\text{ad}_{A}^k(B_j) \otimes \phi((-i)^{\ell-k} \omega^{\ell-k} \lambda_j) i^{\ell-k}\Psi\|_{\mathcal{F}_{SB}}
$$

$$
\leq \xi_{\ell-k,j} (a_k \|(K_0 + 1)^{(k+2)/2}\Psi\|_{\mathcal{F}_{SB}} + b_k \|(K_0 + 1)^{1/2}\Psi\|_{\mathcal{F}_{SB}}).
$$

From this it follows that

$$
\|\text{ad}_{K_0+1}(H_{SB,1})\Psi\|_{\mathcal{F}_{SB}}
$$

$$
\leq \sum_{j=1}^{J} \sum_{k=0}^{\ell} \left(\frac{\ell}{k} \right) \xi_{\ell-k,j} \left(a_k \|(K_0 + 1)^{(k+2)/2}\Psi\|_{\mathcal{F}_{SB}} + b_k \|(K_0 + 1)^{1/2}\Psi\|_{\mathcal{F}_{SB}} \right)
$$

$$
\leq \left(\frac{\ell}{k} \right) \sum_{j=1}^{J} \xi_{\ell-k,j} (a_k + b_k) \|(K_0 + 1)^{(\ell+2)/2}\Psi\|_{\mathcal{F}_{SB}}. \quad (5.7)
$$

Hence from (5.7) and (5.6) the lemma follows. \(\square\)
Lemma 5.13 There exist constants c_k, $k = 1, \ldots, n$, such that
\[\| (K_0 + 1)^k H_{SB,1} \Psi \|_{FSB} \leq c_{k+1} \| (K_0 + 1)^{k+1} \Psi \|_{FSB}, \quad \Psi \in \mathcal{F}_\infty, \quad 0 \leq k \leq n - 1. \] (5.8)

Proof: We prove the lemma by induction with respect to k. For $k = 0$, (5.8) holds true. Assume that (5.8) is satisfied for $k = 0, 1, \ldots, m - 1$. We see that for $\Psi \in \mathcal{F}_\infty$,
\[(K_0 + 1)^m H_{SB,1} \Psi = H_{SB,1}((K_0 + 1)^m \Psi + [(K_0 + 1)^m, H_{SB,1}] \Psi). \]

By Lemma 5.12 we have
\[
\| (K_0 + 1)^m H_{SB,1} \Psi \|_{FSB} \\
\leq \| H_{SB,1}((K_0 + 1)^m \Psi \|_{FSB} + \sum_{\ell=1}^{m} \left(m \ell \right) C_\ell \| (K_0 + 1)^{m+1-(\ell/2)} \Psi \|_{FSB} \\
\leq c_0 \| (K_0 + 1)^{m+1} \Psi \|_{FSB} + \sum_{\ell=1}^{m} \left(m \ell \right) C_\ell \| (K_0 + 1)^{m+1-(\ell/2)} \Psi \|_{FSB} \\
\leq (c_0 + \sum_{\ell=1}^{m} \left(m \ell \right) C_\ell) \| (K_0 + 1)^{m+1} \Psi \|_{FSB}
\]
with some constant c_0. Thus the lemma follows with $c_{m+1} = c_0 + \sum_{\ell=1}^{m} \left(m \ell \right) C_\ell$, $m \geq 1$.
\[\square \]

Proof of Theorem 5.11
We have on \mathcal{F}_∞,
\[(K + 1)^n = (K_0 + 1)^n + \alpha H_1(n), \]
where $H_1(n) := H_1^{(1)} + \alpha H_1^{(2)} + \cdots + \alpha^{n-1} H_1^{(n)}$, and
\[
H_1^{(1)} := \sum_{i=1}^{n} (K_0 + 1) \cdots H_{SB,1} \cdots (K_0 + 1), \\
H_1^{(2)} := \sum_{i_1 < i_2} (K_0 + 1) \cdots H_{SB,1} \cdots H_{SB,1} \cdots (K_0 + 1), \\
H_1^{(3)} := \sum_{i_1 < i_2 < i_3} (K_0 + 1) \cdots H_{SB,1} \cdots H_{SB,1} \cdots H_{SB,1} \cdots (K_0 + 1), \\
\cdots \\
H_1^{(n)} := H_{SB,1}^n.
\]

We see that
\[(K_0 + 1)^n \Psi = \sum_{k=0}^{n} \sum_{\ell=0}^{k} \left(\begin{array}{c} n \\ k \end{array} \right) \left(\begin{array}{c} k \\ \ell \end{array} \right) \hat{A}^\ell \otimes d\Gamma(\omega)^{k-\ell} \Psi, \quad \Psi \in \mathcal{F}_\infty, \]
and $\sum_{k=0}^{n} \sum_{\ell=0}^{k} \binom{n}{k} \binom{k}{\ell} \hat{A}^\ell \otimes d\Gamma(\omega)^{k-\ell}$ is essentially self-adjoint on $C(\hat{A}^n) \otimes_{\text{alg}} C(d\Gamma(\omega)^n)$, where $C(\hat{A}^n)$ and $C(d\Gamma(\omega)^n)$ are any cores of A^n and $d\Gamma(\omega)^n$, respectively. In particular \mathcal{F}_∞ is a core of $(K_0 + 1)^n$. From Lemma 5.13 and the definition of $H_1^{(j)}$, $j = 1, \ldots, n$, we can see that for $\Psi \in \mathcal{F}_\infty$,

$$
\|H_1^{(j)}\Psi\|_{\mathcal{F}_{SB}} \leq d_j \|(K_0 + 1)^n\Psi\|_{\mathcal{F}_{SB}}, \quad j = 1, \ldots, n,
$$

with some constant d_j, which implies that

$$
\|H_1(n)\Psi\|_{\mathcal{F}_{SB}} \leq (d_1 + |\alpha|d_2 + \cdots + |\alpha|^{n-1}d_n)\|(K_0 + 1)^n\Psi\|_{\mathcal{F}_{SB}}.
$$

Since \mathcal{F}_∞ is a core of $(K_0 + 1)^n$, we can see that $D((K_0 + 1)^n) \subset D(H_1(n))$ and

$$
\|H_1(n)\Psi\|_{\mathcal{F}_{SB}} \leq (d_1 + |\alpha|d_2 + \cdots + |\alpha|^{n-1}d_n)\|(K_0 + 1)^n\Psi\|_{\mathcal{F}_{SB}}, \quad \Psi \in D((K_0 + 1)^n),
$$

where $H_1(n)$ denotes the closure of $H_1(n)\mathcal{F}_\infty$. Let

$$
\alpha_* := \max \left\{ |\alpha| \big| |\alpha|(d_1 + |\alpha|d_2 + \cdots + |\alpha|^{n-1}d_n) \leq 1 \right\}.
$$

For α such that $|\alpha| < \alpha_*$, by the Kato-Rellich theorem

$$
K_n := (K_0 + 1)^n + \alpha H_1(n)
$$

is self-adjoint on $D((K_0 + 1)^n)$ and bounded from below. Moreover it is essentially self-adjoint on any core of $D((K_0 + 1)^n)$. In particular $K_n\mathcal{F}_\infty$ is essentially self-adjoint. Since

$$
(K + 1)^n\mathcal{F}_\infty = K_n\mathcal{F}_\infty \subset K_n D((K_0 + 1)^n)
$$

and $K_n D((K_0 + 1)^n)$ is self-adjoint for α with $|\alpha| < \alpha_*$, we conclude that

$$
(K + 1)^n = K_n D((K_0 + 1)^n),
$$

i.e., $(K + 1)^n$ is self-adjoint on $D((K_0 + 1)^n)$ and essentially self-adjoint on any core of $(K_0 + 1)^n$ for α with $|\alpha| < \alpha_*$. Thus we get the desired results. \(\square\)

5.3.2 Results

Lemma 5.14 There exist constants $\alpha_{**} > 0$ and ξ_k, $k = 1, \ldots, n$, such that for α with $|\alpha| < \alpha_{**}$,

$$
\|(K_0 + 1)^k\Psi\|_{\mathcal{F}_{SB}} \leq \xi_k \|(K + 1)^k\Psi\|_{\mathcal{F}_{SB}}, \quad 1 \leq k \leq n, \quad \Psi \in D((K + 1)^k).
$$

In particular $-1 \in \rho(K)$ and $(K_0 + 1)^k(K + 1)^{-k}$, $k = 1, \ldots, n$, is a bounded operator with

$$
\|(K_0 + 1)^k(K + 1)^{-k}\|_{\mathcal{F}_{SB} \to \mathcal{F}_{SB}} \leq \xi_k.
$$
Proof: We prove the lemma by induction with respect to \(k \). For \(k = 1 \), we have

\[
\|(K_0 + 1)\Psi\|_{F_{SB}} \leq \|(K + 1)\Psi\|_{F_{SB}} + |\alpha|\|H_{SB,1}\Psi\|_{F_{SB}} \\
\leq \|(K + 1)\Psi\|_{F_{SB}} + |\alpha|c_0(1 + 1)\Psi\|_{F_{SB}}
\]

with some constant \(c_0 \). Thus

\[
\|(K_0 + 1)\Psi\|_{F_{SB}} \leq \xi_1\|(K + 1)\Psi\|_{F_{SB}}, \quad \Psi \in F_\infty, \quad (5.9)
\]

with \(\xi_1 = 1/(1 - |\alpha|c_0) \) follows for \(\alpha \) with \(|\alpha| < 1/c_0 \). Since \(F_\infty \) is a core of \(K + 1 \), (5.9) can be extended for \(\Psi \in D(K + 1) \). Thus the lemma follows for \(k = 1 \). Suppose that the lemma holds for \(k = m < n \). Note that for \(\Psi \in F_\infty \),

\[
(K_0 + 1)^{m+1}\Psi = (K_0 + 1)(K + 1)^{-1}(K_0 + 1)^m(K + 1)\Psi \\
+ (K_0 + 1)(K + 1)^{-1}[K + 1, (K_0 + 1)^m]\Psi.
\]

We have

\[
\|(K_0 + 1)(K + 1)^{-1}(K_0 + 1)^m(K + 1)\Psi\|_{F_{SB}} \leq \xi_1\xi_m\|(K + 1)^{m+1}\Psi\|_{F_{SB}} \quad (5.10)
\]

and by Lemma 5.12,

\[
\begin{align*}
\|(K_0 + 1)(K + 1)^{-1}[K + 1, (K_0 + 1)^m]\Psi\|_{F_{SB}} \\
\leq \xi_1|\alpha|\|H_{SB,1,1}[K + 1, (K_0 + 1)^m]\Psi\|_{F_{SB}} \\
\leq \xi_1|\alpha|\sum_{\ell=1}^{m} \left(\frac{m}{\ell} \right) C_\ell\|(K_0 + 1)^{m+1-(\ell/2)}\Psi\|_{F_{SB}} \\
\leq \xi_1|\alpha|\sum_{\ell=2}^{m} \left(\frac{m}{\ell} \right) C_\ell\|(K_0 + 1)^{m+1-(\ell/2)}\Psi\|_{F_{SB}} + mC_1\|(K_0 + 1)^{m+(1/2)}\Psi\|_{F_{SB}} \\
\leq \xi_1|\alpha|\sum_{\ell=2}^{m} \left(\frac{m}{\ell} \right) C_\ell\|(K_0 + 1)^m\Psi\|_{F_{SB}} + mC_1\|(K_0 + 1)^{m+1}\Psi\|_{F_{SB}}.
\end{align*}
\]

Thus we have

\[
\begin{align*}
\|(K_0 + 1)^{m+1}\Psi\|_{F_{SB}} \\
\leq \frac{\xi_1}{1 - \xi_1|\alpha|mC_1} \left(\xi_m\|(K + 1)^m\Psi\|_{F_{SB}} + |\alpha|\sum_{\ell=2}^{m} \left(\frac{m}{\ell} \right) C_\ell\|(K_0 + 1)^m\Psi\|_{F_{SB}} \right) \\
\leq \frac{\xi_1}{1 - \xi_1|\alpha|mC_1} \left(\xi_m + |\alpha|\sum_{\ell=2}^{m} \left(\frac{m}{\ell} \right) C_\ell\xi_m\|(K + 1)^m\Psi\|_{F_{SB}} \right), \quad \Psi \in F_\infty, \quad (5.11)
\end{align*}
\]

for \(\alpha \) with \(|\alpha| < 1/\xi_1mC_1 \). Since \(F_\infty \) is a core of \((K + 1)^{m+1} \), (5.11) can be extended for \(\Psi \in D((K + 1)^{m+1}) \). Thus the lemma follows with \(\alpha_{**} := 1/(n\xi_1C_1) \).

Let \(\epsilon_0 := E(A) - 1 \). \(\square \)
Corollary 5.15 It follows that \(\epsilon_0 \in \rho(H_{SB}) \) and \((1 \otimes d\Gamma(\omega)^m)(H_{SB} - \epsilon_0)^{-n}\) is bounded for \(\alpha \) with \(|\alpha| < \min\{\alpha_*, \alpha_{**}\}\) and \(m \leq n \).

Proof: We have

\[
\|((1 \otimes d\Gamma(\omega)^m)\Psi\|_{F_{SB}} \leq \|(K_0 + 1)^m\Psi\|_{F_{SB}} \leq \|(K_0 + 1)^n\Psi\|_{F_{SB}} \quad (5.12)
\]

for \(\Psi \in F_\infty \). Since \(F_\infty \) is a core of \((K_0 + 1)^n\), (5.12) can be extended for \(\Psi \in D((K_0 + 1)^n) \). Thus \((1 \otimes d\Gamma(\omega)^m)(K_0 + 1)^{-n}\) is a bounded operator with

\[
\|((1 \otimes d\Gamma(\omega)^m)(K_0 + 1)^{-n}\Psi\|_{F_{SB}} \leq 1.
\]

Hence Lemma 5.14 yields that

\[
\|((1 \otimes d\Gamma(\omega)^m)(H_{SB} - \epsilon_0)^{-n}\Psi\|_{F_{SB}} \leq \|\hat{\epsilon}_n\|\Psi\|_{F_{SB}}.
\]

Thus the corollary follows. \(\square \)

Lemma 5.16 For \(\alpha \) with \(|\alpha| < \alpha_*\), it follows that

\[
T_{SB}(k) : D((H_{SB} - \epsilon_0)^m) \rightarrow D((H_{SB} - \epsilon_0)^{m-1}), \quad 1 \leq m \leq n. \quad (5.13)
\]

In particular

\[
D((H_{SB} - \epsilon_0)^n) \subset D(T_{SB}(k_m)^*e^{it_m\hat{H}_{SB}} \cdots T_{SB}(k_1)^*e^{it_1\hat{H}_{SB}}), \quad 1 \leq m \leq n, \quad (5.14)
\]

where \(\hat{H}_{SB} := H_{SB} - E(H_{SB}) \).

Proof: Let \(\Psi \in F_\infty \). We have

\[
(K_0 + 1)^{m-1}(B_j \otimes 1)\Psi = (B_j \otimes 1)(K_0 + 1)^{m-1}\Psi + [(K_0 + 1)^{m-1}, B_j \otimes 1]\Psi = (B_j \otimes 1)(K_0 + 1)^{m-1}\Psi + \sum_{\ell=1}^{m-1} \binom{m-1}{\ell} \text{ad}_{K_0}^\ell (B_j \otimes 1)(K_0 + 1)^{m-1-\ell}\Psi.
\]

By (B.6)-(4), we have

\[
\|\text{ad}_{K_0}^\ell (B_j \otimes 1)\Psi\|_{F_{SB}} = \|\text{ad}_A^\ell (B_j) \otimes 1)\Psi\|_{F_{SB}} \leq a_\ell \|\hat{\Theta}(\ell+1/2) \otimes 1)\|_{F_{SB}} + b_\ell \|\Psi\|_{F_{SB}} \leq c_\ell \|(K_0 + 1)^{(\ell+1)/2}\Psi\|_{F_{SB}}
\]

By (5.13), we have

\[
\|((1 \otimes d\Gamma(\omega)^m)(H_{SB} - \epsilon_0)^{-n}\Psi\|_{F_{SB}} \leq 1.
\]

Thus the corollary follows. \(\square \)
with some constant c. Hence it follows that
\[
\| (K_0 + 1)^{m-1} (B_j \otimes 1) \Psi \|_{F_{SB}} \\
\leq c_0 \|(K_0 + 1)^{m-(1/2)} \Psi \|_{F_{SB}} + \sum_{\ell = 1}^{m-1} \left(m - 1 \right) c_\ell \|(K_0 + 1)^{m-(\ell+1)/2} \Psi \|_{F_{SB}} \\
\leq C\|(K_0 + 1)^m \Psi \|_{F_{SB}}
\]
with some constant C. Thus for $\Psi, \Phi \in F_\infty$, it follows that
\[
\|((B_j \otimes 1) \Psi, (K_0 + 1)^{m-1} \Phi)_{F_{SB}}| \leq C\|(K_0 + 1)^m \Psi \|_{F_{SB}}\|\Phi\|_{F_{SB}}.
\]
(5.15)
It is seen that
\[
\|((B_j \otimes 1) \Psi)\|_{F_{SB}} \leq C\|(K_0 + 1)^{1/2} \Psi\|_{F_{SB}}, \quad \Psi \in D((K_0 + 1)^{1/2})).
\]
From this it follows that
\[
\|((B_j \otimes 1) \Psi)\|_{F_{SB}} \leq C\|(K_0 + 1)^m \Psi\|_{F_{SB}}, \quad \Psi \in D((K_0 + 1)^m)).
\]
(5.16)
Since F_∞ is a core of $(K_0 + 1)^m$ and B_j is a closed operator, using (5.16) we can extend (5.15) for $\Psi \in D((K_0 + 1)^m)$ and $\Phi \in D((K_0 + 1)^{m-1})$. Set
\[
Q(\Psi, \Phi) := ((B_j \otimes 1) \Psi, (K_0 + 1)^{m-1} \Phi)_{F_{SB}}, \quad \Psi \in D((K_0 + 1)^m), \Phi \in D((K_0 + 1)^{m-1}).
\]
For each fixed $\Psi \in D((K_0 + 1)^m)$, $Q(\Psi, \Phi)$ can be extended for all $\Phi \in F_{SB}$ by (5.15) as a linear bounded functional, which is denoted by $Q(\Psi, \Phi)$. Thus, by the Riesz representation theorem, there exists a unique $F_\Psi \in F_{SB}$ such that
\[
Q(\Psi, \Phi) = (F_\Psi, \Phi)_{F_{SB}}, \quad \Psi \in D((K_0 + 1)^m), \Phi \in F_{SB}.
\]
(5.17)
In particular
\[
((B_j \otimes 1) \Psi, (K_0 + 1)^{m-1} \Phi)_{F_{SB}} = (F_\Psi, \Phi)_{F_{SB}}, \quad \Psi \in D((K_0 + 1)^m), \Phi \in D((K_0 + 1)^{m-1}).
\]
This implies that $(B_j \otimes 1) \Psi \in D((K_0 + 1)^{m-1})$ for $\Psi \in D((K_0 + 1)^m)$, i.e.,
\[
B_j \otimes 1 : D((K_0 + 1)^m) \rightarrow D((K_0 + 1)^{m-1}).
\]
Since $T_{SB}(k) = (\sum_{j=1}^{J} \lambda_j(k)B_j) \otimes 1$, we have
\[
T_{SB}(k) : D((K_0 + 1)^{m-1}) \rightarrow D((K_0 + 1)^m).
\]
(5.13) follows from the fact that $D((K_0 + 1)^m) = D((K + 1)^m) = D((H_{SB} - \epsilon_0)^m)$. Noting that
\[
e^{it\hat{H}_{SB}} : D((H_{SB} - \epsilon_0)^m) \rightarrow D((H_{SB} - \epsilon_0)^m),
\]
we can conclude (5.14) and the proof is complete. \qed
Theorem 5.17 In addition to (B.1), (B.6) and (B.7), we suppose (B.4), (B.5) and \(\lambda_j/\omega \in L^2(\mathbb{R}^\nu) \), \(j = 1, \ldots, J \). Then \(\varphi_j \in D(1 \otimes N^{n/2}) \) for \(\alpha \) with \(|\alpha| < \min\{\alpha_*, \alpha_*\} \).

Proof: By Theorem 4.6 it is enough to check (H.1)-(H.5) under identification (5.3), \(\mathcal{E} = D((H_{SB} - \epsilon_0)^m) \) and \(C_n = C^2_n(\mathbb{R}^\nu \setminus \mathbb{Y}) \). Since \(T_{SB}(k) = (\sum_{j=1}^J \lambda_j(k)B_j) \otimes 1 \), (H.1) is satisfied. In Corollary 5.15 we checked that \((1 \otimes d\Gamma(\omega)^m)(H_{SB} - \epsilon_0)^{-n}, m \leq n, \) is a bounded operator. This implies (H.2). Let \(\beta := \sum_j a_j|\lambda_j/\sqrt{\omega}|^2 \). Then

\[
\|(\hat{A}^{1/2} \otimes 1)\Psi\|_{F_{SB}}^2 \leq (\Psi, H_{SB,0}\Psi)_{F_{SB}} + E(A)\|\Psi\|_{F_{SB}}^2
\leq \left(\frac{1}{2} + |E(A)|\right)\|\Psi\|_{F_{SB}}^2 + \frac{1}{2}\|H_{SB,0}\Psi\|_{F_{SB}}^2
\leq \left(\frac{1}{2} + |E(A)|\right)\|\Psi\|_{F_{SB}}^2 + \frac{1}{2(1 - |\alpha|\beta)^2}\|H_{SB}\Psi\|_{F_{SB}}^2,
\]

and

\[
\|(\hat{A}^{1/2} \otimes 1)\Psi\|_{F_{SB}} \leq \frac{1}{\sqrt{2(1 - |\alpha|\beta)}}\|H_{SB}\Psi\|_{F_{SB}} + \left(\frac{1}{2} + |E(A)|\right)^{1/2}\|\Psi\|_{F_{SB}}.
\]

Hence we have

\[
\|T_{SB}(k)\Psi\|_{F_{SB}} \leq \sum_{j=1}^J \|\lambda_j(k)(B_j \otimes 1)\Psi\|_{F_{SB}}
\leq \sum_{j=1}^J |\lambda_j(k)| \left(a_j\|(\hat{A}^{1/2} \otimes 1)\Psi\|_{F_{SB}} + b_j\|\Psi\|_F\right)
\leq \sum_{j=1}^J |\lambda_j(k)| \left\{a_j/\sqrt{2}\|H_{SB}\Psi\|_{F_{SB}} + \left(b_j + a_j\left(\frac{1}{2} + |E(A)|\right)^{1/2}\right)\|\Psi\|_{F_{SB}}\right\}
\leq \sum_{j=1}^J |\lambda_j(k)| \left(d_j\|H_{SB}\Psi\| + d_j'\|\Psi\|\right),
\]

where

\[
d_j = \frac{a_j/\sqrt{2}}{1 - |\alpha|\beta}, \quad d_j' = b_j + a_j\left(\frac{1}{2} + |E(A)|\right)^{1/2} + \frac{a_j|E(H_{SB})|/\sqrt{2}}{1 - |\alpha|\beta}.
\]

Thus we can obtain that

\[
\|T_{SB}(k)(H_{SB} + \omega(k))^{-1}\Psi\|_{F_{SB}} \leq \sum_{j=1}^J |\lambda_j(k)| \left(d_j + d_j'\frac{1}{\omega(k)}\right)\|\Psi\|_{F_{SB}},
\]

from which it follows that

\[
\|[(H_{SB} + \omega(k))^{-1}T_{SB}(k)]\Psi\|_{F_{SB}} \leq \sum_{j=1}^J |\lambda_j(k)| \left(d_j + d_j'\frac{1}{\omega(k)}\right)\|\Psi\|_{F_{SB}}.
\]
From (B.2) and \(\lambda_j/\omega \in L^2(\mathbb{R}^\nu) \), it follows that
\[
\sqrt{\omega} \| (\hat{H}_{SB} + \omega(\cdot))^{-1} T_{SB}(\cdot) [\Psi] \|_{\mathcal{F}_{SB}}, \quad \| (\hat{H}_{SB} + \omega(\cdot))^{-1} T_{SB}(\cdot) [\Psi] \|_{\mathcal{F}_{SB}} \in L^2(\mathbb{R}^\nu).
\]
Thus (H.4) and (H.5) follow. Finally we shall check from (H.3)-(1) to (H.3)-(4). (H.3)-(1) is trivial. In Lemma 5.16 we obtained that
\[
D((H_{SB} - \epsilon_0)^n) \subset D(T_{SB}(k_m)^* e^{it_m \hat{H}_{SB}} \cdots T_{SB}(k_1)^* e^{it_1 \hat{H}_{SB}}), \quad 1 \leq m \leq n,
\]
which implies (H.3)-(2). Note that
\[
T_{SB}(k_m)^* e^{it_m \hat{H}_{SB}} \cdots T_{SB}(k_1)^* e^{it_1 \hat{H}_{SB}}
= \sum_{\ell_1, \ldots, \ell_m} \lambda_{\ell_m}(k_m) \cdots \lambda_{\ell_1}(k_1) (B_{\ell_m} \otimes 1) e^{it_m \hat{H}_{SB}} \cdots (B_{\ell_1} \otimes 1) e^{it_1 \hat{H}_{SB}},
\]
Using (5.4) and the integration by parts formula, we obtain that for \(\Psi \in D((H_{SB} - \epsilon_0)^n) \), \(f_j \in C^0_{\nu}(\mathbb{R}^\nu \setminus \mathcal{Y}) \), \(j = 1, \ldots, n \), and \(T_m = t_1 + \cdots + t_m \),
\[
\left| \int_{\mathbb{R}^\nu} dk_m e^{-i T_m \omega(k_m) f_m(k_m)} \right|
(T_{SB}(k_m)^* e^{it_m \hat{H}_{SB}} \cdots T_{SB}(k_1)^* e^{it_1 \hat{H}_{SB}} \Psi, (1 \otimes a(e^{iT_m \omega} f_{m+1}) \cdots a(e^{iT_m \omega} f_n)) \varphi_\nu)_{\mathcal{F}_{SB}}
\leq \frac{1}{|T_m|^2} \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_m \left| F_j(k_m) (T_{SB}(k_{m-1})^* e^{it_{m-1} \hat{H}_{SB}} \cdots T_{SB}(k_1)^* e^{it_1 \hat{H}_{SB}} \Psi)
\right|
\leq \frac{1}{|T_m|^2} \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_m \left| F_j(k_m) \right| \left| T_{SB}(k_{m-1})^* e^{it_{m-1} \hat{H}_{SB}} \cdots T_{SB}(k_1)^* e^{it_1 \hat{H}_{SB}} \Psi \right|_{\mathcal{F}_{SB}}
\leq \frac{1}{|T_m|^2} \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_m \left| F_j(k_m) \right| \left| (B_j \otimes a(e^{iT_m \omega} f_{m+1}) \cdots a(e^{iT_m \omega} f_n)) \varphi_\nu \right|_{\mathcal{F}_{SB}},
\]
where
\[
F_j(k_m) = \frac{\partial}{\partial k_{m_\mu}} \left(\frac{\partial \omega(k_{m})}{\partial k_{m_\mu}} \right)^{-1} \frac{\partial \omega(k_m)}{\partial k_{m_\mu}} \frac{1}{f_m(k_m) \lambda_j(k_m)}.
\]
Since
\[
\left| (B_j \otimes a(e^{iT_m \omega} f_{m+1}) \cdots a(e^{iT_m \omega} f_n)) \varphi_\nu \right|_{\mathcal{F}_{SB}} \leq C \left| (B_j \otimes d\Gamma(\omega)^{(n-m)/2}) \varphi_\nu \right|_{\mathcal{F}_{SB}}
\]
with some \(C \) independent of \(T_m \). Then the integrand of the right-hand side of (5.18) is independent of \(T_m \) and integrable by (B.4) and (B.5). Thus the right-hand side of (5.18) is in \(L^1([0, \infty); dt_m) \). Hence (H.3)-(3) follows. Let
\[
R^*_k = (\hat{H}_{SB} + \sum_{\ell=k}^{n} \omega(k_{\sigma(\ell)})^{-1}, \quad \sigma \in \mathcal{P}_n.
\]
Using (5.4) and the integration by parts formula again, we see that for \(\Psi \in D((H_{SB} - \epsilon_0)^n) \), \(f_j \in C_0^2(\mathbb{R}^\nu \setminus Y) \), \(j = 1, ..., n \),

\[
\frac{1}{t_1 + \cdots + t_m} \left| \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_{\sigma(m)} \cdots \int_{\mathbb{R}^\nu} dk_{\sigma(n)} \prod_{j=m+1}^n f_{\sigma(j)}(k_{\sigma(j)}) \right|
\]

\[
= \frac{1}{t_1 + \cdots + t_m} \left| \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_{\sigma(m)} \cdots \int_{\mathbb{R}^\nu} dk_{\sigma(n)} \prod_{j=m+1}^n f_{\sigma(j)}(k_{\sigma(j)}) \right|
\]

\[
\leq \frac{1}{t_1 + \cdots + t_m} \left| \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_{\sigma(m)} \cdots \int_{\mathbb{R}^\nu} dk_{\sigma(n)} \prod_{j=m+1}^n f_{\sigma(j)}(k_{\sigma(j)}) \right|
\]

\[
= \left(T_{SB}(k_{\sigma(m)}) \right)^* e^{it_m \hat{H}_{SB}} \cdots T_{SB}(k_{\sigma(1)})^* e^{it_1 \hat{H}_{SB}} \Psi,
\]

\[
\prod_{j=m+1}^n R_{SB}^{\sigma} \right| \left. = \left| \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_{\sigma(m)} \cdots \int_{\mathbb{R}^\nu} dk_{\sigma(n)} \prod_{j=m+1}^n f_{\sigma(j)}(k_{\sigma(j)}) \right| \right|
\]

\[
\leq \left| \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_{\sigma(m)} \cdots \int_{\mathbb{R}^\nu} dk_{\sigma(n)} \prod_{j=m+1}^n f_{\sigma(j)}(k_{\sigma(j)}) \right|
\]

\[
\leq \left| \sum_{j=1}^J \int_{\mathbb{R}^\nu} dk_{\sigma(m)} \cdots \int_{\mathbb{R}^\nu} dk_{\sigma(n)} \prod_{j=m+1}^n f_{\sigma(j)}(k_{\sigma(j)}) \right|
\]

where

\[
F_j(k_{\sigma(m)}) = \frac{\partial}{\partial k_{\sigma(m)\mu}} \left(\begin{array}{c} \frac{\partial \omega(k_{\sigma(m)})}{\partial k_{\sigma(m)\mu}} \\ \frac{\partial \omega(k_{\sigma(m)})}{\partial k_{\sigma(m)\mu}} \end{array} \right)^{-1} \frac{\partial}{\partial k_{\sigma(m)\mu}} \left(\begin{array}{c} \frac{\partial \omega(k_{\sigma(m)})}{\partial k_{\sigma(m)\mu}} \\ \frac{\partial \omega(k_{\sigma(m)})}{\partial k_{\sigma(m)\mu}} \end{array} \right)^{-1} f_{\sigma(m)}(k_{\sigma(m)}) \lambda_j(k_{\sigma(m)}).
\]

Then the right-hand side of (5.19) is in \(L^1([0, \infty); dt_m) \). Hence (H.3)-(4) follows. Thus the proof is complete.

\[\square \]

Acknowledgments

We thank K. R. Ito for a careful reading of the first manuscript and helpful comments. F.H. thanks Grant-in-Aid for Science Research (C) 15540191 and 17540181 from JSPS.
A Proof of Lemma 2.7

Proof of (1) \(\implies\) (2). Let \(\Psi = \{\Psi^{(n)}\}_{n=0}^{\infty} \in \mathcal{F}_{b,0}(\mathcal{K})\) be \(\Psi^{(n)} = a^*(f_1^{(n)}) \cdots a^*(f_n^{(n)})\Omega\). Then, using the canonical commutation relations (2.1)–(2.3), we can show that

\[
\begin{align*}
\mathrm{s-\lim}_{M \to \infty} \sum_{m=1}^{M} a^*(K^*e_m)a(K^*e_m)\Psi^{(n)} &= \mathrm{s-\lim}_{M \to \infty} \sum_{j=1}^{n} a^*(f_1^{(n)}) \cdots a^*(K^* \sum_{m=1}^{M} (e_m, Kf_j^{(n)})e_m) \cdots a^*(f_n^{(n)})\Omega \\
&= \sum_{j=1}^{n} a^*(f_1^{(n)}) \cdots a^*(K^*Kf_j^{(n)}) \cdots a^*(f_n^{(n)})\Omega = d\Gamma(K^*K)\Psi^{(n)}.
\end{align*}
\]

Hence we have

\[
\begin{align*}
\sum_{m=1}^{\infty} \|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^2 &= \underbrace{\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} a^*(K^*e_m)a(K^*e_m)\Psi^{(n)}}_{\text{finite}} \\
\leq \|d\Gamma(K^*K)\|_{\mathcal{F}_{b}(\mathcal{K})}^2 \|\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^2, \quad \text{it follows that \(\lim_{\epsilon \to 0} \|a(K^*e_m)\Psi_{\epsilon}\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} = \|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^{2}\).}
\end{align*}
\]

Since the finite linear hull of such \(\Psi\)'s, say \(\mathcal{D}\), is a core of \(d\Gamma(K^*K)^{1/2}\), we can choose \(\Psi_{\epsilon} \in \mathcal{D}\) for \(\Psi \in \mathcal{D}(d\Gamma(K^*K)^{1/2})\) such that \(\Psi_{\epsilon} \to \Psi\) and \(d\Gamma(K^*K)^{1/2}\Psi_{\epsilon} \rightarrow d\Gamma(K^*K)^{1/2}\Psi\) as \(\epsilon \to 0\) strongly. From the facts that \(a(f)\) is closed and that by (2.4), \(\|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})} \leq \|d\Gamma(K^*K)^{1/2}\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}\), it follows that \(\lim_{\epsilon \to 0} \|a(K^*e_m)\Psi_{\epsilon}\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} = \|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^{2}\). Then we obtain that

\[
\begin{align*}
\sum_{m=1}^{\infty} \|a(K^*e_m)\Psi_{\epsilon}\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} &\leq \sum_{m=1}^{\infty} \|a(K^*e_m)\Psi_{\epsilon}\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} = \|d\Gamma(K^*K)^{1/2}\Psi_{\epsilon}\|_{\mathcal{F}_{b}(\mathcal{K})}^{2},
\end{align*}
\]

and as \(\epsilon \to 0\) on the both sides above,

\[
\sum_{m=1}^{\infty} \|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} \leq \|d\Gamma(K^*K)^{1/2}\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^{2}.
\]

Hence we can conclude that \(\sum_{m=1}^{\infty} \|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} < \infty\) by taking \(M \to \infty\) on the both sides above.

Proof of (1) \(\iff\) (2). Let \(\Psi = \{\Psi^{(n)}\}_{n=0}^{\infty}\). We have

\[
\begin{align*}
\sum_{m=1}^{\infty} \|a(K^*e_m)\Psi\|_{\mathcal{F}_{b}(\mathcal{K})}^{2} &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \|a(K^*e_m)\Psi^{(n)}\|_{\mathcal{D}^{n-1}_{s}}^{2} \\
&= \lim_{M \to \infty} \sum_{n=1}^{M} \sum_{m=1}^{\infty} \|a(K^*e_m)\Psi^{(n)}\|_{\mathcal{D}^{n-1}_{s}}^{2} = \sum_{n=1}^{\infty} \lim_{M \to \infty} \sum_{m=1}^{M} \|a(K^*e_m)\Psi^{(n)}\|_{\mathcal{D}^{n-1}_{s}}^{2}. \quad (1.1)
\end{align*}
\]
Here on the third equality we used the monotone convergence theorem. The restriction $A_M := \sum_{m=1}^{M} a^*(K^*e_m)a(K^*e_m)|_{\mathcal{D}_K}$ is a bounded operator, and

$$\|A_M\|_{\mathcal{D}_K \rightarrow \mathcal{D}_K} \leq \|d\Gamma_n(K^*K)^{1/2}\|_{\mathcal{D}_K \rightarrow \mathcal{D}_K}.$$

Then $\text{s-lim}_{M \rightarrow \infty} A_M = d\Gamma_n(K^*K)$ on $\otimes^n\mathcal{K}$. Hence we have by (1.1),

$$\infty > \sum_{m=1}^{\infty} \|a(K^*e_m)\|_{\mathcal{F}_b(\mathcal{K})}^2 = \sum_{n=1}^{\infty} \lim_{M \rightarrow \infty} \langle \Psi^{(n)}, A_M \Psi^{(n)} \rangle_{\mathcal{D}_K}$$

$$= \sum_{n=1}^{\infty} \langle \Psi^{(n)}, d\Gamma_n(K^*K)\Psi^{(n)} \rangle_{\otimes^n\mathcal{K}} = \sum_{n=0}^{\infty} \|d\Gamma_n(K^*K)^{1/2}\Psi^{(n)}\|_{\otimes^n\mathcal{K}}^2 = \|d\Gamma(K^*K)^{1/2}\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2.$$

Thus the lemma is proved. \qed

B Proof of Lemma 4.4

It is seen that for $\Psi = a^*(f_1) \cdots a^*(f_m)\Omega$,

$$\lim_{m_1, \ldots, m_n \rightarrow \infty} \sum_{i_1, \ldots, i_n=1}^{m_1, \ldots, m_n} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2 = m(m-1) \cdots (m-n+1)\|\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2.$$

Hence by a limiting argument we have for $\Psi \in \mathcal{F}_{b,0}^{(m)}(\mathcal{K})$,

$$\lim_{m_1, \ldots, m_n \rightarrow \infty} \sum_{i_1, \ldots, i_n=1}^{m_1, \ldots, m_n} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2 = \|\prod_{j=1}^{n}(N-j+1)\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2.$$

Proof of (1) \Rightarrow (2)

Let $\Psi_M \in \mathcal{F}_{b,0}^{(m)}(\mathcal{K})$ be a truncated vector for Ψ defined by $\Psi_M^{(m)} := \begin{cases} \Psi^{(m)} & m \leq M, \\ 0 & m > M. \end{cases}$ Then

$$\sum_{i_1, \ldots, i_n=1}^{\infty} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi_M\|_{\mathcal{F}_b(\mathcal{K})}^2 = \|\prod_{j=1}^{n}(N-j+1)\Psi_M\|_{\mathcal{F}_b(\mathcal{K})}^2$$

$$= \sum_{m=0}^{M} \|\prod_{j=1}^{n}(N-j+1)\Psi^{(m)}\|_{\otimes^n\mathcal{K}}^2.$$

Take $M \rightarrow \infty$ on the both sides above. Then we have by the monotone convergence theorem, $\infty > \sum_{i_1, \ldots, i_n=1}^{\infty} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2 = \|\prod_{j=1}^{n}(N-j+1)\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2$. Thus (2) follows.

Proof of (2) \Rightarrow (1)

Note that

$$\sum_{i_1, \ldots, i_n=1}^{m_1, \ldots, m_n} \|a(e_{i_1}) \cdots a(e_{i_n})\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2 \leq \|\prod_{j=1}^{n}(N-j+1)\Psi\|_{\mathcal{F}_b(\mathcal{K})}^2.$$

Take $m_1, \ldots, m_n \rightarrow \infty$ on the both hand sides above. Thus (1) follows. \qed
C Example 5.2

In this section we shall prove that \(A = -\Delta + \beta V, \ V \in \mathcal{S}(\mathbb{R}^\nu), \) and \(B_j = -i \nabla_j (= p_j), \ j = 1, ..., \nu, \) satisfy (B.6) with \(D_\infty = \mathcal{S}(\mathbb{R}^\nu) \) for \(\beta \) with \(|\beta| \) sufficiently small.

Proposition C.1 Suppose that \(|\beta| \) is sufficiently small. Then (1) \(A^n \) is self-adjoint on \(D(A^n) = D((-\Delta)^n) \) and essentially self-adjoint on any core of \((-\Delta)^n \). In particular \(A^n \) is essentially self-adjoint on \(\mathcal{S}(\mathbb{R}^\nu) \), (2) there exist constants \(a_k \) and \(b_k \) such that for all \(\Psi \in \mathcal{S}(\mathbb{R}^\nu) \) and \(j = 1, ..., \nu, \)

\[
\| \text{ad}^k_A(p_j)\Psi\|_{L^2(\mathbb{R}^\nu)} \leq a_k\| A^{(k+1)/2}\Psi\|_{L^2(\mathbb{R}^\nu)} + b_k\| \Psi\|_{L^2(\mathbb{R}^\nu)}, \quad k \geq 0.
\]

Before going to a proof of Proposition C.1 we prepare some lemmas. In this section we write \(\| \cdot \| \) for \(\| \cdot \|_{L^2(\mathbb{R}^\nu)} \) for simplicity. Note that \(\| p_{j_1} \cdots p_{j_m} \Phi \| \leq \| (-\Delta)^{m/2}\Phi \| \) for \(\Phi \in \mathcal{S}(\mathbb{R}^\nu), \) \(1 \leq j_1, ..., j_m \leq \nu, \) and for \(k \leq l, \)

\[
\| (-\Delta)^{k/2}\Phi \| \leq C_{k,l}(\| (-\Delta)^{l/2}\Phi \| + \| \Phi \|), \quad \Phi \in \mathcal{S}(\mathbb{R}^\nu), \tag{3.1}
\]

with some constant \(C_{k,l} \). The operators \(A \) and \(p_j \) leave \(\mathcal{S}(\mathbb{R}^\nu) \) invariant and we see that

\[
A^n|_{\mathcal{S}(\mathbb{R}^\nu)} = ((-\Delta)^n + \beta K_1)|_{\mathcal{S}(\mathbb{R}^\nu)},
\]

where

\[
K_1 := \sum_j (-\Delta) \cdots \hat{\nabla}_j \cdots (-\Delta) + \beta \sum_{j_1 < j_2} (-\Delta) \cdots \hat{\nabla}_j \cdots \hat{\nabla}_j \cdots (-\Delta) + \beta^2 \sum_{j_1 < j_2 < j_3} (-\Delta) \cdots \hat{\nabla}_j \cdots \hat{\nabla}_j \cdots (-\Delta) + \cdots + \beta^{n-1}V^n.
\]

Lemma C.2 There exists a constant \(C_m \) such that

\[
\| p_{j_1}p_{j_2} \cdots p_{j_m}, V \| \Phi \| \leq C_m(\| (-\Delta)^{(m-1)/2}\Phi \| + \| \Phi \|), \quad \Phi \in \mathcal{S}(\mathbb{R}^\nu), \quad 1 \leq j_1, ..., j_m \leq \nu.
\]

Proof: Since on \(\mathcal{S}(\mathbb{R}^\nu), \)

\[
[p_{j_1}, p_{j_2} \cdots p_{j_m}, V] = \sum_{\ell=1}^m \sum_{\{i_1, ..., i_\ell\} \subset \{j_1, ..., j_m\}} V^i_1 \cdots \hat{\nabla}_i \cdots V^i_\ell \cdots p_{j_1} \cdots \hat{\nabla}_i \cdots p_{j_m},
\]

where \(V^{i_1, ..., i_\ell} = (-i)^\ell \partial^{\ell} V/\partial x_i \cdots \partial x_i \), we have

\[
\| [p_{j_1}, p_{j_2} \cdots p_{j_m}, V] \| \Phi \| \leq \sum_{\ell=1}^m \sum_{\{i_1, ..., i_\ell\} \subset \{j_1, ..., j_m\}} \| V^{i_1, ..., i_\ell} \|_\infty \| (-\Delta)^{(m-\ell)/2}\Phi \|. \tag{3.2}
\]

Here \(\| f \|_\infty := \text{ess.sup}_{k \in \mathbb{R}} |f(k)|. \) From (3.1) it follows that

\[
\| (-\Delta)^{(m-\ell)/2}\Phi \| \leq C_{m-\ell/2, (m-1)/2}(\| (-\Delta)^{(m-1)/2}\Phi \| + \| \Phi \|). \tag{3.3}
\]

Then the lemma follows from (3.2) and (3.3). \(\square \)
Lemma C.3. There exists a constant C_ℓ such that
\[
\|(-\Delta)^\ell V \Phi\| \leq C_\ell (\|(-\Delta)^\ell \Phi\| + \|\Phi\|), \quad \Phi \in \mathcal{S}(\mathbb{R}^n). \tag{3.4}
\]

Proof: Note that for $\Phi \in \mathcal{S}(\mathbb{R}^n)$,
\[
\|(-\Delta)^\ell V \Phi\| \leq \|V(-\Delta)^\ell \Phi\| + \|[(-\Delta)^\ell, V]\Phi\|.
\]
Since $[(-\Delta)^\ell, V] = \sum_{j=1}^n [p_{2j-1}, p_{2j}, V]$ on $\mathcal{S}(\mathbb{R}^n)$, by Lemma C.2
\[
\|[(-\Delta)^\ell, V]\Phi\| \leq C (\|\|(-\Delta)^{(2l-1)/2} \Phi\| + \|\Phi\|) \leq C' (\|(-\Delta)^\ell \Phi\| + \|\Phi\|) \tag{3.5}
\]
with some constants C and C'. Moreover
\[
\|V(-\Delta)^\ell \Phi\| \leq \|V\|_\infty \|(-\Delta)^\ell \Phi\|. \tag{3.6}
\]
From (3.4), (3.5) and (3.6), it follows that
\[
\|(-\Delta)^\ell V \Phi\| \leq (C' + \|V\|_\infty) (\|(-\Delta)^\ell \Phi\| + \|\Phi\|).
\]
Then the proof is complete. \qed

Lemma C.4. There exists a constant C_{i_1, \ldots, i_m} such that for $1 \leq i_1 < \cdots < i_m \leq n$,
\[
\|(-\Delta) \cdots \frac{V_{i_1}}{n} \cdots \frac{V_{i_m}}{n} (-\Delta) \Phi\| \leq C_{i_1, \ldots, i_m} (\|(-\Delta)^{n-m} \Phi\| + \|\Phi\|), \quad \Phi \in \mathcal{S}(\mathbb{R}^n).
\]

Proof: It inductively follows from Lemma C.3. \qed

Proof of Proposition C.1 (1)
From the definition of K_1, (3.1) and Lemma C.4, it follows that
\[
\|K_1 \Phi\| \leq \sum_{\ell=1}^n \|\beta\|^{\ell-1} C_{1,\ell} (\|(-\Delta)^{n-\ell} \Phi\| + \|\Phi\|)
\leq C_1 (\|(-\Delta)^n \Phi\| + \|\Phi\|), \quad \Phi \in \mathcal{S}(\mathbb{R}^n), \tag{3.7}
\]
with some constants C_1 and $C_{1,\ell}$, $\ell = 1, \ldots, n$. Since $\mathcal{S}(\mathbb{R}^n)$ is a core of $(-\Delta)^n$, we can extend (3.7) for $\Phi \in D((-\Delta)^n)$ with
\[
\|\overline{K_1} \Phi\| \leq C_1 (\|(-\Delta)^n \Phi\| + \|\Phi\|), \tag{3.8}
\]
where $\overline{K_1}$ denotes the closure of $K_1 |_{\mathcal{S}(\mathbb{R}^n)}$. Then for β with $|\beta| < 1/C_1$, the Kato-Rellich theorem yields that $(-\Delta)^n + \beta \overline{K_1}$ is self-adjoint on $D((-\Delta)^n)$ and bounded from below.
Moreover it is essentially self-adjoint on any core of \((-\Delta)^n\). In particular \((-\Delta)^n + \beta K_1\) is essentially self-adjoint on \(S(\mathbb{R}^\nu)\). Since
\[
A^n[S(\mathbb{R}^\nu)] = ((-\Delta)^n + \beta K_1)[S(\mathbb{R}^\nu)] \subset ((-\Delta)^n + \beta K_1)[D((-\Delta)^n)],
\]
we obtain that
\[
A^n = ((-\Delta)^n + \beta K_1)[D((-\Delta)^n)].
\]
Hence for \(\beta\) with \(|\beta| < 1/C_1\), \(A^n\) is self-adjoint on \(D((-\Delta)^n)\) and essentially self-adjoint on any core of \((-\Delta)^n\). Thus Proposition C.1 (1) follows.

Lemma C.5 Let \(g \in S(\mathbb{R}^\nu)\) and \(m \geq 1\). Then there exist \(g^{(1)}, \ldots, g^{(m-1)}, g^{(k)}_{j_1 \ldots j_\ell} \in S(\mathbb{R}^\nu), j_1, \ldots, j_\ell = 1, \ldots, \nu, \ell = 1, \ldots, m\), such that
\[
ad_A^m(g) = \sum_{\ell=0}^{m-1} \ad_A^\ell(g^{(\ell)}) + \sum_{\ell=1}^{m} \sum_{j_1, \ldots, j_\ell=1}^{\nu} g^{(k)}_{j_1 \ldots j_\ell} p_{j_1} \cdots p_{j_\ell}.
\]

Proof: We prove the lemma by induction with respect to \(m\). Let \(m = 1\). Then
\[
ad_A(g) = -g'' + 2 \sum_{j=1}^{\nu} g'_j p_j = \ad_A^0(-g'') + 2 \sum_{j=1}^{\nu} g'_j p_j,
\]
where \(g'' = \Delta g\) and \(g'_j = -i \partial g/\partial x_j\). Thus (3.9) follows for \(m = 1\). Suppose (3.9) holds for \(m = 0, 1, \ldots, k\). Then we have
\[
ad_A^{k+1}(g) = \ad_A \ad_A^k(g) = \sum_{\ell=0}^{k-1} \ad_A^\ell(g^{(\ell)}) + \sum_{\ell=1}^{k} \ad_A(g^{(k)}_{j_1 \ldots j_\ell} p_{j_1} \cdots p_{j_\ell}).
\]
Directly we can see by (3.10) that
\[
ad_A(g^{(k)}_{j_1 \ldots j_\ell} p_{j_1} \cdots p_{j_\ell}) = \ad_A(g^{(k)}_{j_1 \ldots j_\ell}) p_{j_1} \cdots p_{j_\ell} + g^{(k)}_{j_1 \ldots j_\ell} \ad_A(p_{j_1} \cdots p_{j_\ell})
\]
\[
= (-g^{(k)}_{j_1 \ldots j_\ell})'' + 2 \sum_{j=1}^{\nu} (g^{(k)}_{j_1 \ldots j_\ell})' p_j p_{j_1} \cdots p_{j_\ell} + g^{(k)}_{j_1 \ldots j_\ell} [V, p_{j_1} \cdots p_{j_\ell}]
\]
\[
= g^{(k)}_{j_1 \ldots j_\ell} \sum_{m=1}^{\ell} \sum_{\{i_1, \ldots, i_m\} \subset \{j_1, \ldots, j_\ell\}} \sum_{m=1}^{\ell} \sum_{\{i_1, \ldots, i_m\} \subset \{j_1, \ldots, j_\ell\}} V^{i_1, \ldots, i_m} p_{j_1} \cdots p_{j_m} + \sum_{\ell=0}^{k-1} \ad_A^\ell(g^{(k)}_{j_1 \ldots j_\ell} V^{j_1 \ldots j_\ell}).
\]
Substituting (3.12) to (3.11) and rearranging, we can see that
\[
ad_A^{k+1}(g) = \sum_{\ell=0}^{k} \ad_A^\ell(g^{(\ell)}) + \sum_{\ell=1}^{k+1} \sum_{j_1, \ldots, j_\ell=1}^{\nu} g^{(k)}_{j_1 \ldots j_\ell} p_{j_1} \cdots p_{j_\ell}.
\]
Lemma C.7

Let $g \in \mathcal{S}(\mathbb{R}^\nu)$. Then there exists a constant $C_{g,m}$ such that

$$\|\text{ad}^m_A(g)\Phi\| \leq C_{g,m} (\|(-\Delta)^{m/2}\Phi\| + \|\Phi\|), \quad \Phi \in \mathcal{S}(\mathbb{R}^\nu), \quad m \geq 0. \quad (3.13)$$

Proof: We prove the lemma by induction with respect to m. For $m = 0$, (3.13) follows. Assume that (3.13) holds for $m = 0, 1, \ldots, k$. Then by Lemma C.5 we see that

$$\|\text{ad}^{k+1}_A(g)\Phi\| \leq \sum_{\ell=0}^{k} \|\text{ad}^\ell_A(g^\ell)\Phi\| + \sum_{\ell=1}^{k+1} \sum_{j_1, \ldots, j_\ell=1}^{\nu} \|g^k_{j_1, \ldots, j_\ell} p_{j_1} \cdots p_{j_\ell}\Phi\|$$

with some constant C. By the assumption of the induction and (3.1) we have

$$\|\text{ad}^{k+1}_A(g)\Phi\| \leq C' \sum_{\ell=0}^{k+1} (\|(-\Delta)^{\ell/2}\Phi\| + \|\Phi\|) \leq C'' (\|(-\Delta)^{(k+1)/2}\Phi\| + \|\Phi\|)$$

with some constants C' and C''. Then the lemma follows. \hfill \Box

Lemma C.6

Let $g \in \mathcal{S}(\mathbb{R}^\nu)$. Then there exists a constant $C_{g,m}$ such that

$$\|\text{ad}^m_A(g)\Phi\| \leq C_{g,m} (\|(-\Delta)^{m/2}\Phi\| + \|\Phi\|), \quad \Phi \in \mathcal{S}(\mathbb{R}^\nu), \quad m \geq 0. \quad (3.13)$$

Proof: We prove the lemma by induction with respect to m. For $m = 0$, (3.13) follows. Assume that (3.13) holds for $m = 0, 1, \ldots, k$. Then by Lemma C.5 we see that

$$\|\text{ad}^{k+1}_A(g)\Phi\| \leq \sum_{\ell=0}^{k} \|\text{ad}^\ell_A(g^\ell)\Phi\| + \sum_{\ell=1}^{k+1} \sum_{j_1, \ldots, j_\ell=1}^{\nu} \|g^k_{j_1, \ldots, j_\ell} p_{j_1} \cdots p_{j_\ell}\Phi\|$$

with some constant C. By the assumption of the induction and (3.1) we have

$$\|\text{ad}^{k+1}_A(g)\Phi\| \leq C' \sum_{\ell=0}^{k+1} (\|(-\Delta)^{\ell/2}\Phi\| + \|\Phi\|) \leq C'' (\|(-\Delta)^{(k+1)/2}\Phi\| + \|\Phi\|)$$

with some constants C' and C''. Then the lemma follows. \hfill \Box

Lemma C.7

We have $\text{ad}^k_A(p_j) = \beta \text{ad}^{k-1}_A (i\partial V/\partial x_j)$ on $\mathcal{S}(\mathbb{R}^\nu)$.

Proof: We see that on $\mathcal{S}(\mathbb{R}^\nu)$,

$$\text{ad}_A^k(p_j) = \text{ad}_A^{k-\Delta+\beta V}(p_j)$$

$$= \text{ad}_A^k(-\Delta)(p_j) + \beta \sum_{j} \text{ad}_A(-\Delta) \cdots \text{ad}_V \cdots \text{ad}_A(-\Delta)(p_j)$$

$$+ \beta^2 \sum_{j_1 < j_2} \text{ad}_A(-\Delta) \cdots \text{ad}_V \cdots \text{ad}_A \cdots \text{ad}_A(-\Delta)(p_j)$$

$$+ \beta^3 \sum_{j_1 < j_2 < j_3} \text{ad}_A(-\Delta) \cdots \text{ad}_V \cdots \text{ad}_V \cdots \text{ad}_A \cdots \text{ad}_A(-\Delta)(p_j) + \cdots + \beta^k \text{ad}_V^k(p_j).$$

Since $\text{ad}_A(-\Delta)(p_j) = 0$, we have

$$\text{ad}_A^k(p_j) = \beta \text{ad}_A(-\Delta) \cdots \text{ad}_V \text{ad}_V(p_j)$$

$$+ \beta^2 \sum_{j} \text{ad}_A(-\Delta) \cdots \text{ad}_V \cdots \text{ad}_A \text{ad}_V(p_j)$$

$$+ \beta^3 \sum_{j_1 < j_2} \text{ad}_A(-\Delta) \cdots \text{ad}_V \cdots \text{ad}_V \cdots \text{ad}_A \text{ad}_V(p_j) + \cdots + \beta^k \text{ad}_V^{k-1} \text{ad}_V(p_j)$$

$$= \beta \text{ad}_A^{k-1} \text{ad}_V(p_j) = \beta \text{ad}_A^{k-1}(i\partial V/\partial x_j).$$
Thus the lemma follows. \(\square \)

Lemma C.8 Let \(k \geq 1 \). Then there exists a constant \(C_{V,k} \) such that
\[
\| \text{ad}_A^k (p_j) \Phi \| \leq |\beta| |C_{V,k}| (\| (-\Delta)^{(k-1)/2} \Phi \| + \| \Phi \|), \quad \Phi \in S(\mathbb{R}^\nu).
\]

Proof: By Lemmas C.6 and C.7 we have
\[
\| \text{ad}_A^k (p_j) \Phi \| = \| \text{ad}_A^{k-1} (i \partial V / \partial x_j) \Phi \| \leq |\beta| C (\| (-\Delta)^{(k-1)/2} \Phi \| + \| \Phi \|)
\]
with some constant \(C \). Then the lemma follows. \(\square \)

Proof of Proposition C.1 (2)

Let \(\Phi \in S(\mathbb{R}^\nu) \). We have
\[
\| (-\Delta)^n \Phi \| = \| ((-\Delta)^n + \beta K_1 + \beta K_1) \Phi \| \leq \| A^n \Phi \| + |\beta| \| K \Phi \|
\leq \| A^n \Phi \| + |\beta| C (\| (-\Delta)^n \Phi \| + \| \Phi \|)
\]
with some constant \(C \). Hence it follows that
\[
\| (-\Delta)^n \Phi \| \leq \frac{1}{1 - |\beta| C} (\| A^n \Phi \| + \| \Phi \|)
\]
for \(\beta \) with \(|\beta| < 1/C \). Moreover
\[
\| A^n \Phi \| \leq a \| \hat{A}^n \Phi \| + b \| \Phi \|, \quad \Phi \in S(\mathbb{R}^\nu),
\]
with some constants \(a \) and \(b \). Then
\[
\| (-\Delta)^n \Phi \| \leq C' (\| \hat{A}^n \Phi \| + \| \Phi \|), \quad \Phi \in S(\mathbb{R}^\nu), \quad (3.14)
\]
follows with some constant \(C' \). Since \(S(\mathbb{R}^\nu) \) is a core of \(\hat{A}^n \), one can see that (3.14) can be extended to \(\Phi \in D(\hat{A}^n) \). Then
\[
\| (-\Delta)^{n/2} \Phi \| \leq C'' (\| \hat{A}^{n/2} \Phi \| + \| \Phi \|), \quad \Phi \in D(\hat{A}^{n/2}), \quad (3.15)
\]
with some constant \(C'' \). By Lemma C.8 and (3.15) it follows that
\[
\| \text{ad}_A^k (p_j) \Phi \| \leq |\beta| C'' (\| \hat{A}^{(k-1)/2} \Phi \| + \| \Phi \|), \quad \Phi \in S(\mathbb{R}^\nu),
\]
with some constant \(C'' \). In particular
\[
\| \text{ad}_A^k (p_j) \Phi \| \leq |\beta| C (\| \hat{A}^{(k+1)/2} \Phi \| + \| \Phi \|) \quad \Phi \in S(\mathbb{R}^\nu),
\]
follows. Then the Proposition C.1 (2) follows.
References

